Added support for obtaining BLE device name by parsing advertising data.
Fork of BLE_BlueNRG by
hci/src/hci.c
- Committer:
- mridup
- Date:
- 2014-07-16
- Revision:
- 0:309c845d289d
File content as of revision 0:309c845d289d:
/******************** (C) COPYRIGHT 2013 STMicroelectronics ******************** * File Name : bluenrg_hci.h * Author : AMS - HEA&RF BU * Version : V1.0.0 * Date : 4-Oct-2013 * Description : Function for managing HCI interface. Implementation of * standard HCI commands. ******************************************************************************** * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. * AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, * INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE * CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING * INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. *******************************************************************************/ /** ****************************************************************************** * @file hci.c * @author AMS/HESA Application Team * @brief Function for managing HCI interface. ****************************************************************************** * @copy * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>© COPYRIGHT 2013 STMicroelectronics</center></h2> */ #include "hal_types.h" #include "osal.h" #include "ble_status.h" #include "hal.h" #include <hci_internal.h> #include "gp_timer.h" #if BLE_CONFIG_DBG_ENABLE #define PRINTF(...) printf(__VA_ARGS__) #else #define PRINTF(...) #endif #define HCI_LOG_ON 0 #define HCI_READ_PACKET_NUM_MAX (5) #define MIN(a,b) ((a) < (b) )? (a) : (b) #define MAX(a,b) ((a) > (b) )? (a) : (b) static void enqueue_packet(tHciDataPacket * hciReadPacket); tListNode hciReadPktPool; tListNode hciReadPktRxQueue; /* pool of hci read packets */ static tHciDataPacket hciReadPacketBuffer[HCI_READ_PACKET_NUM_MAX]; static uint8_t *hci_buffer = NULL; static volatile uint16_t hci_pckt_len; void HCI_Init(void) { uint8_t index; /* Initialize list heads of ready and free hci data packet queues */ list_init_head (&hciReadPktPool); list_init_head (&hciReadPktRxQueue); /* Initialize the queue of free hci data packets */ for (index = 0; index < HCI_READ_PACKET_NUM_MAX; index++) { list_insert_tail(&hciReadPktPool, (tListNode *)&hciReadPacketBuffer[index]); } } static volatile hci_packet_complete_callback packet_complete_callback = NULL; static void hci_set_packet_complete_callback(hci_packet_complete_callback cb) { packet_complete_callback = cb; } void HCI_Input(tHciDataPacket * hciReadPacket) { uint8_t byte; hci_acl_hdr *acl_hdr; static hci_state state = WAITING_TYPE; tHalUint16 collected_payload_len = 0; tHalUint16 payload_len; hci_buffer = hciReadPacket->dataBuff; while(hci_pckt_len < HCI_PACKET_SIZE){ if(state == WAITING_TYPE) hci_pckt_len = 0; byte = hci_buffer[hci_pckt_len++]; if(state == WAITING_TYPE){ /* Only ACL Data and Events packets are accepted. */ if(byte == HCI_EVENT_PKT){ state = WAITING_EVENT_CODE; } // else if(byte == HCI_ACLDATA_PKT){ // state = WAITING_HANDLE; // } else{ /* Incorrect type. Reset state machine. */ state = WAITING_TYPE; } } else if(state == WAITING_EVENT_CODE) state = WAITING_PARAM_LEN; else if(state == WAITING_HANDLE) state = WAITING_HANDLE_FLAG; else if(state == WAITING_HANDLE_FLAG) state = WAITING_DATA_LEN1; else if(state == WAITING_DATA_LEN1) state = WAITING_DATA_LEN2; else if(state == WAITING_DATA_LEN2){ acl_hdr = (void *)&hci_buffer[HCI_HDR_SIZE]; payload_len = acl_hdr->dlen; collected_payload_len = 0; state = WAITING_PAYLOAD; } else if(state == WAITING_PARAM_LEN){ payload_len = byte; collected_payload_len = 0; state = WAITING_PAYLOAD; } else if(state == WAITING_PAYLOAD){ collected_payload_len += 1; if(collected_payload_len >= payload_len){ /* Reset state machine. */ state = WAITING_TYPE; enqueue_packet(hciReadPacket); if(packet_complete_callback){ uint16_t len = hci_pckt_len; packet_complete_callback(hci_buffer, len); } break; } } if(hci_pckt_len >= HCI_MAX_PACKET_SIZE){ /* Packet too long for buffer. Reset state machine. */ state = WAITING_TYPE; } } } void enqueue_packet(tHciDataPacket * hciReadPacket) { hci_uart_pckt *hci_pckt = (void*)hciReadPacket->dataBuff; hci_event_pckt *event_pckt = (void*)hci_pckt->data; // Do not enqueue Command Complete or Command Status events if((hci_pckt->type != HCI_EVENT_PKT) || event_pckt->evt == EVT_CMD_COMPLETE || event_pckt->evt == EVT_CMD_STATUS){ // Insert the packet back into the pool. list_insert_tail(&hciReadPktPool, (tListNode *)hciReadPacket); } else { // Insert the packet into the queue of events to be processed. list_insert_tail(&hciReadPktRxQueue, (tListNode *)hciReadPacket); } } void HCI_Process(void) { tHciDataPacket * hciReadPacket = NULL; Disable_SPI_IRQ(); tHalBool list_empty = list_is_empty(&hciReadPktRxQueue); /* process any pending events read */ while(list_empty == FALSE) { list_remove_head (&hciReadPktRxQueue, (tListNode **)&hciReadPacket); Enable_SPI_IRQ(); HCI_Event_CB(hciReadPacket->dataBuff); Disable_SPI_IRQ(); list_insert_tail(&hciReadPktPool, (tListNode *)hciReadPacket); list_empty = list_is_empty(&hciReadPktRxQueue); } Enable_SPI_IRQ(); } void hci_write(const void* data1, const void* data2, uint32_t n_bytes1, uint32_t n_bytes2){ #if HCI_LOG_ON PRINTF("HCI <- "); for(int i=0; i < n_bytes1; i++) PRINTF("%02X ", *((uint8_t*)data1 + i)); for(int i=0; i < n_bytes2; i++) PRINTF("%02X ", *((uint8_t*)data2 + i)); PRINTF("\n"); #endif Hal_Write_Serial(data1, data2, n_bytes1, n_bytes2); } int hci_send_cmd(uint16_t ogf, uint16_t ocf, uint8_t plen, void *param) { hci_command_hdr hc; hc.opcode = htobs(cmd_opcode_pack(ogf, ocf)); hc.plen= plen; uint8_t header[HCI_HDR_SIZE + HCI_COMMAND_HDR_SIZE]; header[0] = HCI_COMMAND_PKT; Osal_MemCpy(header+1, &hc, sizeof(hc)); hci_write(header, param, sizeof(header), plen); return 0; } static tHalBool new_packet; void new_hci_event(void *pckt, tHalUint16 len) { Disable_SPI_IRQ(); /* Must be re-enabled after packet processing. */ new_packet = TRUE; } /* 'to' is timeout in system clock ticks. */ int hci_send_req(struct hci_request *r) { tHalUint8 *ptr; tHalUint16 opcode = htobs(cmd_opcode_pack(r->ogf, r->ocf)); hci_event_pckt *event_pckt; hci_uart_pckt *hci_hdr; int try; int to = DEFAULT_TIMEOUT; new_packet = FALSE; hci_set_packet_complete_callback(new_hci_event); if (hci_send_cmd(r->ogf, r->ocf, r->clen, r->cparam) < 0) goto failed; try = 10; while (try--) { evt_cmd_complete *cc; evt_cmd_status *cs; evt_le_meta_event *me; int len; /* Minimum timeout is 1. */ if(to == 0) to = 1; if (to > 0) { struct timer t; Timer_Set(&t, to); while(1){ if(Timer_Expired(&t)){ goto failed; } if(new_packet){ break; } } } hci_hdr = (void *)hci_buffer; if(hci_hdr->type != HCI_EVENT_PKT){ new_packet = FALSE; Enable_SPI_IRQ(); continue; } event_pckt = (void *) (hci_hdr->data); ptr = hci_buffer + (1 + HCI_EVENT_HDR_SIZE); len = hci_pckt_len - (1 + HCI_EVENT_HDR_SIZE); switch (event_pckt->evt) { case EVT_CMD_STATUS: cs = (void *) ptr; if (cs->opcode != opcode) break; if (r->event != EVT_CMD_STATUS) { if (cs->status) { goto failed; } break; } r->rlen = MIN(len, r->rlen); Osal_MemCpy(r->rparam, ptr, r->rlen); goto done; case EVT_CMD_COMPLETE: cc = (void *) ptr; if (cc->opcode != opcode) break; ptr += EVT_CMD_COMPLETE_SIZE; len -= EVT_CMD_COMPLETE_SIZE; r->rlen = MIN(len, r->rlen); Osal_MemCpy(r->rparam, ptr, r->rlen); goto done; case EVT_LE_META_EVENT: me = (void *) ptr; if (me->subevent != r->event) break; len -= 1; r->rlen = MIN(len, r->rlen); Osal_MemCpy(r->rparam, me->data, r->rlen); goto done; case EVT_HARDWARE_ERROR: goto failed; default: break; // In the meantime there could be other events from the controller. } new_packet = FALSE; Enable_SPI_IRQ(); } failed: hci_set_packet_complete_callback(NULL); Enable_SPI_IRQ(); return -1; done: hci_set_packet_complete_callback(NULL); Enable_SPI_IRQ(); return 0; } int hci_reset() { struct hci_request rq; tHalUint8 status; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_RESET; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0) return -1; if (status) { return -1; } return 0; } int hci_disconnect(uint16_t handle, uint8_t reason) { struct hci_request rq; disconnect_cp cp; uint8_t status; cp.handle = handle; cp.reason = reason; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_DISCONNECT; rq.cparam = &cp; rq.clen = DISCONNECT_CP_SIZE; rq.event = EVT_CMD_STATUS; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0) return -1; if (status) { return -1; } return 0; } int hci_le_read_local_version(/* TODO: insert parameters */) { struct hci_request rq; read_local_version_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_INFO_PARAM; rq.ocf = OCF_READ_LOCAL_VERSION; rq.cparam = NULL; rq.clen = 0; rq.rparam = &resp; rq.rlen = READ_LOCAL_VERSION_RP_SIZE; if (hci_send_req(&rq) < 0) return -1; if (resp.status) { return -1; } return 0; } int hci_le_read_buffer_size(uint16_t *pkt_len, uint8_t *max_pkt) { struct hci_request rq; le_read_buffer_size_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_READ_BUFFER_SIZE; rq.cparam = NULL; rq.clen = 0; rq.rparam = &resp; rq.rlen = LE_READ_BUFFER_SIZE_RP_SIZE; if (hci_send_req(&rq) < 0) return -1; if (resp.status) { return -1; } *pkt_len = resp.pkt_len; *max_pkt = resp.max_pkt; return 0; } int hci_le_set_advertising_parameters(uint16_t min_interval, uint16_t max_interval, uint8_t advtype, uint8_t own_bdaddr_type, uint8_t direct_bdaddr_type, tBDAddr direct_bdaddr, uint8_t chan_map, uint8_t filter) { struct hci_request rq; le_set_adv_parameters_cp adv_cp; uint8_t status; Osal_MemSet(&adv_cp, 0, sizeof(adv_cp)); adv_cp.min_interval = min_interval; adv_cp.max_interval = max_interval; adv_cp.advtype = advtype; adv_cp.own_bdaddr_type = own_bdaddr_type; adv_cp.direct_bdaddr_type = direct_bdaddr_type; Osal_MemCpy(adv_cp.direct_bdaddr,direct_bdaddr,sizeof(adv_cp.direct_bdaddr)); adv_cp.chan_map = chan_map; adv_cp.filter = filter; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_SET_ADV_PARAMETERS; rq.cparam = &adv_cp; rq.clen = LE_SET_ADV_PARAMETERS_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0) return -1; if (status) { return -1; } return 0; } int hci_le_set_advertising_data(uint8_t length, const uint8_t data[]) { struct hci_request rq; le_set_adv_data_cp adv_cp; uint8_t status; Osal_MemSet(&adv_cp, 0, sizeof(adv_cp)); adv_cp.length = length; Osal_MemCpy(adv_cp.data, data, MIN(31,length)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_SET_ADV_DATA; rq.cparam = &adv_cp; rq.clen = LE_SET_ADV_DATA_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0) return -1; if (status) { return -1; } return 0; } int hci_le_set_advertise_enable(tHalUint8 enable) { struct hci_request rq; le_set_advertise_enable_cp adv_cp; uint8_t status; Osal_MemSet(&adv_cp, 0, sizeof(adv_cp)); adv_cp.enable = enable?1:0; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_SET_ADVERTISE_ENABLE; rq.cparam = &adv_cp; rq.clen = LE_SET_ADVERTISE_ENABLE_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0) return -1; if (status) { return -1; } return 0; } int hci_le_rand(uint8_t random_number[8]) { struct hci_request rq; le_rand_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_RAND; rq.cparam = NULL; rq.clen = 0; rq.rparam = &resp; rq.rlen = LE_RAND_RP_SIZE; if (hci_send_req(&rq) < 0) return -1; if (resp.status) { return -1; } Osal_MemCpy(random_number, resp.random, 8); return 0; } int hci_le_set_scan_resp_data(uint8_t length, const uint8_t data[]) { struct hci_request rq; le_set_scan_response_data_cp scan_resp_cp; uint8_t status; Osal_MemSet(&scan_resp_cp, 0, sizeof(scan_resp_cp)); scan_resp_cp.length = length; Osal_MemCpy(scan_resp_cp.data, data, MIN(31,length)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_SET_SCAN_RESPONSE_DATA; rq.cparam = &scan_resp_cp; rq.clen = LE_SET_SCAN_RESPONSE_DATA_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0) return -1; if (status) { return -1; } return 0; } int hci_le_read_advertising_channel_tx_power(int8_t *tx_power_level) { struct hci_request rq; le_read_adv_channel_tx_power_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_READ_ADV_CHANNEL_TX_POWER; rq.cparam = NULL; rq.clen = 0; rq.rparam = &resp; rq.rlen = LE_RAND_RP_SIZE; if (hci_send_req(&rq) < 0) return -1; if (resp.status) { return -1; } *tx_power_level = resp.level; return 0; } int hci_le_set_random_address(tBDAddr bdaddr) { struct hci_request rq; le_set_random_address_cp set_rand_addr_cp; uint8_t status; Osal_MemSet(&set_rand_addr_cp, 0, sizeof(set_rand_addr_cp)); Osal_MemCpy(set_rand_addr_cp.bdaddr, bdaddr, sizeof(tBDAddr)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_SET_RANDOM_ADDRESS; rq.cparam = &set_rand_addr_cp; rq.clen = LE_SET_RANDOM_ADDRESS_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0) return -1; if (status) { return -1; } return 0; } int hci_read_bd_addr(tBDAddr bdaddr) { struct hci_request rq; read_bd_addr_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_INFO_PARAM; rq.ocf = OCF_READ_BD_ADDR; rq.cparam = NULL; rq.clen = 0; rq.rparam = &resp; rq.rlen = READ_BD_ADDR_RP_SIZE; if (hci_send_req(&rq) < 0) return -1; if (resp.status) { return -1; } Osal_MemCpy(bdaddr, resp.bdaddr, sizeof(tBDAddr)); return 0; } int hci_le_create_connection(uint16_t interval, uint16_t window, uint8_t initiator_filter, uint8_t peer_bdaddr_type, const tBDAddr peer_bdaddr, uint8_t own_bdaddr_type, uint16_t min_interval, uint16_t max_interval, uint16_t latency, uint16_t supervision_timeout, uint16_t min_ce_length, uint16_t max_ce_length) { struct hci_request rq; le_create_connection_cp create_cp; uint8_t status; Osal_MemSet(&create_cp, 0, sizeof(create_cp)); create_cp.interval = interval; create_cp.window = window; create_cp.initiator_filter = initiator_filter; create_cp.peer_bdaddr_type = peer_bdaddr_type; Osal_MemCpy(create_cp.peer_bdaddr, peer_bdaddr, sizeof(tBDAddr)); create_cp.own_bdaddr_type = own_bdaddr_type; create_cp.min_interval=min_interval; create_cp.max_interval=max_interval; create_cp.latency = latency; create_cp.supervision_timeout=supervision_timeout; create_cp.min_ce_length=min_ce_length; create_cp.max_ce_length=max_ce_length; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_CREATE_CONN; rq.cparam = &create_cp; rq.clen = LE_CREATE_CONN_CP_SIZE; rq.event = EVT_CMD_STATUS; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0) return -1; if (status) { return -1; } return 0; } int hci_le_encrypt(uint8_t key[16], uint8_t plaintextData[16], uint8_t encryptedData[16]) { struct hci_request rq; le_encrypt_cp params; le_encrypt_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); Osal_MemCpy(params.key, key, 16); Osal_MemCpy(params.plaintext, plaintextData, 16); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_ENCRYPT; rq.cparam = ¶ms; rq.clen = LE_ENCRYPT_CP_SIZE; rq.rparam = &resp; rq.rlen = LE_ENCRYPT_RP_SIZE; if (hci_send_req(&rq) < 0){ return -1; } if (resp.status) { return -1; } Osal_MemCpy(encryptedData, resp.encdata, 16); return 0; } int hci_le_ltk_request_reply(uint8_t key[16]) { struct hci_request rq; le_ltk_reply_cp params; le_ltk_reply_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); params.handle = 1; Osal_MemCpy(params.key, key, 16); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_LTK_REPLY; rq.cparam = ¶ms; rq.clen = LE_LTK_REPLY_CP_SIZE; rq.rparam = &resp; rq.rlen = LE_LTK_REPLY_RP_SIZE; if (hci_send_req(&rq) < 0) return -1; if (resp.status) { return -1; } return 0; } int hci_le_ltk_request_neg_reply() { struct hci_request rq; le_ltk_neg_reply_cp params; le_ltk_neg_reply_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); params.handle = 1; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_LTK_NEG_REPLY; rq.cparam = ¶ms; rq.clen = LE_LTK_NEG_REPLY_CP_SIZE; rq.rparam = &resp; rq.rlen = LE_LTK_NEG_REPLY_RP_SIZE; if (hci_send_req(&rq) < 0) return -1; if (resp.status) { return -1; } return 0; } int hci_le_read_white_list_size(uint8_t *size) { struct hci_request rq; le_read_white_list_size_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_READ_WHITE_LIST_SIZE; rq.rparam = &resp; rq.rlen = LE_READ_WHITE_LIST_SIZE_RP_SIZE; if (hci_send_req(&rq) < 0){ return -1; } if (resp.status) { return -1; } *size = resp.size; return 0; } int hci_le_clear_white_list() { struct hci_request rq; uint8_t status; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_CLEAR_WHITE_LIST; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0){ return -1; } if (status) { return -1; } return 0; } int hci_le_add_device_to_white_list(uint8_t bdaddr_type, tBDAddr bdaddr) { struct hci_request rq; le_add_device_to_white_list_cp params; uint8_t status; params.bdaddr_type = bdaddr_type; Osal_MemCpy(params.bdaddr, bdaddr, 6); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_ADD_DEVICE_TO_WHITE_LIST; rq.cparam = ¶ms; rq.clen = LE_ADD_DEVICE_TO_WHITE_LIST_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0){ return -1; } if (status) { return -1; } return 0; } int hci_le_remove_device_from_white_list(uint8_t bdaddr_type, tBDAddr bdaddr) { struct hci_request rq; le_remove_device_from_white_list_cp params; uint8_t status; params.bdaddr_type = bdaddr_type; Osal_MemCpy(params.bdaddr, bdaddr, 6); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_REMOVE_DEVICE_FROM_WHITE_LIST; rq.cparam = ¶ms; rq.clen = LE_REMOVE_DEVICE_FROM_WHITE_LIST_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0){ return -1; } if (status) { return -1; } return 0; } int hci_read_transmit_power_level(uint16_t *conn_handle, uint8_t type, int8_t * tx_level) { struct hci_request rq; read_transmit_power_level_cp params; read_transmit_power_level_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); params.handle = *conn_handle; params.type = type; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_TRANSMIT_POWER_LEVEL; rq.cparam = ¶ms; rq.clen = READ_TRANSMIT_POWER_LEVEL_CP_SIZE; rq.rparam = &resp; rq.rlen = READ_TRANSMIT_POWER_LEVEL_RP_SIZE; if (hci_send_req(&rq) < 0){ return -1; } if (resp.status) { return -1; } *conn_handle = resp.handle; *tx_level = resp.handle; return 0; } int hci_read_rssi(uint16_t *conn_handle, int8_t * rssi) { struct hci_request rq; read_rssi_cp params; read_rssi_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); params.handle = *conn_handle; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_STATUS_PARAM; rq.ocf = OCF_READ_RSSI; rq.cparam = ¶ms; rq.clen = READ_RSSI_CP_SIZE; rq.rparam = &resp; rq.rlen = READ_RSSI_RP_SIZE; if (hci_send_req(&rq) < 0){ return -1; } if (resp.status) { return -1; } *conn_handle = resp.handle; *rssi = resp.rssi; return 0; } int hci_le_read_local_supported_features(uint8_t *features) { struct hci_request rq; le_read_local_supported_features_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_READ_LOCAL_SUPPORTED_FEATURES; rq.rparam = &resp; rq.rlen = LE_READ_LOCAL_SUPPORTED_FEATURES_RP_SIZE; if (hci_send_req(&rq) < 0){ return -1; } if (resp.status) { return -1; } Osal_MemCpy(features, resp.features, sizeof(resp.features)); return 0; } int hci_le_read_channel_map(uint16_t conn_handle, uint8_t ch_map[5]) { struct hci_request rq; le_read_channel_map_cp params; le_read_channel_map_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); params.handle = conn_handle; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_READ_CHANNEL_MAP; rq.cparam = ¶ms; rq.clen = LE_READ_CHANNEL_MAP_CP_SIZE; rq.rparam = &resp; rq.rlen = LE_READ_CHANNEL_MAP_RP_SIZE; if (hci_send_req(&rq) < 0){ return -1; } if (resp.status) { return -1; } Osal_MemCpy(ch_map, resp.map, 5); return 0; } int hci_le_read_supported_states(uint8_t states[8]) { struct hci_request rq; le_read_supported_states_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_READ_SUPPORTED_STATES; rq.rparam = &resp; rq.rlen = LE_READ_SUPPORTED_STATES_RP_SIZE; if (hci_send_req(&rq) < 0){ return -1; } if (resp.status) { return -1; } Osal_MemCpy(states, resp.states, 8); return 0; } int hci_le_receiver_test(uint8_t frequency) { struct hci_request rq; le_receiver_test_cp params; uint8_t status; params.frequency = frequency; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_RECEIVER_TEST; rq.cparam = ¶ms; rq.clen = LE_RECEIVER_TEST_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0){ return -1; } if (status) { return -1; } return 0; } int hci_le_transmitter_test(uint8_t frequency, uint8_t length, uint8_t payload) { struct hci_request rq; le_transmitter_test_cp params; uint8_t status; params.frequency = frequency; params.length = length; params.payload = payload; Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_TRANSMITTER_TEST; rq.cparam = ¶ms; rq.clen = LE_TRANSMITTER_TEST_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(&rq) < 0){ return -1; } if (status) { return -1; } return 0; } int hci_le_test_end(uint16_t *num_pkts) { struct hci_request rq; le_test_end_rp resp; Osal_MemSet(&resp, 0, sizeof(resp)); Osal_MemSet(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_TEST_END; rq.rparam = &resp; rq.rlen = LE_TEST_END_RP_SIZE; if (hci_send_req(&rq) < 0){ return -1; } if (resp.status) { return -1; } *num_pkts = resp.num_pkts; return 0; }