This is with minumum of 10 milliseconds threshold delay 00:53
Dependencies: biquadFilter MODSERIAL QEI Servo mbed
Fork of StateMachine_EMg_RKI_PID_MOTOR_metklikenalles by
main.cpp
- Committer:
- gastongab
- Date:
- 2018-11-01
- Revision:
- 2:0a8622662f6d
- Parent:
- 1:070092564648
- Child:
- 3:3a9fdac2ba69
File content as of revision 2:0a8622662f6d:
//Voor het toevoegen van een button: #include "mbed.h" #include <iostream> #include "BiQuad.h" #include "BiQuadchains_zelfbeun.h" #include "MODSERIAL.h" MODSERIAL pc(USBTX, USBRX); DigitalOut gpo(D0); DigitalIn button2(SW3); DigitalIn button1(SW2); //or SW2 DigitalOut led1(LED_GREEN); DigitalOut led2(LED_RED); DigitalOut led3(LED_BLUE); //EMG tickers, these tickers are called in the mainscript with fsample 500Hz, also sends to HIDscope with same fsample Ticker sample_ticker; //ticker for filtering pref. with 1000Hz, define in tick.attach Timer t; //timer try out for Astrid Timer timer_calibration; //timer for EMG calibration //Input system AnalogIn emg1(A0); //right biceps AnalogIn emg2(A1); //right triceps AnalogIn emg3(A2); //left biceps AnalogIn emg4(A3); //left triceps //Filtered EMG signals from the end of the chains double emg1_filtered, emg2_filtered, emg3_filtered, emg4_filtered; volatile int i = 0; void emgsample(){ //All EMG signal through Highpass double emgread1 = emg1.read(); double emgread2 = emg2.read(); double emgread3 = emg3.read(); double emgread4 = emg4.read(); double emg1_highpassed = highp1.step(emgread1); double emg2_highpassed = highp2.step(emgread2); double emg3_highpassed = highp3.step(emgread3); double emg4_highpassed = highp4.step(emgread4); //All EMG highpassed through Notch double emg1_notched = notch1.step(emg1_highpassed); double emg2_notched = notch2.step(emg2_highpassed); double emg3_notched = notch3.step(emg3_highpassed); double emg4_notched = notch4.step(emg4_highpassed); //All EMG notched rectify double emg1_abs = abs(emg1_notched); double emg2_abs = abs(emg2_notched); double emg3_abs = abs(emg3_notched); double emg4_abs = abs(emg4_notched); //All EMG abs into lowpass emg1_filtered = lowp1.step(emg1_abs); emg2_filtered = lowp2.step(emg2_abs); emg3_filtered = lowp3.step(emg3_abs); emg4_filtered = lowp4.step(emg4_abs); //Send data to HIDScope //scope.set(0,emg1_filtered ); ONLY FOR VISUALIZATION //scope.set(1,emg2_filtered); //scope.set(2,emg3_filtered); //scope.set(3,emg4_filtered); //scope.send(); } //Define doubles for calibration and ticker double ts = 0.001; //tijdsstap double calibration_time = 55; //time EMG calibration should take volatile double temp_highest_emg1 = 0; //highest detected value right biceps volatile double temp_highest_emg2 = 0; volatile double temp_highest_emg3 = 0; volatile double temp_highest_emg4 = 0; //Doubles for calculation threshold double p_t; double threshold1; double threshold2; double threshold3; double threshold4; void CalibrationEMG() { //static float samples = calibration_time/ts; while(timer_calibration<55){ if(timer_calibration>0 && timer_calibration<10) { led1=!led1; if(emg1_filtered>temp_highest_emg1) { temp_highest_emg1= emg1_filtered; } } if(timer_calibration>10 && timer_calibration<15) { led1=0; led2=0; led3=0; } if(timer_calibration>15 && timer_calibration<25) { led2=!led2; if(emg2_filtered>temp_highest_emg2) { temp_highest_emg2= emg2_filtered; } } if(timer_calibration>25 && timer_calibration<30) { led1=0; led2=0; led3=0; } if(timer_calibration>30 && timer_calibration<40) { led3=!led3; if(emg3_filtered>temp_highest_emg3) { temp_highest_emg3= emg3_filtered; } } if(timer_calibration>40 && timer_calibration<45) { led1=0; led2=0; led3=0; } if(timer_calibration>45 && timer_calibration<55) { led2=!led2; led3=!led3; if(emg3_filtered>temp_highest_emg3) { temp_highest_emg3= emg3_filtered; } } led1=1; led2=1; led3=1; } pc.printf("Highest value right biceps= %f \r\n", temp_highest_emg1); pc.printf("Highest value right triceps= %f \r\n", temp_highest_emg2); pc.printf("Highest value left biceps= %f \r\n", temp_highest_emg3); pc.printf("Highest value left triceps= %f \r\n", temp_highest_emg4); p_t = 0.8; threshold1 = temp_highest_emg1*p_t; threshold2 = temp_highest_emg2*p_t; threshold3 = temp_highest_emg3*p_t; threshold4 = temp_highest_emg4*p_t; } void threshold_check(){ //Check if emg_filtered has reached their threshold bool bicepsR; bool tricepsR; bool bicepsL; bool tricepsL; //EMG1 threshold check if(emg1_filtered>threshold1){ bicepsR = true; } else{ bicepsR= false; } //EMG2 threshold check if(emg2_filtered>threshold2){ tricepsR = true; } else{ tricepsR= false; } //EMG3 threshold check if(emg3_filtered>threshold3){ bicepsL = true; } else{ bicepsL= false; } //EMG4 threshold check if(emg4_filtered>threshold4){ tricepsL = true; } else{ tricepsL= false; } pc.printf("Biceps Right = %d", bicepsR); pc.printf("Triceps Right = %d",tricepsR); pc.printf("Biceps Left = %d", bicepsL); pc.printf("Triceps Left = %d", tricepsL); } enum states {MOTORS_OFF,CALIBRATION,HOMING,DEMO,MOVEMENT,CLICK}; states currentState = MOTORS_OFF; //Chosen startingposition for states bool stateChanged = true; // Make sure the initialization of first state is executed void ProcessStateMachine(void) { switch (currentState) { case MOTORS_OFF: // Actions if (stateChanged) { // state initialization: rood led1 = 1; led2 = 0; led3 = 1; wait (1); stateChanged = false; } // State transition logic: Als button 1 word ingedrukt --> calibratie, anders motor uithouden if (!button1) { currentState = CALIBRATION; stateChanged = true; } else if (!button2) { currentState = HOMING ; stateChanged = true; } else { currentState = MOTORS_OFF; stateChanged = true; } break; case CALIBRATION: // Actions if (stateChanged) { // state initialization: oranje temp_highest_emg1 = 0; //highest detected value right biceps temp_highest_emg2 = 0; temp_highest_emg3 = 0; temp_highest_emg4 = 0; timer_calibration.reset(); timer_calibration.start(); if(timer_calibration<55){ sample_ticker.attach(&emgsample, ts); CalibrationEMG(); } else{ sample_ticker.detach(); timer_calibration.stop(); } stateChanged = false; } // State transition logic: automatisch terug naar motors off. currentState = MOTORS_OFF; stateChanged = true; break; case HOMING: // Actions if (stateChanged) { // state initialization: green t.start(); led1 = 0; led2 = 1; led3 = 1; wait (1); stateChanged = false; } // State transition logic: naar DEMO (button1), naar MOVEMENT(button2) if (!button1) { currentState = DEMO; stateChanged = true; } else if (!button2) { currentState = MOVEMENT ; stateChanged = true; } else if (t>300) { t.stop(); t.reset(); currentState = MOTORS_OFF ; stateChanged = true; } else { currentState = HOMING ; stateChanged = true; } break; case DEMO: // Actions if (stateChanged) { // state initialization: light blue led1 = 0; led2 = 1; led3 = 0; wait (1); stateChanged = false; } // State transition logic: automatisch terug naar HOMING currentState = HOMING; stateChanged = true; break; case MOVEMENT: // Actions if (stateChanged) { // state initialization: purple t.start(); led1 = 1; led2 = 0; led3 = 0; pc.printf("De kleur is paars ok"); //sample_ticker.attach(&threshold_check, ts); //sample_ticker.attach(&emgsample, ts); stateChanged = false; } // State transition logic: naar CLICK (button1), naar MOTORS_OFF(button2) anders naar MOVEMENT if (!button1) { currentState = CLICK; stateChanged = true; } else if (!button2) { currentState = MOTORS_OFF ; stateChanged = true; } else if (t>300) { t.stop(); t.reset(); currentState = HOMING ; stateChanged = true; } else { currentState = MOVEMENT ; stateChanged = true; } break; case CLICK: // Actions if (stateChanged) { // state initialization: blue led1 = 1; led2 = 1; led3 = 0; wait (1); stateChanged = false; } // State transition logic: automatisch terug naar MOVEMENT. currentState = MOVEMENT; stateChanged = true; break; } } int main() { pc.baud(115200); while (true) { led1 = 1; led2 = 1; led3 = 1; ProcessStateMachine(); } }