mBed RFM12B module library

Dependents:   _EXAMPLE_RFM12B

Fork of RF12B by Sukkin Pang

RFM12B Library

The main purpose of this library was to implement the RFM12B module in order to be able to establish communication with the Moteino (arduino clone that uses the RFM12B).

In order to achieve my goal I was highly inspired by RF12B library from pangsk https://mbed.org/users/pangsk/ and by RFM12B arduino library made by Felix Rusu (http://lowpowerlab.com/blog/2012/12/28/rfm12b-arduino-library/)

Who/What is Moteino? (http://lowpowerlab.com/moteino/)

Revision:
6:52322349ee10
Parent:
5:12d8175359f2
Child:
7:19d9da22271a
diff -r 12d8175359f2 -r 52322349ee10 RFM12B.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/RFM12B.cpp	Thu May 30 22:05:50 2013 +0000
@@ -0,0 +1,372 @@
+/*
+ RFM12B Library. Based on work done by JeeLabs.org ported to mBed by SK Pang.
+ http://jeelabs.net/projects/cafe/wiki/RF12
+
+ http://opensource.org/licenses/mit-license.php
+
+ Jan 2012 skpang.co.uk
+
+ Modified by Hugo Rodrigues (May 2013)
+
+ Permission is hereby granted, free of charge, to any person obtaining a copy
+ of this software and associated documentation files (the "Software"), to deal
+ in the Software without restriction, including without limitation the rights
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ copies of the Software, and to permit persons to whom the Software is
+ furnished to do so, subject to the following conditions:
+
+ The above copyright notice and this permission notice shall be included in
+ all copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ THE SOFTWARE.
+ */
+
+#include "RFM12B.h"
+
+RFM12B::RFM12B(PinName _SDI, PinName _SDO, PinName _SCK, PinName _NCS, PinName _NIRQ, PinName _NIRQ_LED) :
+spi(_SDI, _SDO, _SCK), NCS(_NCS), NIRQ(_NIRQ), NIRQ_in(_NIRQ), NIRQ_LED(_NIRQ_LED) {
+
+    useEncryption = false;
+
+    /* SPI frequency, 8 bit word length, polarity and phase */
+    spi.format(8, 0);
+    spi.frequency(2000000);
+
+    /* Set ~CS high */
+    NCS = 1;
+
+    /* Setup interrupt to happen on falling edge of NIRQ */
+    NIRQ.fall(this, &RFM12B::InterruptHandler);
+}
+
+int RFM12B::writeCmd(int cmd) {
+    NCS = 0;
+    int recv = spi.write(cmd >> 8);
+    recv = spi.write(cmd);
+    NCS = 1;
+    return recv;
+}
+
+uint16_t RFM12B::crc16_update(uint16_t crc, uint8_t data) {
+    int i;
+
+    crc ^= data;
+    for (i = 0; i < 8; ++i) {
+        if (crc & 1)
+            crc = (crc >> 1) ^ 0xA001;
+        else
+            crc = (crc >> 1);
+    }
+
+    return crc;
+}
+
+uint8_t RFM12B::byte(uint8_t out) {
+    return spi.write(out);
+}
+
+uint16_t RFM12B::xfer(uint16_t cmd) {
+    NCS = 0;
+    uint16_t reply = byte(cmd >> 8) << 8;
+    reply |= byte(cmd);
+    NCS = 1;
+    return reply;
+}
+
+// Call this once with params:
+// - node ID (0-31)
+// - frequency band (RF12_433MHZ, RF12_868MHZ, RF12_915MHZ)
+// - networkid [optional - default = 170] (0-255 for RF12B, only 212 allowed for RF12)
+// - txPower [optional - default = 0 (max)] (7 is min value)
+// - airKbps [optional - default = 38.31Kbps]
+void RFM12B::Initialize(uint8_t nodeid, uint8_t freqBand, uint8_t groupid, uint8_t txPower, uint8_t airKbps) {
+
+    nodeID = nodeid;
+    networkID = groupid;
+    rf12_grp= groupid;
+
+    writeCmd(0x0000);                   // initial SPI transfer added to avoid power-up problem
+    writeCmd(RF_SLEEP_MODE);            // DC (disable clk pin), enable lbd
+
+    // wait until RFM12B is out of power-up reset, this takes several *seconds*
+    writeCmd(RF_TXREG_WRITE);           // in case we're still in OOK mode
+
+    while (NIRQ == 0)
+        writeCmd(0x0000);
+
+    writeCmd(0x80C7 | (freqBand << 4)); // EL (ena TX), EF (ena RX FIFO), 12.0pF
+    writeCmd(0xA640);                   // Frequency is exactly 434/868/915MHz (whatever freqBand is)
+    writeCmd(0xC600 + airKbps);         //Air transmission baud rate: 0x08= ~38.31Kbps
+    writeCmd(0x94A2);                   // VDI,FAST,134kHz,0dBm,-91dBm
+    writeCmd(0xC2AC);                   // AL,!ml,DIG,DQD4
+    if (networkID != 0) {
+        writeCmd(0xCA83);               // FIFO8,2-SYNC,!ff,DR
+        writeCmd(0xCE00 | networkID);   // SYNC=2DXX
+    } else {
+        writeCmd(0xCA8B);               // FIFO8,1-SYNC,!ff,DR
+        writeCmd(0xCE2D);               // SYNC=2D
+    }
+
+    writeCmd(0xC483);                   // @PWR,NO RSTRIC,!st,!fi,OE,EN
+    writeCmd(0x9850 | (txPower > 7 ? 7 : txPower)); // !mp,90kHz,MAX OUT
+    writeCmd(0xCC77);                   // OB1, OB0, LPX, ddy, DDIT, BW0
+    writeCmd(0xE000);                   // NOT USE
+    writeCmd(0xC800);                   // NOT USE
+    writeCmd(0xC049);                   // 1.66MHz,3.1V
+
+    rxstate = TXIDLE;
+}
+
+void RFM12B::InterruptHandler() {
+
+    NIRQ_LED = 1;
+
+    // a transfer of 2x 16 bits @ 2 MHz over SPI takes 2x 8 us inside this ISR
+    writeCmd(0x0000);
+
+    if (rxstate == TXRECV) {
+        uint8_t in = xfer(RF_RX_FIFO_READ);
+
+        if (rxfill == 0 && networkID != 0)
+            rf12_buf[rxfill++] = networkID;
+
+        rf12_buf[rxfill++] = in;
+        rf12_crc = crc16_update(rf12_crc, in);
+
+        if (rxfill >= rf12_len+ 6 || rxfill >= RF_MAX)
+            xfer(RF_IDLE_MODE);
+    } else {
+        uint8_t out;
+
+        if (rxstate < 0) {
+            uint8_t pos = 4 + rf12_len + rxstate++;
+            out = rf12_buf[pos];
+            rf12_crc = crc16_update(rf12_crc, out);
+        } else {
+            switch (rxstate++) {
+            case TXSYN1:
+                out = 0x2D;
+                break;
+            case TXSYN2:
+                out = rf12_grp;
+                rxstate = - (3 + rf12_len);
+                break;
+            case TXCRC1:
+                out = rf12_crc;
+                break;
+            case TXCRC2:
+                out = rf12_crc >> 8;
+                break;
+            case TXDONE:
+                xfer(RF_IDLE_MODE); // fall through
+                out = 0xAA;
+                break;
+            default:
+                out = 0xAA;
+            }
+        }
+        xfer(RF_TXREG_WRITE + out);
+    }
+    NIRQ_LED = 0;
+}
+
+void RFM12B::ReceiveStart(void) {
+    rxfill = rf12_len= 0;
+    rf12_crc = ~0;
+
+    if (networkID != 0)
+        rf12_crc = crc16_update(~0, networkID);
+
+    rxstate = TXRECV;
+    xfer(RF_RECEIVER_ON);
+}
+
+bool RFM12B::ReceiveComplete(void) {
+    if (rxstate == TXRECV && (rxfill >= rf12_len+ 6 || rxfill >= RF_MAX)) {
+        rxstate = TXIDLE;
+
+        if (rf12_len > RF12_MAXDATA) {
+            rf12_crc = 1; // force bad crc if packet length is invalid
+        }
+        if (RF12_DESTID == 0 || RF12_DESTID == nodeID) {
+
+            if (rf12_crc == 0 && useEncryption)
+                Encryption(false);
+            else
+                rf12_seq = -1;
+
+#ifdef DEBUG
+            printf("\nReceived message from [%d]; crc:%x,  len: %d, message: ", RF12_SOURCEID, rf12_crc, rf12_len);
+            for (int i=0; i<rf12_len; i++) {
+                printf("%c", rf12_data[i]);
+            }
+            printf("\n");
+#endif
+
+            return true; // it's a broadcast packet or it's addressed to this node
+        }
+    }
+    if (rxstate == TXIDLE)
+        ReceiveStart();
+
+    return false;
+}
+
+bool RFM12B::CanSend() {
+    // no need to test with interrupts disabled: state TXRECV is only reached
+    // outside of ISR and we don't care if rxfill jumps from 0 to 1 here
+    if (rxstate == TXRECV && rxfill == 0 && (byte(0x00) & (RF_RSSI_BIT >> 8)) == 0) {
+        xfer(RF_IDLE_MODE); // stop receiver
+        rxstate = TXIDLE;
+        return true;
+    }
+    return false;
+}
+
+void RFM12B::SendStart(uint8_t toNodeID, bool requestACK, bool sendACK) {
+
+    rf12_hdr1= toNodeID | (sendACK ? RF12_HDR_ACKCTLMASK : 0);
+    rf12_hdr2= nodeID | (requestACK ? RF12_HDR_ACKCTLMASK : 0);
+
+#ifdef DEBUG
+    printf("SendStart to Node [%d], from Node [%d] \n", toNodeID, nodeID);
+#endif
+
+    if (useEncryption)
+        Encryption(true);
+
+    rf12_crc = ~0;
+    rf12_crc = crc16_update(rf12_crc, rf12_grp);
+    rxstate = TXPRE1;
+
+    xfer(RF_XMITTER_ON); // bytes will be fed via interrupts
+}
+
+void RFM12B::SendStart(uint8_t toNodeID, const void* sendBuf, uint8_t sendLen, bool requestACK, bool sendACK) {
+    
+    rf12_len = sendLen;
+    memcpy((void*) rf12_data, sendBuf, sendLen);
+    
+#ifdef DEBUG
+            printf("\nSending message from [%d]; crc:%x,  len: %d, message: ", nodeID, rf12_crc, rf12_len);
+            for (int i=0; i<rf12_len; i++) {
+                printf("%c", rf12_data[i]);
+            }
+#endif
+    
+
+    SendStart(toNodeID, requestACK, sendACK);
+}
+
+/// Should be called immediately after reception in case sender wants ACK
+void RFM12B::SendACK(const void* sendBuf, uint8_t sendLen) {
+    while (!CanSend())
+        ReceiveComplete();
+    SendStart(RF12_SOURCEID, sendBuf, (sendLen > 0) ? sendLen: strlen((const char*)sendBuf), false, true);
+}
+
+void RFM12B::Send(uint8_t toNodeID, const void* sendBuf, uint8_t sendLen, bool requestACK) {
+    while (!CanSend())
+        ReceiveComplete();
+    SendStart(toNodeID, sendBuf, (sendLen > 0) ? sendLen: strlen((const char*)sendBuf) , requestACK, false);
+}
+
+uint8_t RFM12B::GetSender(void) {
+    return RF12_SOURCEID;
+}
+
+volatile uint8_t * RFM12B::GetData(void) {
+
+    return (uint8_t*) rf12_data;
+}
+
+uint8_t RFM12B::GetDataLen(void) {
+    return rf12_len;
+}
+
+bool RFM12B::ACKRequested() {
+    return RF12_WANTS_ACK;
+}
+
+/// Should be polled immediately after sending a packet with ACK request
+bool RFM12B::ACKReceived(uint8_t fromNodeID) {
+    if (ReceiveComplete())
+        return CRC_Pass() && RF12_DESTID == nodeID && (RF12_SOURCEID == fromNodeID || fromNodeID == 0) && (rf12_hdr1&RF12_HDR_ACKCTLMASK) &&
+                !(rf12_hdr2 & RF12_HDR_ACKCTLMASK);
+    return false;
+}
+
+bool RFM12B::CRC_Pass(void) {
+    return (rf12_crc == 0);
+}
+
+// XXTEA by David Wheeler, adapted from http://en.wikipedia.org/wiki/XXTEA
+#define DELTA 0x9E3779B9
+#define MX (((z>>5^y<<2) + (y>>3^z<<4)) ^ ((sum^y) + (cryptKey[(uint8_t)((p&3)^e)] ^ z)))
+void RFM12B::Encryption(bool encrypt) {
+
+    uint32_t y, z, sum, *v = (uint32_t*) rf12_data;
+    uint8_t p, e, rounds = 6;
+
+    if (encrypt) {
+        // pad with 1..4-byte sequence number
+        *(uint32_t*) (rf12_data + rf12_len) = ++seqNum;
+        uint8_t pad = 3 - (rf12_len & 3);
+        rf12_len += pad;
+        rf12_data[rf12_len] &= 0x3F;
+        rf12_data[rf12_len] |= pad << 6;
+        ++rf12_len;
+        // actual encoding
+        char n = rf12_len / 4;
+        if (n > 1) {
+            sum = 0;
+            z = v[n-1];
+            do {
+                sum += DELTA;
+                e = (sum >> 2) & 3;
+                for (p=0; p<n-1; p++)
+                    y = v[p+1], z = v[p] += MX;
+                y = v[0];
+                z = v[n-1] += MX;
+            }while (--rounds);
+        }
+    } else if (rf12_crc == 0) {
+        // actual decoding
+        char n = rf12_len / 4;
+        if (n > 1) {
+            sum = rounds*DELTA;
+            y = v[0];
+            do {
+                e = (sum >> 2) & 3;
+                for (p=n-1; p>0; p--)
+                    z = v[p-1], y = v[p] -= MX;
+                z = v[n-1];
+                y = v[0] -= MX;
+            }while ((sum -= DELTA) != 0);
+        }
+        // strip sequence number from the end again
+        if (n > 0) {
+            uint8_t pad = rf12_data[--rf12_len] >> 6;
+            rf12_seq = rf12_data[rf12_len] & 0x3F;
+            while (pad-- > 0)
+                rf12_seq = (rf12_seq << 8) | rf12_data[--rf12_len];
+        }
+    }
+
+}
+
+void RFM12B::SetEncryptionKey(const uint8_t* key) {
+    if (key != 0) {
+        for (uint8_t i = 0; i < sizeof cryptKey; ++i)
+            ((uint8_t*) cryptKey)[i] = key[i];
+
+        useEncryption = true;
+    } else
+        useEncryption = false;
+}