Forked para SNOCC
Fork of RA8875 by
RA8875_Touch.cpp
- Committer:
- WiredHome
- Date:
- 2016-02-07
- Revision:
- 103:7e0464ca6c5c
- Parent:
- 88:bfddef6ec836
- Child:
- 108:7415c405ee08
File content as of revision 103:7e0464ca6c5c:
/// This file contains the RA8875 Touch panel methods. /// #include "RA8875.h" #define NOTOUCH_TIMEOUT_uS 100000 #define TOUCH_TICKER_uS 1000 // ### Touch Panel support code additions begin here RetCode_t RA8875::TouchPanelInit(void) { //TPCR0: Set enable bit, default sample time, wakeup, and ADC clock WriteCommand(TPCR0, TP_ENABLE | TP_ADC_SAMPLE_DEFAULT_CLKS | TP_ADC_CLKDIV_DEFAULT); // TPCR1: Set auto/manual, Ref voltage, debounce, manual mode params WriteCommand(TPCR1, TP_MODE_DEFAULT | TP_DEBOUNCE_DEFAULT); WriteCommand(INTC1, ReadCommand(INTC1) | RA8875_INT_TP); // reg INTC1: Enable Touch Panel Interrupts (D2 = 1) WriteCommand(INTC2, RA8875_INT_TP); // reg INTC2: Clear any TP interrupt flag touchSample = 0; touchState = no_cal; touchTicker.attach_us(this, &RA8875::_TouchTicker, TOUCH_TICKER_uS); touchTimer.start(); touchTimer.reset(); return noerror; } RetCode_t RA8875::TouchPanelInit(uint8_t bTpEnable, uint8_t bTpAutoManual, uint8_t bTpDebounce, uint8_t bTpManualMode, uint8_t bTpAdcClkDiv, uint8_t bTpAdcSampleTime) { // Parameter bounds check if( \ !(bTpEnable == TP_ENABLE || bTpEnable == TP_ENABLE) || \ !(bTpAutoManual == TP_MODE_AUTO || bTpAutoManual == TP_MODE_MANUAL) || \ !(bTpDebounce == TP_DEBOUNCE_OFF || bTpDebounce == TP_DEBOUNCE_ON) || \ !(bTpManualMode <= TP_MANUAL_LATCH_Y) || \ !(bTpAdcClkDiv <= TP_ADC_CLKDIV_128) || \ !(bTpAdcSampleTime <= TP_ADC_SAMPLE_65536_CLKS) \ ) return bad_parameter; // Construct the config byte for TPCR0 and write them WriteCommand(TPCR0, bTpEnable | bTpAdcClkDiv | bTpAdcSampleTime); // Note: Wakeup is never enabled // Construct the config byte for TPCR1 and write them WriteCommand(TPCR1, bTpManualMode | bTpDebounce | bTpManualMode); // Note: Always uses internal Vref. // Set up the interrupt flag and enable bits WriteCommand(INTC1, ReadCommand(INTC1) | RA8875_INT_TP); // reg INTC1: Enable Touch Panel Interrupts (D2 = 1) WriteCommand(INTC2, RA8875_INT_TP); // reg INTC2: Clear any TP interrupt flag touchSample = 0; touchState = no_cal; if (bTpEnable == TP_ENABLE) { touchTicker.attach_us(this, &RA8875::_TouchTicker, TOUCH_TICKER_uS); touchTimer.start(); touchTimer.reset(); } else { touchTicker.detach(); touchTimer.stop(); } return noerror; } // +----------------------------------------------------+ // | | // | 1 | // | | // | | // | 2 | // | | // | | // | 3 | // | | // +----------------------------------------------------+ RetCode_t RA8875::TouchPanelCalibrate(tpMatrix_t * matrix) { return TouchPanelCalibrate(NULL, matrix); } RetCode_t RA8875::TouchPanelCalibrate(const char * msg, tpMatrix_t * matrix, int maxwait_s) { point_t pTest[3]; point_t pSample[3]; int x,y; Timer timeout; // timeout guards for not-installed, stuck, user not present... timeout.start(); while (TouchPanelA2DFiltered(&x, &y) && timeout.read() < maxwait_s) wait_ms(20); cls(); if (msg) puts(msg); SetTextCursor(0,height()/2); pTest[0].x = 50; pTest[0].y = 50; pTest[1].x = width() - 50; pTest[1].y = height()/2; pTest[2].x = width()/2; pTest[2].y = height() - 50; for (int i=0; i<3; i++) { foreground(Blue); printf(" (%3d,%3d) => ", pTest[i].x, pTest[i].y); line(pTest[i].x-10, pTest[i].y, pTest[i].x+10, pTest[i].y, White); line(pTest[i].x, pTest[i].y-10, pTest[i].x, pTest[i].y+10, White); while (!TouchPanelA2DFiltered(&x, &y) && timeout.read() < maxwait_s) wait_ms(20); pSample[i].x = x; pSample[i].y = y; line(pTest[i].x-10, pTest[i].y, pTest[i].x+10, pTest[i].y, Black); line(pTest[i].x, pTest[i].y-10, pTest[i].x, pTest[i].y+10, Black); foreground(Blue); printf(" (%4d,%4d)\r\n", x,y); while (TouchPanelA2DFiltered(&x, &y) && timeout.read() < maxwait_s) wait_ms(20); wait(2); } if (timeout.read() >= maxwait_s) return touch_cal_timeout; else return TouchPanelComputeCalibration(pTest, pSample, matrix); } /********************************************************************** * * Function: getDisplayPoint() * * Description: Given a valid set of calibration factors and a point * value reported by the touch screen, this function * calculates and returns the true (or closest to true) * display point below the spot where the touch screen * was touched. * * * * Argument(s): displayPtr (output) - Pointer to the calculated * (true) display point. * screenPtr (input) - Pointer to the reported touch * screen point. * matrixPtr (input) - Pointer to calibration factors * matrix previously calculated * from a call to * setCalibrationMatrix() * * * The function simply solves for Xd and Yd by implementing the * computations required by the translation matrix. * * /- -\ * /- -\ /- -\ | | * | | | | | Xs | * | Xd | | A B C | | | * | | = | | * | Ys | * | Yd | | D E F | | | * | | | | | 1 | * \- -/ \- -/ | | * \- -/ * * It must be kept brief to avoid consuming CPU cycles. * * Return: OK - the display point was correctly calculated * and its value is in the output argument. * NOT_OK - an error was detected and the function * failed to return a valid point. * * NOTE! NOTE! NOTE! * * setCalibrationMatrix() and getDisplayPoint() will do fine * for you as they are, provided that your digitizer * resolution does not exceed 10 bits (1024 values). Higher * resolutions may cause the integer operations to overflow * and return incorrect values. If you wish to use these * functions with digitizer resolutions of 12 bits (4096 * values) you will either have to a) use 64-bit signed * integer variables and math, or b) judiciously modify the * operations to scale results by a factor of 2 or even 4. * */ TouchCode_t RA8875::TouchPanelReadable(point_t * TouchPoint) { int a2dX = 0; int a2dY = 0; TouchCode_t ts = TouchPanelA2DFiltered(&a2dX, &a2dY); if (ts != no_touch) { if (tpMatrix.Divider != 0) { if (TouchPoint) { /* Operation order is important since we are doing integer */ /* math. Make sure you add all terms together before */ /* dividing, so that the remainder is not rounded off */ /* prematurely. */ TouchPoint->x = ( (tpMatrix.An * a2dX) + (tpMatrix.Bn * a2dY) + tpMatrix.Cn ) / tpMatrix.Divider ; TouchPoint->y = ( (tpMatrix.Dn * a2dX) + (tpMatrix.En * a2dY) + tpMatrix.Fn ) / tpMatrix.Divider ; } } else { ts = no_cal; } } return ts; } TouchCode_t RA8875::TouchPanelGet(point_t * TouchPoint) { TouchCode_t t; do { t = TouchPanelReadable(TouchPoint); } while (t == no_touch); return t; } RetCode_t RA8875::TouchPanelSetMatrix(tpMatrix_t * matrixPtr) { if (matrixPtr == NULL || matrixPtr->Divider == 0) return bad_parameter; memcpy(&tpMatrix, matrixPtr, sizeof(tpMatrix_t)); touchState = no_touch; return noerror; } static void InsertionSort(int * buf, int bufsize) { int i, j; int temp; for(i = 1; i <= bufsize; i++) { temp = buf[i]; j = i; while( j && (buf[j-1] > temp) ) { buf[j] = buf[j-1]; j = j-1; } buf[j] = temp; } // End of sort } void RA8875::_TouchTicker(void) { if (touchTimer.read_us() > NOTOUCH_TIMEOUT_uS) { touchSample = 0; if (touchState == held) touchState = release; else touchState = no_touch; touchTimer.reset(); } } TouchCode_t RA8875::TouchPanelA2DRaw(int *x, int *y) { if( (ReadCommand(INTC2) & RA8875_INT_TP) ) { // Test for TP Interrupt pending in register INTC2 touchTimer.reset(); *y = ReadCommand(TPYH) << 2 | ( (ReadCommand(TPXYL) & 0xC) >> 2 ); // D[9:2] from reg TPYH, D[1:0] from reg TPXYL[3:2] *x = ReadCommand(TPXH) << 2 | ( (ReadCommand(TPXYL) & 0x3) ); // D[9:2] from reg TPXH, D[1:0] from reg TPXYL[1:0] WriteCommand(INTC2, RA8875_INT_TP); // reg INTC2: Clear that TP interrupt flag touchState = touch; } else { touchState = no_touch; } return touchState; } TouchCode_t RA8875::TouchPanelA2DFiltered(int *x, int *y) { static int xbuf[TPBUFSIZE], ybuf[TPBUFSIZE]; static int lastX, lastY; int i, j; TouchCode_t ret = touchState; if( (ReadCommand(INTC2) & RA8875_INT_TP) ) { // Test for TP Interrupt pending in register INTC2 touchTimer.reset(); // Get the next data samples ybuf[touchSample] = ReadCommand(TPYH) << 2 | ( (ReadCommand(TPXYL) & 0xC) >> 2 ); // D[9:2] from reg TPYH, D[1:0] from reg TPXYL[3:2] xbuf[touchSample] = ReadCommand(TPXH) << 2 | ( (ReadCommand(TPXYL) & 0x3) ); // D[9:2] from reg TPXH, D[1:0] from reg TPXYL[1:0] // Check for a complete set if(++touchSample == TPBUFSIZE) { // Buffers are full, so process them using Finn's method described in Analog Dialogue No. 44, Feb 2010 // This requires sorting the samples in order of size, then discarding the top 25% and // bottom 25% as noise spikes. Finally, the middle 50% of the values are averaged to // reduce Gaussian noise. #if 1 InsertionSort(ybuf, TPBUFSIZE); InsertionSort(xbuf, TPBUFSIZE); #else // Sort the Y buffer using an Insertion Sort for(i = 1; i <= TPBUFSIZE; i++) { temp = ybuf[i]; j = i; while( j && (ybuf[j-1] > temp) ) { ybuf[j] = ybuf[j-1]; j = j-1; } ybuf[j] = temp; } // End of Y sort // Sort the X buffer the same way for(i = 1; i <= TPBUFSIZE; i++) { temp = xbuf[i]; j = i; while( j && (xbuf[j-1] > temp) ) { xbuf[j] = xbuf[j-1]; j = j-1; } xbuf[j] = temp; } // End of X sort #endif // Average the middle half of the Y values and report them j = 0; for(i = (TPBUFSIZE/4) - 1; i < TPBUFSIZE - TPBUFSIZE/4; i++ ) { j += ybuf[i]; } *y = lastY = j * (float)2/TPBUFSIZE; // This is the average // Average the middle half of the X values and report them j = 0; for(i = (TPBUFSIZE/4) - 1; i < TPBUFSIZE - TPBUFSIZE/4; i++ ) { j += xbuf[i]; } *x = lastX = j * (float)2/TPBUFSIZE; // This is the average // Tidy up and return if (touchState == touch || touchState == held) touchState = held; else touchState = touch; ret = touchState; touchSample = 0; // Ready to start on the next set of data samples } else { // Buffer not yet full, so do not return any results yet if (touchState == touch || touchState == held) { *x = lastX; *y = lastY; ret = touchState = held; } } WriteCommand(INTC2, RA8875_INT_TP); // reg INTC2: Clear that TP interrupt flag } // End of initial if -- data has been read and processed else { if (touchState == touch || touchState == held) { *x = lastX; *y = lastY; ret = touchState = held; } else if (touchState == release) { *x = lastX; *y = lastY; ret = release; touchState = no_touch; } } return ret; } /* The following section is derived from Carlos E. Vidales. * * Copyright (c) 2001, Carlos E. Vidales. All rights reserved. * * This sample program was written and put in the public domain * by Carlos E. Vidales. The program is provided "as is" * without warranty of any kind, either expressed or implied. * If you choose to use the program within your own products * you do so at your own risk, and assume the responsibility * for servicing, repairing or correcting the program should * it prove defective in any manner. * You may copy and distribute the program's source code in any * medium, provided that you also include in each copy an * appropriate copyright notice and disclaimer of warranty. * You may also modify this program and distribute copies of * it provided that you include prominent notices stating * that you changed the file(s) and the date of any change, * and that you do not charge any royalties or licenses for * its use. * * This file contains functions that implement calculations * necessary to obtain calibration factors for a touch screen * that suffers from multiple distortion effects: namely, * translation, scaling and rotation. * * The following set of equations represent a valid display * point given a corresponding set of touch screen points: * * /- -\ * /- -\ /- -\ | | * | | | | | Xs | * | Xd | | A B C | | | * | | = | | * | Ys | * | Yd | | D E F | | | * | | | | | 1 | * \- -/ \- -/ | | * \- -/ * where: * (Xd,Yd) represents the desired display point * coordinates, * (Xs,Ys) represents the available touch screen * coordinates, and the matrix * /- -\ * |A,B,C| * |D,E,F| represents the factors used to translate * \- -/ the available touch screen point values * into the corresponding display * coordinates. * Note that for practical considerations, the utilities * within this file do not use the matrix coefficients as * defined above, but instead use the following * equivalents, since floating point math is not used: * A = An/Divider * B = Bn/Divider * C = Cn/Divider * D = Dn/Divider * E = En/Divider * F = Fn/Divider * The functions provided within this file are: * setCalibrationMatrix() - calculates the set of factors * in the above equation, given * three sets of test points. * getDisplayPoint() - returns the actual display * coordinates, given a set of * touch screen coordinates. * translateRawScreenCoordinates() - helper function to transform * raw screen points into values * scaled to the desired display * resolution. */ /********************************************************************** * * Function: setCalibrationMatrix() * * Description: Calling this function with valid input data * in the display and screen input arguments * causes the calibration factors between the * screen and display points to be calculated, * and the output argument - matrixPtr - to be * populated. * * This function needs to be called only when new * calibration factors are desired. * * * Argument(s): displayPtr (input) - Pointer to an array of three * sample, reference points. * screenPtr (input) - Pointer to the array of touch * screen points corresponding * to the reference display points. * matrixPtr (output) - Pointer to the calibration * matrix computed for the set * of points being provided. * * * From the article text, recall that the matrix coefficients are * resolved to be the following: * * * Divider = (Xs0 - Xs2)*(Ys1 - Ys2) - (Xs1 - Xs2)*(Ys0 - Ys2) * * * * (Xd0 - Xd2)*(Ys1 - Ys2) - (Xd1 - Xd2)*(Ys0 - Ys2) * A = --------------------------------------------------- * Divider * * * (Xs0 - Xs2)*(Xd1 - Xd2) - (Xd0 - Xd2)*(Xs1 - Xs2) * B = --------------------------------------------------- * Divider * * * Ys0*(Xs2*Xd1 - Xs1*Xd2) + * Ys1*(Xs0*Xd2 - Xs2*Xd0) + * Ys2*(Xs1*Xd0 - Xs0*Xd1) * C = --------------------------------------------------- * Divider * * * (Yd0 - Yd2)*(Ys1 - Ys2) - (Yd1 - Yd2)*(Ys0 - Ys2) * D = --------------------------------------------------- * Divider * * * (Xs0 - Xs2)*(Yd1 - Yd2) - (Yd0 - Yd2)*(Xs1 - Xs2) * E = --------------------------------------------------- * Divider * * * Ys0*(Xs2*Yd1 - Xs1*Yd2) + * Ys1*(Xs0*Yd2 - Xs2*Yd0) + * Ys2*(Xs1*Yd0 - Xs0*Yd1) * F = --------------------------------------------------- * Divider * * * Return: OK - the calibration matrix was correctly * calculated and its value is in the * output argument. * NOT_OK - an error was detected and the * function failed to return a valid * set of matrix values. * The only time this sample code returns * NOT_OK is when Divider == 0 * * * * NOTE! NOTE! NOTE! * * setCalibrationMatrix() and getDisplayPoint() will do fine * for you as they are, provided that your digitizer * resolution does not exceed 10 bits (1024 values). Higher * resolutions may cause the integer operations to overflow * and return incorrect values. If you wish to use these * functions with digitizer resolutions of 12 bits (4096 * values) you will either have to a) use 64-bit signed * integer variables and math, or b) judiciously modify the * operations to scale results by a factor of 2 or even 4. * */ RetCode_t RA8875::TouchPanelComputeCalibration(point_t * displayPtr, point_t * screenPtr, tpMatrix_t * matrixPtr) { RetCode_t retValue = noerror; tpMatrix.Divider = ((screenPtr[0].x - screenPtr[2].x) * (screenPtr[1].y - screenPtr[2].y)) - ((screenPtr[1].x - screenPtr[2].x) * (screenPtr[0].y - screenPtr[2].y)) ; if( tpMatrix.Divider == 0 ) { retValue = bad_parameter; } else { tpMatrix.An = ((displayPtr[0].x - displayPtr[2].x) * (screenPtr[1].y - screenPtr[2].y)) - ((displayPtr[1].x - displayPtr[2].x) * (screenPtr[0].y - screenPtr[2].y)) ; tpMatrix.Bn = ((screenPtr[0].x - screenPtr[2].x) * (displayPtr[1].x - displayPtr[2].x)) - ((displayPtr[0].x - displayPtr[2].x) * (screenPtr[1].x - screenPtr[2].x)) ; tpMatrix.Cn = (screenPtr[2].x * displayPtr[1].x - screenPtr[1].x * displayPtr[2].x) * screenPtr[0].y + (screenPtr[0].x * displayPtr[2].x - screenPtr[2].x * displayPtr[0].x) * screenPtr[1].y + (screenPtr[1].x * displayPtr[0].x - screenPtr[0].x * displayPtr[1].x) * screenPtr[2].y ; tpMatrix.Dn = ((displayPtr[0].y - displayPtr[2].y) * (screenPtr[1].y - screenPtr[2].y)) - ((displayPtr[1].y - displayPtr[2].y) * (screenPtr[0].y - screenPtr[2].y)) ; tpMatrix.En = ((screenPtr[0].x - screenPtr[2].x) * (displayPtr[1].y - displayPtr[2].y)) - ((displayPtr[0].y - displayPtr[2].y) * (screenPtr[1].x - screenPtr[2].x)) ; tpMatrix.Fn = (screenPtr[2].x * displayPtr[1].y - screenPtr[1].x * displayPtr[2].y) * screenPtr[0].y + (screenPtr[0].x * displayPtr[2].y - screenPtr[2].x * displayPtr[0].y) * screenPtr[1].y + (screenPtr[1].x * displayPtr[0].y - screenPtr[0].x * displayPtr[1].y) * screenPtr[2].y ; touchState = no_touch; if (matrixPtr) memcpy(matrixPtr, &tpMatrix, sizeof(tpMatrix_t)); } return( retValue ) ; } // #### end of touch panel code additions