Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of STM32_USBDevice by
USBDevice/USBHAL_STM32L1.cpp
- Committer:
- gte1
- Date:
- 2016-12-21
- Revision:
- 70:b17ecdbfb0ce
- Parent:
- 68:f8305faf7917
- Child:
- 76:eef92651f52f
File content as of revision 70:b17ecdbfb0ce:
/* Copyright (c) 2010-2015 mbed.org, MIT License * * Permission is hereby granted, free of charge, to any person obtaining a copy of this software * and associated documentation files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or * substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #if defined(TARGET_STM32L1)||defined(TARGET_STM32F3)||defined(TARGET_STM32F1)||defined(TARGET_STM32F0) #include "pinmap.h" #include "USBDevice.h" #if defined(TARGET_STM32F1) #define USB_LP_IRQn USB_LP_CAN1_RX0_IRQn const uint8_t PCD_EP_TYPE_CTRL = EP_TYPE_CTRL; const uint8_t PCD_EP_TYPE_INTR = EP_TYPE_INTR; const uint8_t PCD_EP_TYPE_BULK = EP_TYPE_BULK; const uint8_t PCD_EP_TYPE_ISOC = EP_TYPE_ISOC; #elif defined(TARGET_STM32L1) void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state) { __SYSCFG_CLK_ENABLE(); // for SYSCFG_PMC_USB_PU if (state == 1) { __HAL_SYSCFG_USBPULLUP_ENABLE(); } else { __HAL_SYSCFG_USBPULLUP_DISABLE(); } } #elif defined(TARGET_STM32L0)||defined(TARGET_STM32F0) #define USB_LP_IRQn USB_IRQn void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state) { if (state == 1) { SET_BIT(USB->BCDR, USB_BCDR_DPPU); // DP Pull-up } else { CLEAR_BIT(USB->BCDR, USB_BCDR_DPPU); } } #elif defined(TARGET_STM32F3) // use remapped USB interrupts, so that CAN peripheral can also be used if needed //#define USB_LP_IRQn USB_LP_CAN_RX0_IRQn #endif static PCD_HandleTypeDef hpcd_USB_FS; static volatile int epComplete = 0; USBHAL * USBHAL::instance; uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {return 0;} USBHAL::USBHAL(void) : PktBufArea(512) { #if defined(TARGET_STM32F3) // Configure USB pins pin_function(PA_11, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF14_USB)); pin_function(PA_12, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF14_USB)); #endif hpcd_USB_FS.pData = this; hpcd_USB_FS.Instance = USB; hpcd_USB_FS.Init.dev_endpoints = 8; hpcd_USB_FS.Init.speed = PCD_SPEED_FULL; hpcd_USB_FS.Init.ep0_mps = DEP0CTL_MPS_8; hpcd_USB_FS.Init.phy_itface = PCD_PHY_EMBEDDED; hpcd_USB_FS.Init.Sof_enable = DISABLE; hpcd_USB_FS.Init.low_power_enable = DISABLE; hpcd_USB_FS.Init.battery_charging_enable = DISABLE; #if defined(TARGET_STM32F3) __HAL_RCC_SYSCFG_CLK_ENABLE(); __HAL_REMAPINTERRUPT_USB_ENABLE(); #endif NVIC_SetVector(USB_LP_IRQn, (uint32_t)&_usbisr); HAL_PCD_Init(&hpcd_USB_FS); HAL_PCD_Start(&hpcd_USB_FS); } void HAL_PCD_MspInit(PCD_HandleTypeDef* hpcd) { __USB_CLK_ENABLE(); HAL_NVIC_SetPriority(USB_LP_IRQn, 0, 0); } void HAL_PCD_MspDeInit(PCD_HandleTypeDef* hpcd) { HAL_NVIC_DisableIRQ(USB_LP_IRQn); // Peripheral interrupt Deinit __USB_CLK_DISABLE(); // Peripheral clock disable } USBHAL::~USBHAL(void) { HAL_PCD_DeInit(&hpcd_USB_FS); } void USBHAL::connect(void) { HAL_NVIC_EnableIRQ(USB_LP_IRQn); HAL_PCD_DevConnect(&hpcd_USB_FS); } void USBHAL::disconnect(void) { HAL_PCD_DevDisconnect(&hpcd_USB_FS); HAL_NVIC_DisableIRQ(USB_LP_IRQn); } void USBHAL::configureDevice(void) { // Not needed } void USBHAL::unconfigureDevice(void) { // Not needed } void USBHAL::setAddress(uint8_t address) { HAL_PCD_SetAddress(&hpcd_USB_FS, address); } bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) { int pmaadress = PktBufArea.allocBuf(maxPacket); MBED_ASSERT(pmaadress != 0); if (pmaadress == 0) { return false; } PCD_HandleTypeDef *hpcd = &hpcd_USB_FS; uint8_t ep_type; switch(endpoint) { case EP0OUT: HAL_PCDEx_PMAConfig(hpcd, 0x00, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x00, maxPacket, PCD_EP_TYPE_CTRL); break; case EP0IN: HAL_PCDEx_PMAConfig(hpcd, 0x80, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x80, maxPacket, PCD_EP_TYPE_CTRL); break; case EPINT_OUT: HAL_PCDEx_PMAConfig(hpcd, 0x01, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x01, maxPacket, PCD_EP_TYPE_INTR); break; case EPINT_IN: HAL_PCDEx_PMAConfig(hpcd, 0x81, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x81, maxPacket, PCD_EP_TYPE_INTR); break; case EPBULK_OUT: HAL_PCDEx_PMAConfig(hpcd, 0x02, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x02, maxPacket, PCD_EP_TYPE_BULK); break; case EPBULK_IN: HAL_PCDEx_PMAConfig(hpcd, 0x82, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x82, maxPacket, PCD_EP_TYPE_BULK); break; case EP3OUT: HAL_PCDEx_PMAConfig(hpcd, 0x03, PCD_SNG_BUF, pmaadress); ep_type = (flags & ISOCHRONOUS) ? PCD_EP_TYPE_ISOC : PCD_EP_TYPE_BULK; HAL_PCD_EP_Open(hpcd, 0x03, maxPacket, ep_type); break; case EP3IN: HAL_PCDEx_PMAConfig(hpcd, 0x83, PCD_SNG_BUF, pmaadress); ep_type = (flags & ISOCHRONOUS) ? PCD_EP_TYPE_ISOC : PCD_EP_TYPE_BULK; HAL_PCD_EP_Open(hpcd, 0x83, maxPacket, ep_type); break; default: MBED_ASSERT(0); return false; } return true; } // read setup packet void USBHAL::EP0setup(uint8_t *buffer) { memcpy(buffer, hpcd_USB_FS.Setup, 8); } void USBHAL::EP0readStage(void) { } void USBHAL::EP0read(void) { endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0); } class rxTempBufferManager { uint8_t buf0[MAX_PACKET_SIZE_EP0]; uint8_t buf1[MAX_PACKET_SIZE_EP1]; uint8_t buf2[MAX_PACKET_SIZE_EP2]; uint8_t buf3[MAX_PACKET_SIZE_EP3_ISO]; public: uint8_t* ptr(uint8_t endpoint, int maxPacketSize) { switch(endpoint) { case EP0OUT: MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP0); break; case EP1OUT: MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP1); break; case EP2OUT: MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP2); break; case EP3OUT: MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP3_ISO); break; } return ptr(endpoint); } uint8_t* ptr(uint8_t endpoint) { switch(endpoint) { case EP0OUT: return buf0; case EP1OUT: return buf1; case EP2OUT: return buf2; case EP3OUT: return buf3; } MBED_ASSERT(0); return NULL; } } rxtmp; uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) { const uint8_t endpoint = EP0OUT; uint32_t length = HAL_PCD_EP_GetRxCount(&hpcd_USB_FS, endpoint>>1); memcpy(buffer, rxtmp.ptr(endpoint), length); return length; } void USBHAL::EP0write(uint8_t *buffer, uint32_t size) { endpointWrite(EP0IN, buffer, size); } void USBHAL::EP0getWriteResult(void) { } void USBHAL::EP0stall(void) { // If we stall the out endpoint here then we have problems transferring // and setup requests after the (stalled) get device qualifier requests. // TODO: Find out if this is correct behavior, or whether we are doing // something else wrong stallEndpoint(EP0IN); // stallEndpoint(EP0OUT); } EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) { core_util_critical_section_enter(); HAL_PCD_EP_Receive(&hpcd_USB_FS, endpoint>>1, rxtmp.ptr(endpoint, maximumSize), maximumSize); epComplete &= ~(1 << endpoint); core_util_critical_section_exit(); return EP_PENDING; } EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) { if (!(epComplete & (1 << endpoint))) { return EP_PENDING; } int len = HAL_PCD_EP_GetRxCount(&hpcd_USB_FS, endpoint>>1); memcpy(buffer, rxtmp.ptr(endpoint), len); *bytesRead = len; return EP_COMPLETED; } EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) { core_util_critical_section_enter(); HAL_PCD_EP_Transmit(&hpcd_USB_FS, endpoint>>1, data, size); epComplete &= ~(1 << endpoint); core_util_critical_section_exit(); return EP_PENDING; } EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) { if (epComplete & (1 << endpoint)) { core_util_critical_section_enter(); epComplete &= ~(1 << endpoint); core_util_critical_section_exit(); return EP_COMPLETED; } return EP_PENDING; } void USBHAL::stallEndpoint(uint8_t endpoint) { PCD_HandleTypeDef *hpcd = &hpcd_USB_FS; switch(endpoint) { case EP0IN: HAL_PCD_EP_SetStall(hpcd, 0x80); break; case EP0OUT: HAL_PCD_EP_SetStall(hpcd, 0x00); break; default: break; } } void USBHAL::unstallEndpoint(uint8_t endpoint) { } bool USBHAL::getEndpointStallState(uint8_t endpoint) { return false; } void USBHAL::remoteWakeup(void) {} void USBHAL::_usbisr(void) { HAL_PCD_IRQHandler(&hpcd_USB_FS); } void USBHAL::usbisr(void) {} void USBHAL::SetupStageCallback() { EP0setupCallback(); } void USBHAL::DataInStageCallback(uint8_t epnum) { switch(epnum) { case 0: // EP0IN EP0in(); break; case 1: epComplete |= (1<<EP1IN); if (EP1_IN_callback()) { epComplete &= ~(1<<EP1IN); } break; case 2: epComplete |= (1<<EP2IN); if (EP2_IN_callback()) { epComplete &= ~(1<<EP2IN); } break; case 3: epComplete |= (1<<EP3IN); if (EP3_IN_callback()) { epComplete &= ~(1<<EP3IN); } break; default: MBED_ASSERT(0); break; } } void USBHAL::DataOutStageCallback(uint8_t epnum) { switch(epnum) { case 0: // EP0OUT if ((hpcd_USB_FS.Setup[0]&0x80) == 0x00) { // host to device ? EP0out(); } break; case 1: epComplete |= (1<<EP1OUT); if (EP1_OUT_callback()) { epComplete &= ~(1<<EP1OUT); } break; case 2: epComplete |= (1<<EP2OUT); if (EP2_OUT_callback()) { epComplete &= ~(1<<EP2OUT); } break; case 3: epComplete |= (1<<EP3OUT); if (EP3_OUT_callback()) { epComplete &= ~(1<<EP3OUT); } break; default: MBED_ASSERT(0); break; } } void USBHAL::ResetCallback() { PktBufArea.reset(); realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0); realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0); } void USBHAL::SOFCallback() { SOF(hpcd_USB_FS.Instance->FNR & USB_FNR_FN); } void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd) { reinterpret_cast<USBHAL*>(hpcd->pData)->SetupStageCallback(); } void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) { reinterpret_cast<USBHAL*>(hpcd->pData)->DataInStageCallback(epnum); } void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) { reinterpret_cast<USBHAL*>(hpcd->pData)->DataOutStageCallback(epnum); } void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd) { reinterpret_cast<USBHAL*>(hpcd->pData)->ResetCallback(); } void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd) { reinterpret_cast<USBHAL*>(hpcd->pData)->SOFCallback(); } void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd) { if (hpcd->Init.low_power_enable) { SCB->SCR |= (uint32_t)((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk)); } } #endif