23:00
Dependencies: biquadFilter MODSERIAL QEI Servo mbed
Fork of StateMachine_EMg_RKI_PID_MOTOR_DEMO_CLICK by
main.cpp
- Committer:
- gastongab
- Date:
- 2018-11-01
- Revision:
- 4:c7be673eb4a1
- Parent:
- 3:3a9fdac2ba69
- Child:
- 5:19f59a855475
File content as of revision 4:c7be673eb4a1:
//Voor het toevoegen van een button: #include "mbed.h" #include <iostream> #include "BiQuad.h" #include "BiQuadchains_zelfbeun.h" #include "MODSERIAL.h" MODSERIAL pc(USBTX, USBRX); DigitalOut gpo(D0); DigitalIn button2(SW3); DigitalIn button1(SW2); //or SW2 DigitalOut led1(LED_GREEN); DigitalOut led2(LED_RED); DigitalOut led3(LED_BLUE); //EMG tickers, these tickers are called in the mainscript with fsample 500Hz, also sends to HIDscope with same fsample Ticker sample_ticker; //ticker for filtering pref. with 1000Hz, define in tick.attach Ticker threshold_check_ticker; Timer t; //timer try out for Astrid Timer timer_calibration; //timer for EMG calibration //Input system AnalogIn emg1(A0); //right biceps AnalogIn emg2(A1); //right triceps AnalogIn emg3(A2); //left biceps AnalogIn emg4(A3); //left triceps //Filtered EMG signals from the end of the chains volatile double emg1_filtered, emg2_filtered, emg3_filtered, emg4_filtered; int i = 0; void emgsample(){ //All EMG signal through Highpass double emgread1 = emg1.read(); double emgread2 = emg2.read(); double emgread3 = emg3.read(); double emgread4 = emg4.read(); double emg1_highpassed = highp1.step(emgread1); double emg2_highpassed = highp2.step(emgread2); double emg3_highpassed = highp3.step(emgread3); double emg4_highpassed = highp4.step(emgread4); //All EMG highpassed through Notch double emg1_notched = notch1.step(emg1_highpassed); double emg2_notched = notch2.step(emg2_highpassed); double emg3_notched = notch3.step(emg3_highpassed); double emg4_notched = notch4.step(emg4_highpassed); //All EMG notched rectify double emg1_abs = abs(emg1_notched); double emg2_abs = abs(emg2_notched); double emg3_abs = abs(emg3_notched); double emg4_abs = abs(emg4_notched); //All EMG abs into lowpass emg1_filtered = lowp1.step(emg1_abs); emg2_filtered = lowp2.step(emg2_abs); emg3_filtered = lowp3.step(emg3_abs); emg4_filtered = lowp4.step(emg4_abs); //Send data to HIDScope //scope.set(0,emg1_filtered ); ONLY FOR VISUALIZATION //scope.set(1,emg2_filtered); //scope.set(2,emg3_filtered); //scope.set(3,emg4_filtered); //scope.send(); } //Define doubles for calibration and ticker double ts = 0.001; //tijdsstap double calibration_time = 55; //time EMG calibration should take volatile double temp_highest_emg1 = 0; //highest detected value right biceps volatile double temp_highest_emg2 = 0; volatile double temp_highest_emg3 = 0; volatile double temp_highest_emg4 = 0; //Doubles for calculation threshold double p_t = 0.4; //set threshold at percentage of highest value volatile double threshold1; volatile double threshold2; volatile double threshold3; volatile double threshold4; void CalibrationEMG() { //static float samples = calibration_time/ts; while(timer_calibration<55){ if(timer_calibration>0 && timer_calibration<10) { led1=!led1; if(emg1_filtered>temp_highest_emg1) { temp_highest_emg1= emg1_filtered; } } if(timer_calibration>10 && timer_calibration<15) { led1=0; led2=0; led3=0; } if(timer_calibration>15 && timer_calibration<25) { led2=!led2; if(emg2_filtered>temp_highest_emg2) { temp_highest_emg2= emg2_filtered; pc.printf("Temp2 = %f \r\n",temp_highest_emg2); } } if(timer_calibration>25 && timer_calibration<30) { led1=0; led2=0; led3=0; } if(timer_calibration>30 && timer_calibration<40) { led3=!led3; if(emg3_filtered>temp_highest_emg3) { temp_highest_emg3= emg3_filtered; } } if(timer_calibration>40 && timer_calibration<45) { led1=0; led2=0; led3=0; } if(timer_calibration>45 && timer_calibration<55) { led2=!led2; led3=!led3; if(emg3_filtered>temp_highest_emg3) { temp_highest_emg3= emg3_filtered; } } led1=1; led2=1; led3=1; } pc.printf("Highest value right biceps= %f \r\n", temp_highest_emg1); pc.printf("Highest value right triceps= %f \r\n", temp_highest_emg2); pc.printf("Highest value left biceps= %f \r\n", temp_highest_emg3); pc.printf("Highest value left triceps= %f \r\n", temp_highest_emg4); threshold1 = temp_highest_emg1*p_t; threshold2 = temp_highest_emg2*p_t; threshold3 = temp_highest_emg3*p_t; threshold4 = temp_highest_emg4*p_t; } //Check if emg_filtered has reached their threshold int bicepsR; int tricepsR; int bicepsL; int tricepsL; void threshold_check(){ //EMG1 threshold check if(emg1_filtered>threshold1){ bicepsR = 1; } else{ bicepsR= 0; } //EMG2 threshold check if(emg2_filtered>threshold2){ tricepsR = 1; } else{ tricepsR= 0; } //EMG3 threshold check if(emg3_filtered>threshold3){ bicepsL = 1; } else{ bicepsL= 0; } //EMG4 threshold check if(emg4_filtered>threshold4){ tricepsL = 1; } else{ tricepsL= 0; } /* pc.printf("Biceps Right = %i", bicepsR); pc.printf("Triceps Right = %i",tricepsR); pc.printf("Biceps Left = %i", bicepsL); pc.printf("Triceps Left = %i", tricepsL); */ } //Activate ticker for Movement state, filtering and Threshold checking void movement_ticker_activator(){ sample_ticker.attach(&emgsample, ts); threshold_check_ticker.attach(&threshold_check, ts); } void movement_ticker_deactivator(){ sample_ticker.detach(); threshold_check_ticker.detach(); } enum states {MOTORS_OFF,CALIBRATION,HOMING,DEMO,MOVEMENT,CLICK}; states currentState = MOTORS_OFF; //Chosen startingposition for states bool stateChanged = true; // Make sure the initialization of first state is executed void ProcessStateMachine(void) { switch (currentState) { case MOTORS_OFF: // Actions if (stateChanged) { // state initialization: rood led1 = 1; led2 = 0; led3 = 1; wait (1); stateChanged = false; } // State transition logic: Als button 1 word ingedrukt --> calibratie, anders motor uithouden if (!button1) { currentState = CALIBRATION; stateChanged = true; } else if (!button2) { currentState = HOMING ; stateChanged = true; } else { currentState = MOTORS_OFF; stateChanged = true; } break; case CALIBRATION: // Actions if (stateChanged) { // state initialization: oranje temp_highest_emg1 = 0; //highest detected value right biceps temp_highest_emg2 = 0; temp_highest_emg3 = 0; temp_highest_emg4 = 0; timer_calibration.reset(); timer_calibration.start(); sample_ticker.attach(&emgsample, ts); CalibrationEMG(); sample_ticker.detach(); timer_calibration.stop(); stateChanged = false; } // State transition logic: automatisch terug naar motors off. currentState = MOTORS_OFF; stateChanged = true; break; case HOMING: // Actions if (stateChanged) { // state initialization: green t.reset(); t.start(); led1 = 0; led2 = 1; led3 = 1; wait (1); stateChanged = false; } // State transition logic: naar DEMO (button1), naar MOVEMENT(button2) if (!button1) { currentState = DEMO; stateChanged = true; } else if (!button2) { currentState = MOVEMENT ; stateChanged = true; } else if (t>300) { t.stop(); t.reset(); currentState = MOTORS_OFF ; stateChanged = true; } else { currentState = HOMING ; stateChanged = true; } break; case DEMO: // Actions if (stateChanged) { // state initialization: light blue led1 = 0; led2 = 1; led3 = 0; wait (1); stateChanged = false; } // State transition logic: automatisch terug naar HOMING currentState = HOMING; stateChanged = true; break; case MOVEMENT: // Actions if (stateChanged) { // state initialization: purple t.reset(); t.start(); led1 = 1; led2 = 0; led3 = 0; wait(2); movement_ticker_activator(); led1 = 0; led2 = 0; led3 = 0; wait(2); stateChanged = false; } // State transition logic: naar CLICK (button1), naar MOTORS_OFF(button2) anders naar MOVEMENT if (!button1) { movement_ticker_deactivator(); currentState = CLICK; stateChanged = true; } else if (!button2) { movement_ticker_deactivator(); currentState = MOTORS_OFF ; stateChanged = true; } else if (t>300) { movement_ticker_deactivator(); t.stop(); t.reset(); currentState = HOMING ; stateChanged = true; } else { //For every muscle a different colour if threshold is passed if(bicepsR==1){ led1 = 0; led2 = 1; led3 = 1; } else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ){ led1 = 1; led2 = 1; led3 = 1; } if(tricepsR==1){ led1 = 1; led2 = 0; led3 = 1; } else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ){ led1 = 1; led2 = 1; led3 = 1; } if(bicepsL==1){ led1 = 1; led2 = 1; led3 = 0; } else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ){ led1 = 1; led2 = 1; led3 = 1; } if(tricepsL==1){ led1 = 1; led2 = 0; led3 = 0; } else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ){ led1 = 1; led2 = 1; led3 = 1; } currentState = MOVEMENT ; stateChanged = false; } break; case CLICK: // Actions if (stateChanged) { // state initialization: blue led1 = 1; led2 = 1; led3 = 0; wait (1); stateChanged = false; } // State transition logic: automatisch terug naar MOVEMENT. currentState = MOVEMENT; stateChanged = true; break; } } int main() { //BiQuad Chain add highp1.add( &highp1_1 ).add( &highp1_2 ); notch1.add( ¬ch1_1 ).add( ¬ch1_2 ); lowp1.add( &lowp1_1 ).add(&lowp1_2); highp2.add( &highp2_1 ).add( &highp2_2 ); notch2.add( ¬ch2_1 ).add( ¬ch2_2 ); lowp2.add( &lowp2_1 ).add(&lowp2_2); highp3.add( &highp3_1 ).add( &highp3_2 ); notch3.add( ¬ch3_1 ).add( ¬ch3_2 ); lowp3.add( &lowp3_1 ).add(&lowp3_2); highp4.add( &highp4_1 ).add( &highp4_2 ); notch4.add( ¬ch4_1 ).add( ¬ch4_2 ); lowp4.add( &lowp4_1 ).add(&lowp4_2); pc.baud(115200); led1 = 1; led2 = 1; led3 = 1; while (true) { ProcessStateMachine(); } }