ROS Serial library for Mbed platforms for ROS Melodic Morenia. Check http://wiki.ros.org/rosserial_mbed/ for more information.
Dependents: rosserial_mbed_hello_world_publisher_melodic Motortest Nucleo_vr_servo_project NucleoFM ... more
ROSSerial_mbed for Melodic Distribution
The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.
The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.
Hello World (example publisher)
Import programrosserial_mbed_hello_world_publisher_melodic
rosserial_mbed Hello World example for Melodic Morenia distribution
Running the Code
Now, launch the roscore in a new terminal window:
Quote:
$ roscore
Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:
Quote:
$ rosrun rosserial_python serial_node.py /dev/ttyACM0
Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :
Quote:
$ rostopic echo chatter
See Also
More examples
Blink
/* * rosserial Subscriber Example * Blinks an LED on callback */ #include "mbed.h" #include <ros.h> #include <std_msgs/Empty.h> ros::NodeHandle nh; DigitalOut myled(LED1); void messageCb(const std_msgs::Empty& toggle_msg){ myled = !myled; // blink the led } ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb); int main() { nh.initNode(); nh.subscribe(sub); while (1) { nh.spinOnce(); wait_ms(1); } }
Push
/* * Button Example for Rosserial */ #include "mbed.h" #include <ros.h> #include <std_msgs/Bool.h> PinName button = p20; ros::NodeHandle nh; std_msgs::Bool pushed_msg; ros::Publisher pub_button("pushed", &pushed_msg); DigitalIn button_pin(button); DigitalOut led_pin(LED1); bool last_reading; long last_debounce_time=0; long debounce_delay=50; bool published = true; Timer t; int main() { t.start(); nh.initNode(); nh.advertise(pub_button); //Enable the pullup resistor on the button button_pin.mode(PullUp); //The button is a normally button last_reading = ! button_pin; while (1) { bool reading = ! button_pin; if (last_reading!= reading) { last_debounce_time = t.read_ms(); published = false; } //if the button value has not changed for the debounce delay, we know its stable if ( !published && (t.read_ms() - last_debounce_time) > debounce_delay) { led_pin = reading; pushed_msg.data = reading; pub_button.publish(&pushed_msg); published = true; } last_reading = reading; nh.spinOnce(); } }
sensor_msgs/MultiDOFJointState.h
- Committer:
- Gary Servin
- Date:
- 2019-11-08
- Revision:
- 1:da82487f547e
- Parent:
- 0:04ac6be8229a
File content as of revision 1:da82487f547e:
#ifndef _ROS_sensor_msgs_MultiDOFJointState_h #define _ROS_sensor_msgs_MultiDOFJointState_h #include <stdint.h> #include <string.h> #include <stdlib.h> #include "ros/msg.h" #include "std_msgs/Header.h" #include "geometry_msgs/Transform.h" #include "geometry_msgs/Twist.h" #include "geometry_msgs/Wrench.h" namespace sensor_msgs { class MultiDOFJointState : public ros::Msg { public: typedef std_msgs::Header _header_type; _header_type header; uint32_t joint_names_length; typedef char* _joint_names_type; _joint_names_type st_joint_names; _joint_names_type * joint_names; uint32_t transforms_length; typedef geometry_msgs::Transform _transforms_type; _transforms_type st_transforms; _transforms_type * transforms; uint32_t twist_length; typedef geometry_msgs::Twist _twist_type; _twist_type st_twist; _twist_type * twist; uint32_t wrench_length; typedef geometry_msgs::Wrench _wrench_type; _wrench_type st_wrench; _wrench_type * wrench; MultiDOFJointState(): header(), joint_names_length(0), joint_names(NULL), transforms_length(0), transforms(NULL), twist_length(0), twist(NULL), wrench_length(0), wrench(NULL) { } virtual int serialize(unsigned char *outbuffer) const { int offset = 0; offset += this->header.serialize(outbuffer + offset); *(outbuffer + offset + 0) = (this->joint_names_length >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (this->joint_names_length >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (this->joint_names_length >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (this->joint_names_length >> (8 * 3)) & 0xFF; offset += sizeof(this->joint_names_length); for( uint32_t i = 0; i < joint_names_length; i++){ uint32_t length_joint_namesi = strlen(this->joint_names[i]); varToArr(outbuffer + offset, length_joint_namesi); offset += 4; memcpy(outbuffer + offset, this->joint_names[i], length_joint_namesi); offset += length_joint_namesi; } *(outbuffer + offset + 0) = (this->transforms_length >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (this->transforms_length >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (this->transforms_length >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (this->transforms_length >> (8 * 3)) & 0xFF; offset += sizeof(this->transforms_length); for( uint32_t i = 0; i < transforms_length; i++){ offset += this->transforms[i].serialize(outbuffer + offset); } *(outbuffer + offset + 0) = (this->twist_length >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (this->twist_length >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (this->twist_length >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (this->twist_length >> (8 * 3)) & 0xFF; offset += sizeof(this->twist_length); for( uint32_t i = 0; i < twist_length; i++){ offset += this->twist[i].serialize(outbuffer + offset); } *(outbuffer + offset + 0) = (this->wrench_length >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (this->wrench_length >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (this->wrench_length >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (this->wrench_length >> (8 * 3)) & 0xFF; offset += sizeof(this->wrench_length); for( uint32_t i = 0; i < wrench_length; i++){ offset += this->wrench[i].serialize(outbuffer + offset); } return offset; } virtual int deserialize(unsigned char *inbuffer) { int offset = 0; offset += this->header.deserialize(inbuffer + offset); uint32_t joint_names_lengthT = ((uint32_t) (*(inbuffer + offset))); joint_names_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); joint_names_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); joint_names_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); offset += sizeof(this->joint_names_length); if(joint_names_lengthT > joint_names_length) this->joint_names = (char**)realloc(this->joint_names, joint_names_lengthT * sizeof(char*)); joint_names_length = joint_names_lengthT; for( uint32_t i = 0; i < joint_names_length; i++){ uint32_t length_st_joint_names; arrToVar(length_st_joint_names, (inbuffer + offset)); offset += 4; for(unsigned int k= offset; k< offset+length_st_joint_names; ++k){ inbuffer[k-1]=inbuffer[k]; } inbuffer[offset+length_st_joint_names-1]=0; this->st_joint_names = (char *)(inbuffer + offset-1); offset += length_st_joint_names; memcpy( &(this->joint_names[i]), &(this->st_joint_names), sizeof(char*)); } uint32_t transforms_lengthT = ((uint32_t) (*(inbuffer + offset))); transforms_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); transforms_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); transforms_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); offset += sizeof(this->transforms_length); if(transforms_lengthT > transforms_length) this->transforms = (geometry_msgs::Transform*)realloc(this->transforms, transforms_lengthT * sizeof(geometry_msgs::Transform)); transforms_length = transforms_lengthT; for( uint32_t i = 0; i < transforms_length; i++){ offset += this->st_transforms.deserialize(inbuffer + offset); memcpy( &(this->transforms[i]), &(this->st_transforms), sizeof(geometry_msgs::Transform)); } uint32_t twist_lengthT = ((uint32_t) (*(inbuffer + offset))); twist_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); twist_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); twist_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); offset += sizeof(this->twist_length); if(twist_lengthT > twist_length) this->twist = (geometry_msgs::Twist*)realloc(this->twist, twist_lengthT * sizeof(geometry_msgs::Twist)); twist_length = twist_lengthT; for( uint32_t i = 0; i < twist_length; i++){ offset += this->st_twist.deserialize(inbuffer + offset); memcpy( &(this->twist[i]), &(this->st_twist), sizeof(geometry_msgs::Twist)); } uint32_t wrench_lengthT = ((uint32_t) (*(inbuffer + offset))); wrench_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); wrench_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); wrench_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); offset += sizeof(this->wrench_length); if(wrench_lengthT > wrench_length) this->wrench = (geometry_msgs::Wrench*)realloc(this->wrench, wrench_lengthT * sizeof(geometry_msgs::Wrench)); wrench_length = wrench_lengthT; for( uint32_t i = 0; i < wrench_length; i++){ offset += this->st_wrench.deserialize(inbuffer + offset); memcpy( &(this->wrench[i]), &(this->st_wrench), sizeof(geometry_msgs::Wrench)); } return offset; } const char * getType(){ return "sensor_msgs/MultiDOFJointState"; }; const char * getMD5(){ return "690f272f0640d2631c305eeb8301e59d"; }; }; } #endif