Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- ppovoa
- Date:
- 2021-05-06
- Revision:
- 4:256f2cbe3fdd
- Parent:
- 3:0a718d139ed1
- Child:
- 5:bc42c03f2a23
File content as of revision 4:256f2cbe3fdd:
// Coded by Luís Afonso 11-04-2019 #include "mbed.h" #include "BufferedSerial.h" #include "rplidar.h" #include "Robot.h" #include "Communication.h" #include "Functions.h" #include <stdlib.h> #include <stdio.h> Serial pc(SERIAL_TX, SERIAL_RX); RPLidar lidar; BufferedSerial se_lidar(PA_9, PA_10); PwmOut rplidar_motor(D3); int main() { float odomX, odomY, odomTheta; struct RPLidarMeasurement data; pc.baud(115200); init_communication(&pc); pc.printf("Program started.\n\r"); // Lidar initialization rplidar_motor.period(0.001f); rplidar_motor.write(0.5f); lidar.begin(se_lidar); lidar.setAngle(0,360); float pose[3] = {20,20,0}; // Ponto Inicial //int** pointsVec; // ponteiro duplo para a tabela dimensional que guarda os valores da funcao bresenham float LidarP[2]; // pontos na plataforma float LidarW[2]; // pontos no mundo float MapaLog[40][40] = {0}; float Mapa40[40][40]; float R_WP[3][3]= {{cos(pose[2]), -sin(pose[2]), pose[0]},// matriz rotacao world plataforma {sin(pose[2]), cos(pose[2]), pose[1]}, {0, 0, 1}}; int dim; // guarda a dimensao (numero de linhas) de pointsVec pc.printf("Program started.\n\r"); //lidar.startThreadScan(); setSpeeds(0,0); float dist = 10; float angle = 0; //while(1){ //if(lidar.pollSensorData(&data) == 0) //{ //pc.printf("%f\t%f\n\r", data.distance, data.angle); // Prints one lidar measurement. //radians = ( data.angle * pi ) / 180; //LidarP[0] = -data.distance*cos(radians)- 2.8f; //LidarP[1] = -data.distance*sin(radians)- 1.5f; LidarP[0] = -dist*cos(angle)- 2.8f; LidarP[1] = -dist*sin(angle)- 1.5f; //W_P = R_WP * p_P LidarW[0] = LidarP[0]* R_WP[0][0] + LidarP[1]* R_WP[0][1] + R_WP[0][2]; // coordenadas no mundo, ou seja, cm LidarW[1] = LidarP[0]* R_WP[1][0] + LidarP[1]* R_WP[1][1] + R_WP[1][2]; // pontos onde o feixe passou pointsVec = bresenham(pose[0], pose[1], LidarW[0], LidarW[1], &dim); for(int i=0; i<dim; i++){ pc.printf("%d, %d\n", pointsVec[i][0], pointsVec[i][1]); } /* para estes valores o resultado é o seguinte dist: 10.000000 angle: 0.000000 dim: 13 19, 20 18, 20 17, 20 16, 20 15, 19 14, 19 13, 19 12, 19 11, 19 10, 19 9, 19 8, 19 7, 18*/ // Mapear mapa do Logaritmo //Mapping(MapaLog, pose[0], pose[1], pointsVec, data.distance, dim); /* //libertar espaco da variavel pointsVec for (int h = 0; h < height; h++){ delete [] pointsVec[h]; } delete [] pointsVec; pointsVec = 0;*/ //} //} // Converter o logaritmo para o mapa 40 for(int i=0; i<40; i++){ for(int j=0; j<40; j++){ Mapa40[j][i] = 1 - 1/(1+exp(MapaLog[j][i])); //printf("%.2f\n", 1 - 1/(1+exp(MapaLog[i][j]))); send_map(Mapa40[j][i]); // envia linha em linha } } /* while(1) { // poll for measurements. Returns -1 if no new measurements are available. returns 0 if found one. if(lidar.pollSensorData(&data) == 0) { //if (data.angle > 0 and data.angle < 15) pc.printf("%f\t%f\t%d\t%c\n\r", data.distance, data.angle, data.quality, data.startBit); // Prints one lidar measurement. send_odometry(1, 2, countsLeft, countsRight, odomX, odomY, odomTheta); } wait(0.01); }*/ }