GOPA KUMAR K C
/
NewPWMGen
New PWM code by Yeshwanth
main.cpp
- Committer:
- gkumar
- Date:
- 2016-03-19
- Revision:
- 0:4e8fb2adea64
- Child:
- 1:c5f613785c7b
File content as of revision 0:4e8fb2adea64:
#include <stdio.h> #include <stdlib.h> #include<math.h> #include "pin_config.h" #include "mbed.h" void FCTN_ACS_GENPWM_MAIN(float Moment[3]) { printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function float l_duty_cycle_x=0; //Duty cycle of Moment in x direction float l_current_x=0; //Current sent in x TR's float l_duty_cycle_y=0; //Duty cycle of Moment in y direction float l_current_y=0; //Current sent in y TR's float l_duty_cycle_z=0; //Duty cycle of Moment in z direction float l_current_z=0; //Current sent in z TR's for(int i = 0 ; i<3;i++) { // printf(" %f \t ",Moment[i]); // taking the moment values from control algorithm as inputs } //----------------------------- x-direction TR --------------------------------------------// float l_moment_x = Moment[0]; //Moment in x direction phase_TR_x = 1; // setting the default current direction if (l_moment_x <0) { phase_TR_x = 0; // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_x = abs(l_moment_x); } l_current_x = l_moment_x * TR_CONSTANT ; //Moment and Current always have the linear relationship pc_acs.printf("current in trx is %f \r \n",l_current_x); if( l_current_x>0 && l_current_x < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_x = 3*10000000*pow(l_current_x,3)- 90216*pow(l_current_x,2) + 697.78*l_current_x - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if (l_current_x >= 0.0016 && l_current_x < 0.0171) { l_duty_cycle_x = - 76880*pow(l_current_x,3) + 1280.8*pow(l_current_x,2) + 583.78*l_current_x + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if(l_current_x >= 0.0171 && l_current_x < 0.1678) { l_duty_cycle_x = 275.92*pow(l_current_x,2) + 546.13*l_current_x + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if(l_current_x==0) { printf("\n \r l_current_x====0"); l_duty_cycle_x = 0; // default value of duty cycle pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else //not necessary { g_err_flag_TR_x = 1; } //------------------------------------- y-direction TR--------------------------------------// float l_moment_y = Moment[1]; //Moment in y direction phase_TR_y = 1; // setting the default current direction if (l_moment_y <0) { phase_TR_y = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_y = abs(l_moment_y); } l_current_y = l_moment_y * TR_CONSTANT ; //Moment and Current always have the linear relationship pc_acs.printf("current in try is %f \r \n",l_current_y); if( l_current_y>0 && l_current_y < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_y = 3*10000000*pow(l_current_y,3)- 90216*pow(l_current_y,2) + 697.78*l_current_y - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if (l_current_y >= 0.0016 && l_current_y < 0.0171) { l_duty_cycle_y = - 76880*pow(l_current_y,3) + 1280.8*pow(l_current_y,2) + 583.78*l_current_y + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if(l_current_y >= 0.0171 && l_current_y < 0.1678) { l_duty_cycle_y = 275.92*pow(l_current_y,2) + 546.13*l_current_y + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if(l_current_y==0) { printf("\n \r l_current_y====0"); l_duty_cycle_y = 0; // default value of duty cycle pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else // not necessary { g_err_flag_TR_y = 1; } //----------------------------------------------- z-direction TR -------------------------// float l_moment_z = Moment[2]; //Moment in z direction phase_TR_z = 1; // setting the default current direction if (l_moment_z <0) { phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_z = abs(l_moment_z); } l_current_z = l_moment_z * TR_CONSTANT ; //Moment and Current always have the linear relationship pc_acs.printf("current in trz is %f \r \n",l_current_z); if( l_current_z>0 && l_current_z < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_z = 3*10000000*pow(l_current_z,3)- 90216*pow(l_current_z,2) + 697.78*l_current_z - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if (l_current_z >= 0.0016 && l_current_z < 0.0171) { l_duty_cycle_z = - 76880*pow(l_current_z,3) + 1280.8*pow(l_current_z,2) + 583.78*l_current_z + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if(l_current_z >= 0.0171 && l_current_z < 0.1678) { l_duty_cycle_z = 275.92*pow(l_current_z,2) + 546.13*l_current_z + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if(l_current_z==0) { printf("\n \r l_current_z====0"); l_duty_cycle_z = 0; // default value of duty cycle pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else // not necessary { g_err_flag_TR_z = 1; } //-----------------------------------------exiting the function-----------------------------------// printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function }