Fork of https://developer.mbed.org/users/bscott/code/STM32_USBDevice/
Fork of STM32_USBDevice by
USBDevice/USBHAL_STM32L1.cpp
- Committer:
- Troels Nilsson
- Date:
- 2018-07-19
- Branch:
- feature_WebUSB
- Revision:
- 76:eef92651f52f
- Parent:
- 70:b17ecdbfb0ce
File content as of revision 76:eef92651f52f:
/* Copyright (c) 2010-2015 mbed.org, MIT License * * Permission is hereby granted, free of charge, to any person obtaining a copy of this software * and associated documentation files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or * substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #if defined(TARGET_STM32L1)||defined(TARGET_STM32F3)||defined(TARGET_STM32F1)||defined(TARGET_STM32F0) #include "pinmap.h" #include "USBDevice.h" #if defined(TARGET_STM32F1) #define USB_LP_IRQn USB_LP_CAN1_RX0_IRQn const uint8_t PCD_EP_TYPE_CTRL = EP_TYPE_CTRL; const uint8_t PCD_EP_TYPE_INTR = EP_TYPE_INTR; const uint8_t PCD_EP_TYPE_BULK = EP_TYPE_BULK; const uint8_t PCD_EP_TYPE_ISOC = EP_TYPE_ISOC; #elif defined(TARGET_STM32L1) void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state) { __SYSCFG_CLK_ENABLE(); // for SYSCFG_PMC_USB_PU if (state == 1) { __HAL_SYSCFG_USBPULLUP_ENABLE(); } else { __HAL_SYSCFG_USBPULLUP_DISABLE(); } } #elif defined(TARGET_STM32L0)||defined(TARGET_STM32F0) #define USB_LP_IRQn USB_IRQn void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state) { if (state == 1) { SET_BIT(USB->BCDR, USB_BCDR_DPPU); // DP Pull-up } else { CLEAR_BIT(USB->BCDR, USB_BCDR_DPPU); } } #elif defined(TARGET_STM32F3) // use remapped USB interrupts, so that CAN peripheral can also be used if needed //#define USB_LP_IRQn USB_LP_CAN_RX0_IRQn #endif static PCD_HandleTypeDef hpcd_USB_FS; static volatile int epComplete = 0; USBHAL * USBHAL::instance; uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {return 0;} USBHAL::USBHAL(void) : PktBufArea(512) { #if defined(TARGET_STM32F3) // Configure USB pins pin_function(PA_11, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF14_USB)); pin_function(PA_12, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF14_USB)); #endif hpcd_USB_FS.pData = this; hpcd_USB_FS.Instance = USB; hpcd_USB_FS.Init.dev_endpoints = 8; hpcd_USB_FS.Init.speed = PCD_SPEED_FULL; hpcd_USB_FS.Init.ep0_mps = DEP0CTL_MPS_8; hpcd_USB_FS.Init.phy_itface = PCD_PHY_EMBEDDED; hpcd_USB_FS.Init.Sof_enable = DISABLE; hpcd_USB_FS.Init.low_power_enable = DISABLE; hpcd_USB_FS.Init.battery_charging_enable = DISABLE; #if defined(TARGET_STM32F3) __HAL_RCC_SYSCFG_CLK_ENABLE(); __HAL_REMAPINTERRUPT_USB_ENABLE(); #endif NVIC_SetVector(USB_LP_IRQn, (uint32_t)&_usbisr); HAL_PCD_Init(&hpcd_USB_FS); HAL_PCD_Start(&hpcd_USB_FS); } void HAL_PCD_MspInit(PCD_HandleTypeDef* hpcd) { __USB_CLK_ENABLE(); HAL_NVIC_SetPriority(USB_LP_IRQn, 0, 0); } void HAL_PCD_MspDeInit(PCD_HandleTypeDef* hpcd) { HAL_NVIC_DisableIRQ(USB_LP_IRQn); // Peripheral interrupt Deinit __USB_CLK_DISABLE(); // Peripheral clock disable } USBHAL::~USBHAL(void) { HAL_PCD_DeInit(&hpcd_USB_FS); } void USBHAL::connect(void) { HAL_NVIC_EnableIRQ(USB_LP_IRQn); HAL_PCD_DevConnect(&hpcd_USB_FS); } void USBHAL::disconnect(void) { HAL_PCD_DevDisconnect(&hpcd_USB_FS); HAL_NVIC_DisableIRQ(USB_LP_IRQn); } void USBHAL::configureDevice(void) { // Not needed } void USBHAL::unconfigureDevice(void) { // Not needed } void USBHAL::setAddress(uint8_t address) { HAL_PCD_SetAddress(&hpcd_USB_FS, address); } bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) { int pmaadress = PktBufArea.allocBuf(maxPacket); MBED_ASSERT(pmaadress != 0); if (pmaadress == 0) { return false; } PCD_HandleTypeDef *hpcd = &hpcd_USB_FS; uint8_t ep_type; switch(endpoint) { case EP0OUT: HAL_PCDEx_PMAConfig(hpcd, 0x00, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x00, maxPacket, PCD_EP_TYPE_CTRL); break; case EP0IN: HAL_PCDEx_PMAConfig(hpcd, 0x80, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x80, maxPacket, PCD_EP_TYPE_CTRL); break; case EPINT_OUT: HAL_PCDEx_PMAConfig(hpcd, 0x01, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x01, maxPacket, PCD_EP_TYPE_INTR); break; case EPINT_IN: HAL_PCDEx_PMAConfig(hpcd, 0x81, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x81, maxPacket, PCD_EP_TYPE_INTR); break; case EPBULK_OUT: HAL_PCDEx_PMAConfig(hpcd, 0x02, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x02, maxPacket, PCD_EP_TYPE_BULK); break; case EPBULK_IN: HAL_PCDEx_PMAConfig(hpcd, 0x82, PCD_SNG_BUF, pmaadress); HAL_PCD_EP_Open(hpcd, 0x82, maxPacket, PCD_EP_TYPE_BULK); break; case EP3OUT: HAL_PCDEx_PMAConfig(hpcd, 0x03, PCD_SNG_BUF, pmaadress); ep_type = (flags & ISOCHRONOUS) ? PCD_EP_TYPE_ISOC : PCD_EP_TYPE_BULK; HAL_PCD_EP_Open(hpcd, 0x03, maxPacket, ep_type); break; case EP3IN: HAL_PCDEx_PMAConfig(hpcd, 0x83, PCD_SNG_BUF, pmaadress); ep_type = (flags & ISOCHRONOUS) ? PCD_EP_TYPE_ISOC : PCD_EP_TYPE_BULK; HAL_PCD_EP_Open(hpcd, 0x83, maxPacket, ep_type); break; default: MBED_ASSERT(0); return false; } return true; } // read setup packet void USBHAL::EP0setup(uint8_t *buffer) { memcpy(buffer, hpcd_USB_FS.Setup, 8); } void USBHAL::EP0readStage(void) { } void USBHAL::EP0read(void) { endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0); } class rxTempBufferManager { uint8_t buf0[MAX_PACKET_SIZE_EP0]; uint8_t buf1[MAX_PACKET_SIZE_EP1]; uint8_t buf2[MAX_PACKET_SIZE_EP2]; uint8_t buf3[MAX_PACKET_SIZE_EP3_ISO]; public: uint8_t* ptr(uint8_t endpoint, int maxPacketSize) { switch(endpoint) { case EP0OUT: MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP0); break; case EP1OUT: MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP1); break; case EP2OUT: MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP2); break; case EP3OUT: MBED_ASSERT(maxPacketSize <= MAX_PACKET_SIZE_EP3_ISO); break; } return ptr(endpoint); } uint8_t* ptr(uint8_t endpoint) { switch(endpoint) { case EP0OUT: return buf0; case EP1OUT: return buf1; case EP2OUT: return buf2; case EP3OUT: return buf3; } MBED_ASSERT(0); return NULL; } } rxtmp; uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) { const uint8_t endpoint = EP0OUT; uint32_t length = HAL_PCD_EP_GetRxCount(&hpcd_USB_FS, endpoint>>1); memcpy(buffer, rxtmp.ptr(endpoint), length); return length; } void USBHAL::EP0write(uint8_t *buffer, uint32_t size) { endpointWrite(EP0IN, buffer, size); } void USBHAL::EP0getWriteResult(void) { } void USBHAL::EP0stall(void) { // If we stall the out endpoint here then we have problems transferring // and setup requests after the (stalled) get device qualifier requests. // TODO: Find out if this is correct behavior, or whether we are doing // something else wrong stallEndpoint(EP0IN); // stallEndpoint(EP0OUT); } EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) { core_util_critical_section_enter(); HAL_PCD_EP_Receive(&hpcd_USB_FS, endpoint>>1, rxtmp.ptr(endpoint, maximumSize), maximumSize); epComplete &= ~(1 << endpoint); core_util_critical_section_exit(); return EP_PENDING; } EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) { if (!(epComplete & (1 << endpoint))) { return EP_PENDING; } int len = HAL_PCD_EP_GetRxCount(&hpcd_USB_FS, endpoint>>1); memcpy(buffer, rxtmp.ptr(endpoint), len); *bytesRead = len; return EP_COMPLETED; } EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, const uint8_t *data, uint32_t size) { core_util_critical_section_enter(); HAL_PCD_EP_Transmit(&hpcd_USB_FS, endpoint>>1, const_cast<uint8_t*>(data), size); epComplete &= ~(1 << endpoint); core_util_critical_section_exit(); return EP_PENDING; } EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) { if (epComplete & (1 << endpoint)) { core_util_critical_section_enter(); epComplete &= ~(1 << endpoint); core_util_critical_section_exit(); return EP_COMPLETED; } return EP_PENDING; } void USBHAL::stallEndpoint(uint8_t endpoint) { PCD_HandleTypeDef *hpcd = &hpcd_USB_FS; switch(endpoint) { case EP0IN: HAL_PCD_EP_SetStall(hpcd, 0x80); break; case EP0OUT: HAL_PCD_EP_SetStall(hpcd, 0x00); break; default: break; } } void USBHAL::unstallEndpoint(uint8_t endpoint) { } bool USBHAL::getEndpointStallState(uint8_t endpoint) { return false; } void USBHAL::remoteWakeup(void) {} void USBHAL::_usbisr(void) { HAL_PCD_IRQHandler(&hpcd_USB_FS); } void USBHAL::usbisr(void) {} void USBHAL::SetupStageCallback() { EP0setupCallback(); } void USBHAL::DataInStageCallback(uint8_t epnum) { switch(epnum) { case 0: // EP0IN EP0in(); break; case 1: epComplete |= (1<<EP1IN); if (EP1_IN_callback()) { epComplete &= ~(1<<EP1IN); } break; case 2: epComplete |= (1<<EP2IN); if (EP2_IN_callback()) { epComplete &= ~(1<<EP2IN); } break; case 3: epComplete |= (1<<EP3IN); if (EP3_IN_callback()) { epComplete &= ~(1<<EP3IN); } break; default: MBED_ASSERT(0); break; } } void USBHAL::DataOutStageCallback(uint8_t epnum) { switch(epnum) { case 0: // EP0OUT if ((hpcd_USB_FS.Setup[0]&0x80) == 0x00) { // host to device ? EP0out(); } break; case 1: epComplete |= (1<<EP1OUT); if (EP1_OUT_callback()) { epComplete &= ~(1<<EP1OUT); } break; case 2: epComplete |= (1<<EP2OUT); if (EP2_OUT_callback()) { epComplete &= ~(1<<EP2OUT); } break; case 3: epComplete |= (1<<EP3OUT); if (EP3_OUT_callback()) { epComplete &= ~(1<<EP3OUT); } break; default: MBED_ASSERT(0); break; } } void USBHAL::ResetCallback() { PktBufArea.reset(); realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0); realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0); } void USBHAL::SOFCallback() { SOF(hpcd_USB_FS.Instance->FNR & USB_FNR_FN); } void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd) { reinterpret_cast<USBHAL*>(hpcd->pData)->SetupStageCallback(); } void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) { reinterpret_cast<USBHAL*>(hpcd->pData)->DataInStageCallback(epnum); } void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) { reinterpret_cast<USBHAL*>(hpcd->pData)->DataOutStageCallback(epnum); } void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd) { reinterpret_cast<USBHAL*>(hpcd->pData)->ResetCallback(); } void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd) { reinterpret_cast<USBHAL*>(hpcd->pData)->SOFCallback(); } void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd) { if (hpcd->Init.low_power_enable) { SCB->SCR |= (uint32_t)((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk)); } } #endif