ROS Serial library for Mbed platforms for ROS Melodic Morenia. Check http://wiki.ros.org/rosserial_mbed/ for more information.

Dependencies:   BufferedSerial

Dependents:   rosserial_mbed_hello_world_publisher_melodic Motortest Nucleo_vr_servo_project NucleoFM ... more

ROSSerial_mbed for Melodic Distribution

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.

Hello World (example publisher)

Import programrosserial_mbed_hello_world_publisher_melodic

rosserial_mbed Hello World example for Melodic Morenia distribution

Running the Code

Now, launch the roscore in a new terminal window:

Quote:

$ roscore

Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:

Quote:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :

Quote:

$ rostopic echo chatter

See Also

More examples

Blink

/*
 * rosserial Subscriber Example
 * Blinks an LED on callback
 */
#include "mbed.h"
#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;
DigitalOut myled(LED1);

void messageCb(const std_msgs::Empty& toggle_msg){
    myled = !myled;   // blink the led
}

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb);

int main() {
    nh.initNode();
    nh.subscribe(sub);

    while (1) {
        nh.spinOnce();
        wait_ms(1);
    }
}

Push

/*
 * Button Example for Rosserial
 */

#include "mbed.h"
#include <ros.h>
#include <std_msgs/Bool.h>

PinName button = p20;

ros::NodeHandle nh;

std_msgs::Bool pushed_msg;
ros::Publisher pub_button("pushed", &pushed_msg);

DigitalIn button_pin(button);
DigitalOut led_pin(LED1);

bool last_reading;
long last_debounce_time=0;
long debounce_delay=50;
bool published = true;

Timer t;
int main() {
    t.start();
    nh.initNode();
    nh.advertise(pub_button);

    //Enable the pullup resistor on the button
    button_pin.mode(PullUp);

    //The button is a normally button
    last_reading = ! button_pin;

    while (1) {
        bool reading = ! button_pin;

        if (last_reading!= reading) {
            last_debounce_time = t.read_ms();
            published = false;
        }

        //if the button value has not changed for the debounce delay, we know its stable
        if ( !published && (t.read_ms() - last_debounce_time)  > debounce_delay) {
            led_pin = reading;
            pushed_msg.data = reading;
            pub_button.publish(&pushed_msg);
            published = true;
        }

        last_reading = reading;

        nh.spinOnce();
    }
}

sensor_msgs/MultiDOFJointState.h

Committer:
Gary Servin
Date:
2019-11-08
Revision:
1:da82487f547e
Parent:
0:04ac6be8229a

File content as of revision 1:da82487f547e:

#ifndef _ROS_sensor_msgs_MultiDOFJointState_h
#define _ROS_sensor_msgs_MultiDOFJointState_h

#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "ros/msg.h"
#include "std_msgs/Header.h"
#include "geometry_msgs/Transform.h"
#include "geometry_msgs/Twist.h"
#include "geometry_msgs/Wrench.h"

namespace sensor_msgs
{

  class MultiDOFJointState : public ros::Msg
  {
    public:
      typedef std_msgs::Header _header_type;
      _header_type header;
      uint32_t joint_names_length;
      typedef char* _joint_names_type;
      _joint_names_type st_joint_names;
      _joint_names_type * joint_names;
      uint32_t transforms_length;
      typedef geometry_msgs::Transform _transforms_type;
      _transforms_type st_transforms;
      _transforms_type * transforms;
      uint32_t twist_length;
      typedef geometry_msgs::Twist _twist_type;
      _twist_type st_twist;
      _twist_type * twist;
      uint32_t wrench_length;
      typedef geometry_msgs::Wrench _wrench_type;
      _wrench_type st_wrench;
      _wrench_type * wrench;

    MultiDOFJointState():
      header(),
      joint_names_length(0), joint_names(NULL),
      transforms_length(0), transforms(NULL),
      twist_length(0), twist(NULL),
      wrench_length(0), wrench(NULL)
    {
    }

    virtual int serialize(unsigned char *outbuffer) const
    {
      int offset = 0;
      offset += this->header.serialize(outbuffer + offset);
      *(outbuffer + offset + 0) = (this->joint_names_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->joint_names_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->joint_names_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->joint_names_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->joint_names_length);
      for( uint32_t i = 0; i < joint_names_length; i++){
      uint32_t length_joint_namesi = strlen(this->joint_names[i]);
      varToArr(outbuffer + offset, length_joint_namesi);
      offset += 4;
      memcpy(outbuffer + offset, this->joint_names[i], length_joint_namesi);
      offset += length_joint_namesi;
      }
      *(outbuffer + offset + 0) = (this->transforms_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->transforms_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->transforms_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->transforms_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->transforms_length);
      for( uint32_t i = 0; i < transforms_length; i++){
      offset += this->transforms[i].serialize(outbuffer + offset);
      }
      *(outbuffer + offset + 0) = (this->twist_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->twist_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->twist_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->twist_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->twist_length);
      for( uint32_t i = 0; i < twist_length; i++){
      offset += this->twist[i].serialize(outbuffer + offset);
      }
      *(outbuffer + offset + 0) = (this->wrench_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->wrench_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->wrench_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->wrench_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->wrench_length);
      for( uint32_t i = 0; i < wrench_length; i++){
      offset += this->wrench[i].serialize(outbuffer + offset);
      }
      return offset;
    }

    virtual int deserialize(unsigned char *inbuffer)
    {
      int offset = 0;
      offset += this->header.deserialize(inbuffer + offset);
      uint32_t joint_names_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      joint_names_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      joint_names_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      joint_names_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->joint_names_length);
      if(joint_names_lengthT > joint_names_length)
        this->joint_names = (char**)realloc(this->joint_names, joint_names_lengthT * sizeof(char*));
      joint_names_length = joint_names_lengthT;
      for( uint32_t i = 0; i < joint_names_length; i++){
      uint32_t length_st_joint_names;
      arrToVar(length_st_joint_names, (inbuffer + offset));
      offset += 4;
      for(unsigned int k= offset; k< offset+length_st_joint_names; ++k){
          inbuffer[k-1]=inbuffer[k];
      }
      inbuffer[offset+length_st_joint_names-1]=0;
      this->st_joint_names = (char *)(inbuffer + offset-1);
      offset += length_st_joint_names;
        memcpy( &(this->joint_names[i]), &(this->st_joint_names), sizeof(char*));
      }
      uint32_t transforms_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      transforms_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      transforms_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      transforms_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->transforms_length);
      if(transforms_lengthT > transforms_length)
        this->transforms = (geometry_msgs::Transform*)realloc(this->transforms, transforms_lengthT * sizeof(geometry_msgs::Transform));
      transforms_length = transforms_lengthT;
      for( uint32_t i = 0; i < transforms_length; i++){
      offset += this->st_transforms.deserialize(inbuffer + offset);
        memcpy( &(this->transforms[i]), &(this->st_transforms), sizeof(geometry_msgs::Transform));
      }
      uint32_t twist_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      twist_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      twist_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      twist_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->twist_length);
      if(twist_lengthT > twist_length)
        this->twist = (geometry_msgs::Twist*)realloc(this->twist, twist_lengthT * sizeof(geometry_msgs::Twist));
      twist_length = twist_lengthT;
      for( uint32_t i = 0; i < twist_length; i++){
      offset += this->st_twist.deserialize(inbuffer + offset);
        memcpy( &(this->twist[i]), &(this->st_twist), sizeof(geometry_msgs::Twist));
      }
      uint32_t wrench_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      wrench_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      wrench_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      wrench_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->wrench_length);
      if(wrench_lengthT > wrench_length)
        this->wrench = (geometry_msgs::Wrench*)realloc(this->wrench, wrench_lengthT * sizeof(geometry_msgs::Wrench));
      wrench_length = wrench_lengthT;
      for( uint32_t i = 0; i < wrench_length; i++){
      offset += this->st_wrench.deserialize(inbuffer + offset);
        memcpy( &(this->wrench[i]), &(this->st_wrench), sizeof(geometry_msgs::Wrench));
      }
     return offset;
    }

    const char * getType(){ return "sensor_msgs/MultiDOFJointState"; };
    const char * getMD5(){ return "690f272f0640d2631c305eeb8301e59d"; };

  };

}
#endif