ROS Serial library for Mbed platforms for ROS Melodic Morenia. Check http://wiki.ros.org/rosserial_mbed/ for more information.

Dependencies:   BufferedSerial

Dependents:   rosserial_mbed_hello_world_publisher_melodic Motortest Nucleo_vr_servo_project NucleoFM ... more

ROSSerial_mbed for Melodic Distribution

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.

Hello World (example publisher)

Import programrosserial_mbed_hello_world_publisher_melodic

rosserial_mbed Hello World example for Melodic Morenia distribution

Running the Code

Now, launch the roscore in a new terminal window:

Quote:

$ roscore

Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:

Quote:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :

Quote:

$ rostopic echo chatter

See Also

More examples

Blink

/*
 * rosserial Subscriber Example
 * Blinks an LED on callback
 */
#include "mbed.h"
#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;
DigitalOut myled(LED1);

void messageCb(const std_msgs::Empty& toggle_msg){
    myled = !myled;   // blink the led
}

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb);

int main() {
    nh.initNode();
    nh.subscribe(sub);

    while (1) {
        nh.spinOnce();
        wait_ms(1);
    }
}

Push

/*
 * Button Example for Rosserial
 */

#include "mbed.h"
#include <ros.h>
#include <std_msgs/Bool.h>

PinName button = p20;

ros::NodeHandle nh;

std_msgs::Bool pushed_msg;
ros::Publisher pub_button("pushed", &pushed_msg);

DigitalIn button_pin(button);
DigitalOut led_pin(LED1);

bool last_reading;
long last_debounce_time=0;
long debounce_delay=50;
bool published = true;

Timer t;
int main() {
    t.start();
    nh.initNode();
    nh.advertise(pub_button);

    //Enable the pullup resistor on the button
    button_pin.mode(PullUp);

    //The button is a normally button
    last_reading = ! button_pin;

    while (1) {
        bool reading = ! button_pin;

        if (last_reading!= reading) {
            last_debounce_time = t.read_ms();
            published = false;
        }

        //if the button value has not changed for the debounce delay, we know its stable
        if ( !published && (t.read_ms() - last_debounce_time)  > debounce_delay) {
            led_pin = reading;
            pushed_msg.data = reading;
            pub_button.publish(&pushed_msg);
            published = true;
        }

        last_reading = reading;

        nh.spinOnce();
    }
}

stereo_msgs/DisparityImage.h

Committer:
Gary Servin
Date:
2019-11-08
Revision:
0:04ac6be8229a

File content as of revision 0:04ac6be8229a:

#ifndef _ROS_stereo_msgs_DisparityImage_h
#define _ROS_stereo_msgs_DisparityImage_h

#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "ros/msg.h"
#include "std_msgs/Header.h"
#include "sensor_msgs/Image.h"
#include "sensor_msgs/RegionOfInterest.h"

namespace stereo_msgs
{

  class DisparityImage : public ros::Msg
  {
    public:
      typedef std_msgs::Header _header_type;
      _header_type header;
      typedef sensor_msgs::Image _image_type;
      _image_type image;
      typedef float _f_type;
      _f_type f;
      typedef float _T_type;
      _T_type T;
      typedef sensor_msgs::RegionOfInterest _valid_window_type;
      _valid_window_type valid_window;
      typedef float _min_disparity_type;
      _min_disparity_type min_disparity;
      typedef float _max_disparity_type;
      _max_disparity_type max_disparity;
      typedef float _delta_d_type;
      _delta_d_type delta_d;

    DisparityImage():
      header(),
      image(),
      f(0),
      T(0),
      valid_window(),
      min_disparity(0),
      max_disparity(0),
      delta_d(0)
    {
    }

    virtual int serialize(unsigned char *outbuffer) const
    {
      int offset = 0;
      offset += this->header.serialize(outbuffer + offset);
      offset += this->image.serialize(outbuffer + offset);
      union {
        float real;
        uint32_t base;
      } u_f;
      u_f.real = this->f;
      *(outbuffer + offset + 0) = (u_f.base >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (u_f.base >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (u_f.base >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (u_f.base >> (8 * 3)) & 0xFF;
      offset += sizeof(this->f);
      union {
        float real;
        uint32_t base;
      } u_T;
      u_T.real = this->T;
      *(outbuffer + offset + 0) = (u_T.base >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (u_T.base >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (u_T.base >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (u_T.base >> (8 * 3)) & 0xFF;
      offset += sizeof(this->T);
      offset += this->valid_window.serialize(outbuffer + offset);
      union {
        float real;
        uint32_t base;
      } u_min_disparity;
      u_min_disparity.real = this->min_disparity;
      *(outbuffer + offset + 0) = (u_min_disparity.base >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (u_min_disparity.base >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (u_min_disparity.base >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (u_min_disparity.base >> (8 * 3)) & 0xFF;
      offset += sizeof(this->min_disparity);
      union {
        float real;
        uint32_t base;
      } u_max_disparity;
      u_max_disparity.real = this->max_disparity;
      *(outbuffer + offset + 0) = (u_max_disparity.base >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (u_max_disparity.base >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (u_max_disparity.base >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (u_max_disparity.base >> (8 * 3)) & 0xFF;
      offset += sizeof(this->max_disparity);
      union {
        float real;
        uint32_t base;
      } u_delta_d;
      u_delta_d.real = this->delta_d;
      *(outbuffer + offset + 0) = (u_delta_d.base >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (u_delta_d.base >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (u_delta_d.base >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (u_delta_d.base >> (8 * 3)) & 0xFF;
      offset += sizeof(this->delta_d);
      return offset;
    }

    virtual int deserialize(unsigned char *inbuffer)
    {
      int offset = 0;
      offset += this->header.deserialize(inbuffer + offset);
      offset += this->image.deserialize(inbuffer + offset);
      union {
        float real;
        uint32_t base;
      } u_f;
      u_f.base = 0;
      u_f.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0);
      u_f.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      u_f.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      u_f.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      this->f = u_f.real;
      offset += sizeof(this->f);
      union {
        float real;
        uint32_t base;
      } u_T;
      u_T.base = 0;
      u_T.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0);
      u_T.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      u_T.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      u_T.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      this->T = u_T.real;
      offset += sizeof(this->T);
      offset += this->valid_window.deserialize(inbuffer + offset);
      union {
        float real;
        uint32_t base;
      } u_min_disparity;
      u_min_disparity.base = 0;
      u_min_disparity.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0);
      u_min_disparity.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      u_min_disparity.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      u_min_disparity.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      this->min_disparity = u_min_disparity.real;
      offset += sizeof(this->min_disparity);
      union {
        float real;
        uint32_t base;
      } u_max_disparity;
      u_max_disparity.base = 0;
      u_max_disparity.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0);
      u_max_disparity.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      u_max_disparity.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      u_max_disparity.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      this->max_disparity = u_max_disparity.real;
      offset += sizeof(this->max_disparity);
      union {
        float real;
        uint32_t base;
      } u_delta_d;
      u_delta_d.base = 0;
      u_delta_d.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0);
      u_delta_d.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      u_delta_d.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      u_delta_d.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      this->delta_d = u_delta_d.real;
      offset += sizeof(this->delta_d);
     return offset;
    }

    const char * getType(){ return "stereo_msgs/DisparityImage"; };
    const char * getMD5(){ return "04a177815f75271039fa21f16acad8c9"; };

  };

}
#endif