ROS Serial library for Mbed platforms for ROS Melodic Morenia. Check http://wiki.ros.org/rosserial_mbed/ for more information.
Dependents: rosserial_mbed_hello_world_publisher_melodic Motortest Nucleo_vr_servo_project NucleoFM ... more
ROSSerial_mbed for Melodic Distribution
The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.
The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.
Hello World (example publisher)
Import programrosserial_mbed_hello_world_publisher_melodic
rosserial_mbed Hello World example for Melodic Morenia distribution
Running the Code
Now, launch the roscore in a new terminal window:
Quote:
$ roscore
Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:
Quote:
$ rosrun rosserial_python serial_node.py /dev/ttyACM0
Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :
Quote:
$ rostopic echo chatter
See Also
More examples
Blink
/* * rosserial Subscriber Example * Blinks an LED on callback */ #include "mbed.h" #include <ros.h> #include <std_msgs/Empty.h> ros::NodeHandle nh; DigitalOut myled(LED1); void messageCb(const std_msgs::Empty& toggle_msg){ myled = !myled; // blink the led } ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb); int main() { nh.initNode(); nh.subscribe(sub); while (1) { nh.spinOnce(); wait_ms(1); } }
Push
/* * Button Example for Rosserial */ #include "mbed.h" #include <ros.h> #include <std_msgs/Bool.h> PinName button = p20; ros::NodeHandle nh; std_msgs::Bool pushed_msg; ros::Publisher pub_button("pushed", &pushed_msg); DigitalIn button_pin(button); DigitalOut led_pin(LED1); bool last_reading; long last_debounce_time=0; long debounce_delay=50; bool published = true; Timer t; int main() { t.start(); nh.initNode(); nh.advertise(pub_button); //Enable the pullup resistor on the button button_pin.mode(PullUp); //The button is a normally button last_reading = ! button_pin; while (1) { bool reading = ! button_pin; if (last_reading!= reading) { last_debounce_time = t.read_ms(); published = false; } //if the button value has not changed for the debounce delay, we know its stable if ( !published && (t.read_ms() - last_debounce_time) > debounce_delay) { led_pin = reading; pushed_msg.data = reading; pub_button.publish(&pushed_msg); published = true; } last_reading = reading; nh.spinOnce(); } }
bond/Status.h
- Committer:
- Gary Servin
- Date:
- 2019-11-08
- Revision:
- 1:da82487f547e
- Parent:
- 0:04ac6be8229a
File content as of revision 1:da82487f547e:
#ifndef _ROS_bond_Status_h #define _ROS_bond_Status_h #include <stdint.h> #include <string.h> #include <stdlib.h> #include "ros/msg.h" #include "std_msgs/Header.h" namespace bond { class Status : public ros::Msg { public: typedef std_msgs::Header _header_type; _header_type header; typedef const char* _id_type; _id_type id; typedef const char* _instance_id_type; _instance_id_type instance_id; typedef bool _active_type; _active_type active; typedef float _heartbeat_timeout_type; _heartbeat_timeout_type heartbeat_timeout; typedef float _heartbeat_period_type; _heartbeat_period_type heartbeat_period; Status(): header(), id(""), instance_id(""), active(0), heartbeat_timeout(0), heartbeat_period(0) { } virtual int serialize(unsigned char *outbuffer) const { int offset = 0; offset += this->header.serialize(outbuffer + offset); uint32_t length_id = strlen(this->id); varToArr(outbuffer + offset, length_id); offset += 4; memcpy(outbuffer + offset, this->id, length_id); offset += length_id; uint32_t length_instance_id = strlen(this->instance_id); varToArr(outbuffer + offset, length_instance_id); offset += 4; memcpy(outbuffer + offset, this->instance_id, length_instance_id); offset += length_instance_id; union { bool real; uint8_t base; } u_active; u_active.real = this->active; *(outbuffer + offset + 0) = (u_active.base >> (8 * 0)) & 0xFF; offset += sizeof(this->active); union { float real; uint32_t base; } u_heartbeat_timeout; u_heartbeat_timeout.real = this->heartbeat_timeout; *(outbuffer + offset + 0) = (u_heartbeat_timeout.base >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (u_heartbeat_timeout.base >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (u_heartbeat_timeout.base >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (u_heartbeat_timeout.base >> (8 * 3)) & 0xFF; offset += sizeof(this->heartbeat_timeout); union { float real; uint32_t base; } u_heartbeat_period; u_heartbeat_period.real = this->heartbeat_period; *(outbuffer + offset + 0) = (u_heartbeat_period.base >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (u_heartbeat_period.base >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (u_heartbeat_period.base >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (u_heartbeat_period.base >> (8 * 3)) & 0xFF; offset += sizeof(this->heartbeat_period); return offset; } virtual int deserialize(unsigned char *inbuffer) { int offset = 0; offset += this->header.deserialize(inbuffer + offset); uint32_t length_id; arrToVar(length_id, (inbuffer + offset)); offset += 4; for(unsigned int k= offset; k< offset+length_id; ++k){ inbuffer[k-1]=inbuffer[k]; } inbuffer[offset+length_id-1]=0; this->id = (char *)(inbuffer + offset-1); offset += length_id; uint32_t length_instance_id; arrToVar(length_instance_id, (inbuffer + offset)); offset += 4; for(unsigned int k= offset; k< offset+length_instance_id; ++k){ inbuffer[k-1]=inbuffer[k]; } inbuffer[offset+length_instance_id-1]=0; this->instance_id = (char *)(inbuffer + offset-1); offset += length_instance_id; union { bool real; uint8_t base; } u_active; u_active.base = 0; u_active.base |= ((uint8_t) (*(inbuffer + offset + 0))) << (8 * 0); this->active = u_active.real; offset += sizeof(this->active); union { float real; uint32_t base; } u_heartbeat_timeout; u_heartbeat_timeout.base = 0; u_heartbeat_timeout.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); u_heartbeat_timeout.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); u_heartbeat_timeout.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); u_heartbeat_timeout.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); this->heartbeat_timeout = u_heartbeat_timeout.real; offset += sizeof(this->heartbeat_timeout); union { float real; uint32_t base; } u_heartbeat_period; u_heartbeat_period.base = 0; u_heartbeat_period.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); u_heartbeat_period.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); u_heartbeat_period.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); u_heartbeat_period.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); this->heartbeat_period = u_heartbeat_period.real; offset += sizeof(this->heartbeat_period); return offset; } const char * getType(){ return "bond/Status"; }; const char * getMD5(){ return "eacc84bf5d65b6777d4c50f463dfb9c8"; }; }; } #endif