SPI library used to communicate with an altera development board attached to four zigbee-header pins.
mmSPI.cpp
- Committer:
- gatedClock
- Date:
- 2013-08-19
- Revision:
- 15:d6cc57c4e23d
- Parent:
- 14:35717622a4fb
- Child:
- 16:0e422fd263c6
File content as of revision 15:d6cc57c4e23d:
/*----------------------------------------------//------------------------------ student : m-moore class : external SPI interface directory : mmSPI file : mmSPI.cpp ------------------------------------------------//----------------------------*/ #include "mmSPI.h" /*----------------------------------------------//------------------------------ ------------------------------------------------//----------------------------*/ //==============================================//============================== // consider resetting the fpga around here, because // the micro may be wiggling these signals before here. mmSPI::mmSPI() // constructor. { allocations(); // object allocations. *pSCLK = 0; // initialize. *pCPUclk = 0; // initialize. } //----------------------------------------------//------------------------------ mmSPI::~mmSPI() // destructor. { // deallocations. if (pMOSI) {delete pMOSI; pMOSI = NULL;} if (pMISO) {delete pMISO; pMISO = NULL;} if (pSCLK) {delete pSCLK; pSCLK = NULL;} if (pCPUclk) {delete pCPUclk; pCPUclk = NULL;} } //----------------------------------------------//------------------------------ void mmSPI::allocations(void) // object allocations. { pMOSI = new DigitalOut(mmSPI_MOSI); // SPI MOSI pin object. if (!pMOSI) error("\n\r mmSPI::allocations : FATAL malloc error for pMOSI. \n\r"); pMISO = new DigitalOut(mmSPI_MISO); // SPI MISO pin object. if (!pMISO) error("\n\r mmSPI::allocations : FATAL malloc error for pMISO. \n\r"); pSCLK = new DigitalOut(mmSPI_SCLK); // SPI SCLK pin object. if (!pSCLK) error("\n\r mmSPI::allocations : FATAL malloc error for pSCLK. \n\r"); pCPUclk = new DigitalOut(mmCPU_CLK); // SPI SCLK pin object. if (!pCPUclk) error("\n\r mmSPI::allocations : FATAL malloc error for pCPUclk. \n\r"); } //----------------------------------------------//------------------------------ void mmSPI::setSPIfrequency(float fFreq) // set SPI clock frequency. { fSPIfreq = fFreq; // promote to object scope. if (fSPIfreq < .05) // don't get near divide-by-zero. error("\n\r mmSPI::setSPIfrequency : FATAL SPI frequency set too low. \n\r"); fSPIquarterP = (1 / fSPIfreq) / 4; // figure quarter-cycle period. } //----------------------------------------------//------------------------------ // we're not going for speed, so lets go for good setup / hold. // send/receive a byte over SPI. // MSB out/in first. void mmSPI::transceive_byte(char *cReceive, char *cSend) { *cReceive = 0; // clear receive byte. for (dLoop01 = 7; dLoop01 >= 0; dLoop01--)// loop for 8 bits in the byte. { *pSCLK = 0; // SPI clock negedge. wait(fSPIquarterP); // until middle of clock low. *pMOSI = (*cSend >> dLoop01) & 1; // assert MOSI. // capture MISO. *cReceive = *cReceive | (*pMISO << dLoop01); wait(fSPIquarterP); // finish-out cycle. *pSCLK = 1; // SPI clock posedge. wait(fSPIquarterP); // finish-out cycle. wait(fSPIquarterP); // finish-out cycle. } } //----------------------------------------------//------------------------------ // transceive a character array. // limit is 256 characters. // MSB out/in first. void mmSPI::transceive_vector(char *cReceive, char *cSend, char cNumBytes) { // the first SPI pulse after the // CPU clock goes low is used for // parallel-load of the SPI shadow // registers, not for shifting. if (0) { *pSCLK = 1; wait(fSPIquarterP); wait(fSPIquarterP); *pSCLK = 0; wait(fSPIquarterP); wait(fSPIquarterP); } for (dLoop02 = (cNumBytes - 1); dLoop02 >= 0; dLoop02--) transceive_byte(&(cReceive[dLoop02]), &(cSend[dLoop02])); *pCPUclk = 1; // pulse the CPU clock. wait(fSPIquarterP); wait(fSPIquarterP); *pCPUclk = 0; wait(fSPIquarterP); wait(fSPIquarterP); } //----------------------------------------------//------------------------------ // transceive a character array. // limit is 256 characters. // MSB out/in first. void mmSPI::test_toggle_cpu_clock(void) { DigitalOut led0(LED4); while (1) { *pCPUclk = 1; led0 = 1; wait(1.0); *pCPUclk = 0; led0 = 0; wait(1.0); } } //----------------------------------------------//------------------------------ void mmSPI::force_write(char cDataHIgh, char cDataLow, char cAddress) { char pcReceive[8]; char pcSend [8]; int dLoop; for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0; // high data to R2. pcSend[7] = 0x02; pcSend[1] = 0xA8; pcSend[0] = cDataHIgh; transceive_vector(pcReceive, pcSend, 8); // low data to R1. pcSend[7] = 0x02; pcSend[1] = 0xA4; pcSend[0] = cDataLow; transceive_vector(pcReceive, pcSend, 8); // address to R3. pcSend[7] = 0x02; pcSend[1] = 0xAC; pcSend[0] = cAddress; transceive_vector(pcReceive, pcSend, 8); pcSend[7] = 0x02; pcSend[1] = 0x02; pcSend[0] = 0; // WE high. transceive_vector(pcReceive, pcSend, 8); pcSend[7] = 0x02; pcSend[1] = 0x00; pcSend[0] = 0; // WE low. transceive_vector(pcReceive, pcSend, 8); } //----------------------------------------------//------------------------------ void mmSPI::force_read(char cAddress) { char pcReceive[8]; char pcSend [8]; int dLoop; for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0; // address to R3. pcSend[7] = 0x02; pcSend[1] = 0xAC; pcSend[0] = cAddress; transceive_vector(pcReceive, pcSend, 8); // R2 gets data-H from memory. pcSend[7] = 0x02; pcSend[1] = 0xC8; pcSend[0] = cAddress; transceive_vector(pcReceive, pcSend, 8); // R1 gets data-L from memory. pcSend[7] = 0x02; pcSend[1] = 0xC4; pcSend[0] = cAddress; transceive_vector(pcReceive, pcSend, 8); // pcSend[7] = 0x02; // force IR. // pcSend[1] = 0xA4; // R1 <- immediate. // pcSend[0] = 0xEE; // immediate value. /// transceive_vector(pcReceive, pcSend, 8); // no-op scan. pcSend[7] = 0x02; pcSend[1] = 0x0; pcSend[0] = 0; transceive_vector(pcReceive, pcSend, 8); } //----------------------------------------------//------------------------------