This is an involuntary fork, created because the repository would not update mmSPI. SPI library used to communicate with an altera development board attached to four zigbee-header pins.
Dependents: Embedded_RTOS_Project
Fork of mmSPI by
mmSPI.cpp
- Committer:
- gatedClock
- Date:
- 2013-08-25
- Revision:
- 30:331c7c7d8bc1
- Parent:
- 29:4ed71dfee7d8
- Child:
- 31:ea7b25e494b5
File content as of revision 30:331c7c7d8bc1:
/*----------------------------------------------//------------------------------ student : m-moore class : external SPI interface directory : mmSPI file : mmSPI.cpp ------------------------------------------------//----------------------------*/ #include "mmSPI.h" /*----------------------------------------------//------------------------------ ------------------------------------------------//----------------------------*/ //==============================================//============================== // consider resetting the fpga around here, because // the micro may be wiggling these signals before here. mmSPI::mmSPI() // constructor. { allocations(); // object allocations. *pSCLK = 0; // initialize. *pCPUclk = 0; // initialize. } //----------------------------------------------//------------------------------ mmSPI::~mmSPI() // destructor. { // deallocations. if (pMOSI) {delete pMOSI; pMOSI = NULL;} if (pMISO) {delete pMISO; pMISO = NULL;} if (pSCLK) {delete pSCLK; pSCLK = NULL;} if (pCPUclk) {delete pCPUclk; pCPUclk = NULL;} } //----------------------------------------------//------------------------------ void mmSPI::allocations(void) // object allocations. { pMOSI = new DigitalOut(mmSPI_MOSI); // SPI MOSI pin object. if (!pMOSI) error("\n\r mmSPI::allocations : FATAL malloc error for pMOSI. \n\r"); pMISO = new DigitalOut(mmSPI_MISO); // SPI MISO pin object. if (!pMISO) error("\n\r mmSPI::allocations : FATAL malloc error for pMISO. \n\r"); pSCLK = new DigitalOut(mmSPI_SCLK); // SPI SCLK pin object. if (!pSCLK) error("\n\r mmSPI::allocations : FATAL malloc error for pSCLK. \n\r"); pCPUclk = new DigitalOut(mmCPU_CLK); // SPI SCLK pin object. if (!pCPUclk) error("\n\r mmSPI::allocations : FATAL malloc error for pCPUclk. \n\r"); } //----------------------------------------------//------------------------------ void mmSPI::setSPIfrequency(float fFreq) // set SPI clock frequency. { fSPIfreq = fFreq; // promote to object scope. if (fSPIfreq < .05) // don't get near divide-by-zero. error("\n\r mmSPI::setSPIfrequency : FATAL SPI frequency set too low. \n\r"); fSPIquarterP = (1 / fSPIfreq) / 4; // figure quarter-cycle period. } //----------------------------------------------//------------------------------ // obtain SPI send buffer pointer. void mmSPI::setSendBuffer(char * pcSendBuffer) { pcSend = pcSendBuffer; // promote to object scope. } //----------------------------------------------//------------------------------ // obtain SPI receive buffer pointer. void mmSPI::setReceiveBuffer(char * pcReceiveBuffer) { pcReceive = pcReceiveBuffer; // promote to object scope. } //----------------------------------------------//------------------------------ // obtain number of SPI bytes. void mmSPI::setNumberOfBytes(int dNumberOfBytes) { dNumBytes = dNumberOfBytes; // promote to object scope. } //----------------------------------------------//------------------------------ // transceive a character array. // MSB out/in first. void mmSPI::transceive_vector(void) { int dClear; int dIndex; int dMosiByteIndex; int dMosiBitIndex; int dMisoByteIndex; int dMisoBitIndex; dIndex = (dNumBytes * 8) - 1; dMosiByteIndex = dIndex / 8; dMosiBitIndex = dIndex % 8; for (dClear = 0; dClear < dNumBytes; dClear++) pcReceive[dClear] = 0; *pCPUclk = 1; // pulse the CPU clock. wait(fSPIquarterP); wait(fSPIquarterP); *pCPUclk = 0; wait(fSPIquarterP); wait(fSPIquarterP); *pSCLK = 1; // pulse the SPI clock for parallel load. wait(fSPIquarterP); wait(fSPIquarterP); *pSCLK = 0; // pre-assert MOSI. *pMOSI = ((pcSend[dMosiByteIndex]) >> dMosiBitIndex) & 1; wait(fSPIquarterP); wait(fSPIquarterP); for (dIndex = (dNumBytes * 8) - 1; dIndex >= 0; dIndex--) { dMisoByteIndex = dIndex / 8; dMisoBitIndex = dIndex % 8; pcReceive[dMisoByteIndex] = pcReceive[dMisoByteIndex] | (*pMISO << dMisoBitIndex); *pSCLK = 1; wait(fSPIquarterP); wait(fSPIquarterP); *pSCLK = 0; if (dIndex < 0) dIndex = 0; dMosiByteIndex = (dIndex - 1) / 8; dMosiBitIndex = (dIndex - 1) % 8; *pMOSI = ((pcSend[dMosiByteIndex]) >> dMosiBitIndex) & 1; wait(fSPIquarterP); wait(fSPIquarterP); } } //----------------------------------------------//------------------------------ // cRegister -> CPU_register // 0 R0 // 1 R1 // 2 R2 // 3 R3 // 4 PC // 5 <meta, don't do> // 6 <nothing> // 7 <nothing> void mmSPI::write_register(char cRegister, char cValue) { int dLoop; // loop index. clear_transmit_vector(); // clear transmit vector. pcSend[7] = 0x02; // mbed sends a command. // align into instruction word. pcSend[1] = ((cRegister & 0x07) << 2) | 0xA0; pcSend[0] = cValue & 0xFF; // immediate value to i.w. transceive_vector(); // transmit command. clear_transmit_vector(); // clear transmit vector. } //----------------------------------------------//------------------------------ // cRegister -> CPU_register // 0 -> R0 // 1 -> R1 // 2 -> R2 // 3 -> R3 // 4 -> PC // 5 -> IR-H // 6 -> IR-L // 7 -> <never-use> // returns the content of // a CPU register. char mmSPI::read_register(char cRegister) { clear_transmit_vector(); // clear transmit vector. pcSend[7] = 0x02; // suppress cpu operation. transceive_vector(); // snap & scan-out reg contents. return (pcReceive[6 - cRegister]); // return the particular reg value. } //----------------------------------------------//------------------------------ void mmSPI::write_memory(char cHData, char cLdata, char cAddress) { clear_transmit_vector(); // clear transmit vector. write_register(0x03,cAddress); // R3 <- address. write_register(0x02,cHData); // R2 <- high-data. write_register(0x01,cLdata); // R1 <- low-data. pcSend[7] = 0x02; // mbed sends command. pcSend[1] = 0x02; // write-enable high. pcSend[0] = 0x00; // remainder of instruction. transceive_vector(); pcSend[7] = 0x02; // mbed sends command. pcSend[1] = 0x00; // write-enable low. pcSend[0] = 0x00; // remainder of instruction. transceive_vector(); clear_transmit_vector(); // clear transmit vector. } //----------------------------------------------//------------------------------ // fetch a word from main memory. unsigned int mmSPI::read_memory(char cAddress) { unsigned int udMemoryContent; // return variable. char cHData; // returned data-high. char cLData; // returned data-low. clear_transmit_vector(); // clear transmit vector. write_register(0x03,cAddress); // R3 <= address. pcSend[7] = 0x02; // mbed sends command. pcSend[1] = 0xC8; // R2 <- MM[R3] pcSend[0] = 0x00; transceive_vector(); // send command. pcSend[7] = 0x02; // mbed sends command. pcSend[1] = 0xC4; // R1 <- MM[R3] pcSend[0] = 0x00; transceive_vector(); // send command. cHData = read_register(0x02); // obtain MM high-data-byte. cLData = read_register(0x01); // obtain MM low-data-byte. udMemoryContent = (cHData << 8) + cLData; // build the memory word. clear_transmit_vector(); // clear transmit vector. return udMemoryContent; // return the memory word. } //----------------------------------------------//------------------------------ void mmSPI::step(void) // step the CPU. { *pCPUclk = 1; // pulse the CPU clock. wait(fSPIquarterP); wait(fSPIquarterP); *pCPUclk = 0; wait(fSPIquarterP); wait(fSPIquarterP); } //----------------------------------------------//------------------------------ void mmSPI::clear_transmit_vector(void) // fill transmit buffer with 0. { int dLoop; for (dLoop = 0; dLoop < dNumBytes; dLoop++) pcSend[dLoop] = 0x00; } //----------------------------------------------//------------------------------