Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: Seeed_Barometer_Sensor_Example
Fork of mbed-src by
targets/hal/TARGET_STM/TARGET_NUCLEO_F072RB/serial_api.c
- Committer:
- mbed_official
- Date:
- 2014-10-06
- Revision:
- 339:40bd4701f3e2
- Parent:
- 293:2a9cf2ed1474
File content as of revision 339:40bd4701f3e2:
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "mbed_assert.h"
#include "serial_api.h"
#if DEVICE_SERIAL
#include "cmsis.h"
#include "pinmap.h"
#include <string.h>
static const PinMap PinMap_UART_TX[] = {
{PA_0, UART_4, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF4_USART4)},
{PA_2, UART_2, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF1_USART2)},
{PA_9, UART_1, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF1_USART1)},
{PA_14, UART_2, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF1_USART2)}, // Warning: SWCLK is also on this pin
{PB_6, UART_1, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF0_USART1)},
{PB_10, UART_3, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF4_USART3)},
{PC_4, UART_3, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF1_USART3)},
{PC_10, UART_4, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF0_USART4)},
// {PC_10, UART_3, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF1_USART3)},
{NC, NC, 0}
};
static const PinMap PinMap_UART_RX[] = {
{PA_1, UART_4, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF4_USART4)},
{PA_3, UART_2, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF1_USART2)},
{PA_10, UART_1, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF1_USART1)},
{PA_15, UART_2, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF1_USART2)},
{PB_7, UART_1, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF0_USART1)},
{PB_11, UART_3, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF4_USART3)},
{PC_5, UART_3, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF1_USART3)},
{PC_11, UART_4, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF0_USART4)},
// {PC_11, UART_3, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_PULLUP, GPIO_AF1_USART3)},
{NC, NC, 0}
};
#define UART_NUM (4)
static uint32_t serial_irq_ids[UART_NUM] = {0, 0, 0, 0};
static uart_irq_handler irq_handler;
UART_HandleTypeDef UartHandle;
int stdio_uart_inited = 0;
serial_t stdio_uart;
static void init_uart(serial_t *obj) {
UartHandle.Instance = (USART_TypeDef *)(obj->uart);
UartHandle.Init.BaudRate = obj->baudrate;
UartHandle.Init.WordLength = obj->databits;
UartHandle.Init.StopBits = obj->stopbits;
UartHandle.Init.Parity = obj->parity;
UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
if (obj->pin_rx == NC) {
UartHandle.Init.Mode = UART_MODE_TX;
} else if (obj->pin_tx == NC) {
UartHandle.Init.Mode = UART_MODE_RX;
} else {
UartHandle.Init.Mode = UART_MODE_TX_RX;
}
// Disable the reception overrun detection
UartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_RXOVERRUNDISABLE_INIT;
UartHandle.AdvancedInit.OverrunDisable = UART_ADVFEATURE_OVERRUN_DISABLE;
HAL_UART_Init(&UartHandle);
}
void serial_init(serial_t *obj, PinName tx, PinName rx) {
// Determine the UART to use (UART_1, UART_2, ...)
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
// Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
obj->uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT(obj->uart != (UARTName)NC);
// Enable USART clock
if (obj->uart == UART_1) {
__USART1_CLK_ENABLE();
obj->index = 0;
}
if (obj->uart == UART_2) {
__USART2_CLK_ENABLE();
obj->index = 1;
}
if (obj->uart == UART_3) {
__USART3_CLK_ENABLE();
obj->index = 2;
}
if (obj->uart == UART_4) {
__USART4_CLK_ENABLE();
obj->index = 3;
}
// Configure the UART pins
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
if (tx != NC) {
pin_mode(tx, PullUp);
}
if (rx != NC) {
pin_mode(rx, PullUp);
}
// Configure UART
obj->baudrate = 9600;
obj->databits = UART_WORDLENGTH_8B;
obj->stopbits = UART_STOPBITS_1;
obj->parity = UART_PARITY_NONE;
obj->pin_tx = tx;
obj->pin_rx = rx;
init_uart(obj);
// For stdio management
if (obj->uart == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj) {
// Reset UART and disable clock
if (obj->uart == UART_1) {
__USART1_FORCE_RESET();
__USART1_RELEASE_RESET();
__USART1_CLK_DISABLE();
}
if (obj->uart == UART_2) {
__USART2_FORCE_RESET();
__USART2_RELEASE_RESET();
__USART2_CLK_DISABLE();
}
if (obj->uart == UART_3) {
__USART3_FORCE_RESET();
__USART3_RELEASE_RESET();
__USART3_CLK_DISABLE();
}
if (obj->uart == UART_4) {
__USART4_FORCE_RESET();
__USART4_RELEASE_RESET();
__USART4_CLK_DISABLE();
}
// Configure GPIOs
pin_function(obj->pin_tx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
pin_function(obj->pin_rx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
serial_irq_ids[obj->index] = 0;
}
void serial_baud(serial_t *obj, int baudrate) {
obj->baudrate = baudrate;
init_uart(obj);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
if (data_bits == 9) {
obj->databits = UART_WORDLENGTH_9B;
} else {
obj->databits = UART_WORDLENGTH_8B;
}
switch (parity) {
case ParityOdd:
case ParityForced0:
obj->parity = UART_PARITY_ODD;
break;
case ParityEven:
case ParityForced1:
obj->parity = UART_PARITY_EVEN;
break;
default: // ParityNone
obj->parity = UART_PARITY_NONE;
break;
}
if (stop_bits == 2) {
obj->stopbits = UART_STOPBITS_2;
} else {
obj->stopbits = UART_STOPBITS_1;
}
init_uart(obj);
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static void uart_irq(UARTName name, int id) {
UartHandle.Instance = (USART_TypeDef *)name;
if (serial_irq_ids[id] != 0) {
if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_TC) != RESET) {
irq_handler(serial_irq_ids[id], TxIrq);
__HAL_UART_CLEAR_IT(&UartHandle, UART_FLAG_TC);
}
if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_RXNE) != RESET) {
irq_handler(serial_irq_ids[id], RxIrq);
volatile uint32_t tmpval = UartHandle.Instance->RDR; // Clear RXNE bit
}
}
}
static void uart1_irq(void) {
uart_irq(UART_1, 0);
}
static void uart2_irq(void) {
uart_irq(UART_2, 1);
}
static void uart3_irq(void) {
uart_irq(UART_3, 2);
}
static void uart4_irq(void) {
uart_irq(UART_4, 3);
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
UartHandle.Instance = (USART_TypeDef *)(obj->uart);
if (obj->uart == UART_1) {
irq_n = USART1_IRQn;
vector = (uint32_t)&uart1_irq;
}
if (obj->uart == UART_2) {
irq_n = USART2_IRQn;
vector = (uint32_t)&uart2_irq;
}
if (obj->uart == UART_3) {
irq_n = USART3_4_IRQn;
vector = (uint32_t)&uart3_irq;
}
if (obj->uart == UART_4) {
irq_n = USART3_4_IRQn;
vector = (uint32_t)&uart4_irq;
}
if (enable) {
if (irq == RxIrq) {
__HAL_UART_ENABLE_IT(&UartHandle, UART_IT_RXNE);
} else { // TxIrq
__HAL_UART_ENABLE_IT(&UartHandle, UART_IT_TC);
}
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else { // disable
int all_disabled = 0;
if (irq == RxIrq) {
__HAL_UART_DISABLE_IT(&UartHandle, UART_IT_RXNE);
// Check if TxIrq is disabled too
if ((UartHandle.Instance->CR1 & USART_CR1_TCIE) == 0) all_disabled = 1;
} else { // TxIrq
__HAL_UART_DISABLE_IT(&UartHandle, UART_IT_TC);
// Check if RxIrq is disabled too
if ((UartHandle.Instance->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1;
}
if (all_disabled) NVIC_DisableIRQ(irq_n);
}
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj) {
USART_TypeDef *uart = (USART_TypeDef *)(obj->uart);
while (!serial_readable(obj));
return (int)(uart->RDR & (uint16_t)0xFF);
}
void serial_putc(serial_t *obj, int c) {
USART_TypeDef *uart = (USART_TypeDef *)(obj->uart);
while (!serial_writable(obj));
uart->TDR = (uint32_t)(c & (uint16_t)0xFF);
}
int serial_readable(serial_t *obj) {
int status;
UartHandle.Instance = (USART_TypeDef *)(obj->uart);
// Check if data is received
status = ((__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_RXNE) != RESET) ? 1 : 0);
return status;
}
int serial_writable(serial_t *obj) {
int status;
UartHandle.Instance = (USART_TypeDef *)(obj->uart);
// Check if data is transmitted
status = ((__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_TXE) != RESET) ? 1 : 0);
return status;
}
void serial_clear(serial_t *obj) {
UartHandle.Instance = (USART_TypeDef *)(obj->uart);
__HAL_UART_CLEAR_IT(&UartHandle, UART_FLAG_TC);
__HAL_UART_SEND_REQ(&UartHandle, UART_RXDATA_FLUSH_REQUEST);
}
void serial_pinout_tx(PinName tx) {
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj) {
// [TODO]
}
void serial_break_clear(serial_t *obj) {
// [TODO]
}
#endif
