ROS Serial library for Mbed platforms for ROS Kinetic Kame. Check http://wiki.ros.org/rosserial_mbed/ for more information.

Dependencies:   BufferedSerial

Dependents:   rosserial_mbed_hello_world_publisher_kinetic s-rov-firmware ROS_HCSR04 DISCO-F469NI_LCDTS_demo ... more

ROSSerial_mbed for Kinetic Distribution

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.

Hello World (example publisher)

Import programrosserial_mbed_hello_world_publisher_kinetic

rosserial_mbed Hello World example for Kinetic Kame distribution

Running the Code

Now, launch the roscore in a new terminal window:

Quote:

$ roscore

Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:

Quote:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :

Quote:

$ rostopic echo chatter

See Also

More examples

Blink

/*
 * rosserial Subscriber Example
 * Blinks an LED on callback
 */
#include "mbed.h"
#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;
DigitalOut myled(LED1);

void messageCb(const std_msgs::Empty& toggle_msg){
    myled = !myled;   // blink the led
}

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb);

int main() {
    nh.initNode();
    nh.subscribe(sub);

    while (1) {
        nh.spinOnce();
        wait_ms(1);
    }
}

Push

/*
 * Button Example for Rosserial
 */

#include "mbed.h"
#include <ros.h>
#include <std_msgs/Bool.h>

PinName button = p20;

ros::NodeHandle nh;

std_msgs::Bool pushed_msg;
ros::Publisher pub_button("pushed", &pushed_msg);

DigitalIn button_pin(button);
DigitalOut led_pin(LED1);

bool last_reading;
long last_debounce_time=0;
long debounce_delay=50;
bool published = true;

Timer t;
int main() {
    t.start();
    nh.initNode();
    nh.advertise(pub_button);

    //Enable the pullup resistor on the button
    button_pin.mode(PullUp);

    //The button is a normally button
    last_reading = ! button_pin;

    while (1) {
        bool reading = ! button_pin;

        if (last_reading!= reading) {
            last_debounce_time = t.read_ms();
            published = false;
        }

        //if the button value has not changed for the debounce delay, we know its stable
        if ( !published && (t.read_ms() - last_debounce_time)  > debounce_delay) {
            led_pin = reading;
            pushed_msg.data = reading;
            pub_button.publish(&pushed_msg);
            published = true;
        }

        last_reading = reading;

        nh.spinOnce();
    }
}

trajectory_msgs/MultiDOFJointTrajectoryPoint.h

Committer:
garyservin
Date:
2016-12-31
Revision:
1:a849bf78d77f
Parent:
0:9e9b7db60fd5

File content as of revision 1:a849bf78d77f:

#ifndef _ROS_trajectory_msgs_MultiDOFJointTrajectoryPoint_h
#define _ROS_trajectory_msgs_MultiDOFJointTrajectoryPoint_h

#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "ros/msg.h"
#include "geometry_msgs/Transform.h"
#include "geometry_msgs/Twist.h"
#include "ros/duration.h"

namespace trajectory_msgs
{

  class MultiDOFJointTrajectoryPoint : public ros::Msg
  {
    public:
      uint32_t transforms_length;
      typedef geometry_msgs::Transform _transforms_type;
      _transforms_type st_transforms;
      _transforms_type * transforms;
      uint32_t velocities_length;
      typedef geometry_msgs::Twist _velocities_type;
      _velocities_type st_velocities;
      _velocities_type * velocities;
      uint32_t accelerations_length;
      typedef geometry_msgs::Twist _accelerations_type;
      _accelerations_type st_accelerations;
      _accelerations_type * accelerations;
      typedef ros::Duration _time_from_start_type;
      _time_from_start_type time_from_start;

    MultiDOFJointTrajectoryPoint():
      transforms_length(0), transforms(NULL),
      velocities_length(0), velocities(NULL),
      accelerations_length(0), accelerations(NULL),
      time_from_start()
    {
    }

    virtual int serialize(unsigned char *outbuffer) const
    {
      int offset = 0;
      *(outbuffer + offset + 0) = (this->transforms_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->transforms_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->transforms_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->transforms_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->transforms_length);
      for( uint32_t i = 0; i < transforms_length; i++){
      offset += this->transforms[i].serialize(outbuffer + offset);
      }
      *(outbuffer + offset + 0) = (this->velocities_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->velocities_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->velocities_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->velocities_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->velocities_length);
      for( uint32_t i = 0; i < velocities_length; i++){
      offset += this->velocities[i].serialize(outbuffer + offset);
      }
      *(outbuffer + offset + 0) = (this->accelerations_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->accelerations_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->accelerations_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->accelerations_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->accelerations_length);
      for( uint32_t i = 0; i < accelerations_length; i++){
      offset += this->accelerations[i].serialize(outbuffer + offset);
      }
      *(outbuffer + offset + 0) = (this->time_from_start.sec >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->time_from_start.sec >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->time_from_start.sec >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->time_from_start.sec >> (8 * 3)) & 0xFF;
      offset += sizeof(this->time_from_start.sec);
      *(outbuffer + offset + 0) = (this->time_from_start.nsec >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->time_from_start.nsec >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->time_from_start.nsec >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->time_from_start.nsec >> (8 * 3)) & 0xFF;
      offset += sizeof(this->time_from_start.nsec);
      return offset;
    }

    virtual int deserialize(unsigned char *inbuffer)
    {
      int offset = 0;
      uint32_t transforms_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      transforms_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      transforms_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      transforms_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->transforms_length);
      if(transforms_lengthT > transforms_length)
        this->transforms = (geometry_msgs::Transform*)realloc(this->transforms, transforms_lengthT * sizeof(geometry_msgs::Transform));
      transforms_length = transforms_lengthT;
      for( uint32_t i = 0; i < transforms_length; i++){
      offset += this->st_transforms.deserialize(inbuffer + offset);
        memcpy( &(this->transforms[i]), &(this->st_transforms), sizeof(geometry_msgs::Transform));
      }
      uint32_t velocities_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      velocities_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      velocities_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      velocities_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->velocities_length);
      if(velocities_lengthT > velocities_length)
        this->velocities = (geometry_msgs::Twist*)realloc(this->velocities, velocities_lengthT * sizeof(geometry_msgs::Twist));
      velocities_length = velocities_lengthT;
      for( uint32_t i = 0; i < velocities_length; i++){
      offset += this->st_velocities.deserialize(inbuffer + offset);
        memcpy( &(this->velocities[i]), &(this->st_velocities), sizeof(geometry_msgs::Twist));
      }
      uint32_t accelerations_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      accelerations_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      accelerations_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      accelerations_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->accelerations_length);
      if(accelerations_lengthT > accelerations_length)
        this->accelerations = (geometry_msgs::Twist*)realloc(this->accelerations, accelerations_lengthT * sizeof(geometry_msgs::Twist));
      accelerations_length = accelerations_lengthT;
      for( uint32_t i = 0; i < accelerations_length; i++){
      offset += this->st_accelerations.deserialize(inbuffer + offset);
        memcpy( &(this->accelerations[i]), &(this->st_accelerations), sizeof(geometry_msgs::Twist));
      }
      this->time_from_start.sec =  ((uint32_t) (*(inbuffer + offset)));
      this->time_from_start.sec |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      this->time_from_start.sec |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      this->time_from_start.sec |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      offset += sizeof(this->time_from_start.sec);
      this->time_from_start.nsec =  ((uint32_t) (*(inbuffer + offset)));
      this->time_from_start.nsec |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      this->time_from_start.nsec |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      this->time_from_start.nsec |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      offset += sizeof(this->time_from_start.nsec);
     return offset;
    }

    const char * getType(){ return "trajectory_msgs/MultiDOFJointTrajectoryPoint"; };
    const char * getMD5(){ return "3ebe08d1abd5b65862d50e09430db776"; };

  };

}
#endif