Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: libmDot mbed-rtos mbed
Fork of Adafruit_I2C_9dof_mDot_TTN by
main.cpp
- Committer:
- gkielian
- Date:
- 2016-08-21
- Revision:
- 9:e3756ad55310
- Parent:
- 8:ebec2e50d421
- Child:
- 10:798cac7d3dcb
File content as of revision 9:e3756ad55310:
/* Adafruit I2C Temp Sensor MCP9808 -> Multitech mDot -> The Things Network (TTN)
*
* This program connects the Adafruit temp sensor board MCP9808 through I2C
* and sends the temperature output to the The Things Network.
*
* Based on:
* - mDot TTN Connect Example: https://developer.mbed.org/users/ropu/code/mDot_LoRa_example_TTN_connect/rev/609e7bb06486
* - Adafruit MCP9808 Library: https://github.com/adafruit/Adafruit_MCP9808_Library
* - mbed I2C Example: https://developer.mbed.org/handbook/I2C
* - TTN Backend: https://www.thethingsnetwork.org/wiki/Backend/Overview
*
* Requiremens:
* - Multitech UDK board and mDot: https://developer.mbed.org/platforms/MTS-mDot-F411/
* - Adafruit MCP9809: https://learn.adafruit.com/adafruit-mcp9808-precision-i2c-temperature-sensor-guide/overview
* - Serial to USB like this or similar: https://www.amazon.com/Sabrent-Serial-RS-232-Converter-CB-DB9P/dp/B00IDSM6BW/ref=sr_1_5?ie=UTF8&qid=1470167137&sr=8-5&keywords=serial+usb
* - Default serial port baudrate is 9600
*
* Wiring:
* MCP9808 : UDK
* - Vdd : - D8 3.3V
* - Gnd : - D3 GND
* - SCL : - D15
* - SDA : - D14
*/
#include "mbed.h"
#include "mDot.h"
#include "MTSLog.h"
#include <string>
#include <vector>
#include <algorithm>
// TTN Keys, setup your application and get your own keys at https://www.thethingsnetwork.org/wiki/Backend/Overview
static const uint8_t netowork_session_key_array[] = { 0x22, 0xDF, 0x20, 0x0C, 0x71, 0x5A, 0xCC, 0x35, 0xB8, 0x20, 0x5F, 0xAE, 0xC7, 0x00, 0x5A, 0x63 };//
//app session key
static const uint8_t data_session_key_array[] = { 0x66, 0xF2, 0x8B, 0x88, 0x76, 0x0D, 0xB0, 0xE2, 0xAE, 0x16, 0x29, 0x81, 0x29, 0xC9, 0x25, 0x11 };
//dev address (keep in mind these are all under abp)
static const uint8_t network_address_array[] = { 0x30, 0xE2, 0x6C, 0xAF };
//static const uint8_t netowork_session_key_array[] = { 0x35, 0x41, 0x32, 0x67, 0x79, 0x76, 0x49, 0x8B, 0xBE, 0x98, 0x10, 0x80, 0x76, 0xB7, 0x61, 0x8B };
//static const uint8_t data_session_key_array[] = { 0xD3, 0x6F, 0x5E, 0x66, 0x4A, 0x1B, 0xEC, 0x0C, 0x4A, 0x63, 0x8E, 0x1C, 0x2D, 0xB3, 0x18, 0xA4 };
//static const uint8_t network_address_array[] = { 0x10, 0x81, 0xDA, 0x6F };
static std::vector<uint8_t> netowork_session_key (netowork_session_key_array, netowork_session_key_array + sizeof(netowork_session_key_array) / sizeof(uint8_t));
static std::vector<uint8_t> data_session_key (data_session_key_array, data_session_key_array + sizeof(data_session_key_array) / sizeof(uint8_t));
static std::vector<uint8_t> network_address (network_address_array, network_address_array + sizeof(network_address_array) / sizeof(uint8_t));
static uint8_t config_frequency_sub_band = 2;
// Initialize I2C
I2C i2c(I2C_SDA , I2C_SCL );
const int addr7bit = 0x1E; // 7 bit I2C address
const int addr8bit = addr7bit << 1; // 8bit I2C address, 0x90
int main() {
// Declare and initialize variables
int32_t ret;
mDot* dot;
char cmd[2]; // I2C command address byte 8-bit
char my_data[6]; // I2C return address bytes 16-bit
uint16_t mag_x; // Intermediate variable
uint16_t mag_y; // Intermediate variable
uint16_t mag_z; // Intermediate variable
std::vector<uint8_t> data; // mDot data->send variable
char data_str[64]; // Intermediate conversion variable
uint32_t update_interval = 15000; // TTN transmission interval (loop interval)
// get a mDot handle
dot = mDot::getInstance();
dot->resetConfig();
dot->setLogLevel(mts::MTSLog::INFO_LEVEL);
// too lazzy to check all errors
dot->setJoinMode(mDot::MANUAL);
dot->setPublicNetwork(true);
dot->setFrequencySubBand(config_frequency_sub_band);
dot->setNetworkSessionKey(netowork_session_key);
dot->setDataSessionKey(data_session_key);
dot->setNetworkAddress(network_address);
// a higher spreading factor allows for longer range but lower throughput
// in the 915 (US) frequency band, spreading factors 7 - 10 are available
// in the 868 (EU) frequency band, spreading factors 7 - 12 are available
logInfo("setting TX spreading factor");
if ((ret = dot->setTxDataRate(mDot::SF_10)) != mDot::MDOT_OK) {
logError("failed to set TX datarate %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
}
// request receive confirmation of packets from the gateway
logInfo("enabling ACKs");
if ((ret = dot->setAck(0)) != mDot::MDOT_OK) {
logError("failed to enable ACKs %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
}
// save this configuration to the mDot's NVM
logInfo("saving config");
if (! dot->saveConfig()) {
logError("failed to save configuration");
}
//*******************************************
// end of configuration
//*******************************************
// attempt to join the network
logInfo("joining network");
while ((ret = dot->joinNetwork()) != mDot::MDOT_OK) {
logError("failed to join network %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
// in the 868 (EU) frequency band, we need to wait until another channel is available before transmitting again
osDelay(std::max((uint32_t)1000, (uint32_t)dot->getNextTxMs()));
}
while (true) {
// Enable the Magnetometer
cmd[0] = 0x02;
//cmd[1] = 0x00;
i2c.write(addr8bit, cmd, 1);
logInfo("Wake magnetometer");
// Read magnetic field
cmd[0] = 0x03; // see for a list of addresses and commands https://github.com/adafruit/Adafruit_LSM303/blob/master/Adafruit_LSM303.h
i2c.write(addr8bit, cmd, 1);
i2c.read( addr8bit, my_data, 6);
// This section is converted from Arduino version: https://github.com/adafruit/Adafruit_MCP9808_Library/blob/master/Adafruit_MCP9808.cpp
mag_x = my_data[0];
mag_x <<= 8;
mag_x |= my_data[1];
mag_y = my_data[2];
mag_y <<= 8;
mag_y |= my_data[3];
mag_z = my_data[4];
mag_z <<= 8;
mag_z |= my_data[5];
logInfo("X_MAG = %d Y_MAG = %d; Z_MAG = %d", mag_x, mag_y, mag_z);
// Empty data vector
data.clear();
// Push temperature value into data array
sprintf(data_str, "%d", mag_x);
for (int i = 0; i<strlen(data_str); i++)
{
data.push_back(((char*)data_str)[i]);
}
// send the data to the gateway
if ((ret = dot->send(data)) != mDot::MDOT_OK) {
logError("failed to send", ret, mDot::getReturnCodeString(ret).c_str());
} else {
logInfo("successfully sent data to gateway: %s", data_str);
}
// in the 868 (EU) frequency band, we need to wait until another channel is available before transmitting again
osDelay(std::max(update_interval, (uint32_t)dot->getNextTxMs()));
}
return 0;
}
