ROS Serial library for Mbed platforms for ROS Indigo Igloo. Check http://wiki.ros.org/rosserial_mbed/ for more information

Dependencies:   BufferedSerial

Dependents:   rosserial_mbed_hello_world_publisher rtos_base_control rosserial_mbed_F64MA ROS-RTOS ... more

ROSSerial_mbed for Indigo Distribution

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.

Hello World (example publisher)

Import programrosserial_mbed_hello_world_publisher

rosserial_mbed Hello World

Running the Code

Now, launch the roscore in a new terminal window:

Quote:

$ roscore

Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:

Quote:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :

Quote:

$ rostopic echo chatter

See Also

More examples

Blink

/*
 * rosserial Subscriber Example
 * Blinks an LED on callback
 */
#include "mbed.h"
#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;
DigitalOut myled(LED1);

void messageCb(const std_msgs::Empty& toggle_msg){
    myled = !myled;   // blink the led
}

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb);

int main() {
    nh.initNode();
    nh.subscribe(sub);

    while (1) {
        nh.spinOnce();
        wait_ms(1);
    }
}

Push

/*
 * Button Example for Rosserial
 */

#include "mbed.h"
#include <ros.h>
#include <std_msgs/Bool.h>

PinName button = p20;

ros::NodeHandle nh;

std_msgs::Bool pushed_msg;
ros::Publisher pub_button("pushed", &pushed_msg);

DigitalIn button_pin(button);
DigitalOut led_pin(LED1);

bool last_reading;
long last_debounce_time=0;
long debounce_delay=50;
bool published = true;

Timer t;
int main() {
    t.start();
    nh.initNode();
    nh.advertise(pub_button);

    //Enable the pullup resistor on the button
    button_pin.mode(PullUp);

    //The button is a normally button
    last_reading = ! button_pin;

    while (1) {
        bool reading = ! button_pin;

        if (last_reading!= reading) {
            last_debounce_time = t.read_ms();
            published = false;
        }

        //if the button value has not changed for the debounce delay, we know its stable
        if ( !published && (t.read_ms() - last_debounce_time)  > debounce_delay) {
            led_pin = reading;
            pushed_msg.data = reading;
            pub_button.publish(&pushed_msg);
            published = true;
        }

        last_reading = reading;

        nh.spinOnce();
    }
}

shape_msgs/Mesh.h

Committer:
garyservin
Date:
2016-03-31
Revision:
0:fd24f7ca9688

File content as of revision 0:fd24f7ca9688:

#ifndef _ROS_shape_msgs_Mesh_h
#define _ROS_shape_msgs_Mesh_h

#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "ros/msg.h"
#include "shape_msgs/MeshTriangle.h"
#include "geometry_msgs/Point.h"

namespace shape_msgs
{

  class Mesh : public ros::Msg
  {
    public:
      uint8_t triangles_length;
      shape_msgs::MeshTriangle st_triangles;
      shape_msgs::MeshTriangle * triangles;
      uint8_t vertices_length;
      geometry_msgs::Point st_vertices;
      geometry_msgs::Point * vertices;

    Mesh():
      triangles_length(0), triangles(NULL),
      vertices_length(0), vertices(NULL)
    {
    }

    virtual int serialize(unsigned char *outbuffer) const
    {
      int offset = 0;
      *(outbuffer + offset++) = triangles_length;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      for( uint8_t i = 0; i < triangles_length; i++){
      offset += this->triangles[i].serialize(outbuffer + offset);
      }
      *(outbuffer + offset++) = vertices_length;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      for( uint8_t i = 0; i < vertices_length; i++){
      offset += this->vertices[i].serialize(outbuffer + offset);
      }
      return offset;
    }

    virtual int deserialize(unsigned char *inbuffer)
    {
      int offset = 0;
      uint8_t triangles_lengthT = *(inbuffer + offset++);
      if(triangles_lengthT > triangles_length)
        this->triangles = (shape_msgs::MeshTriangle*)realloc(this->triangles, triangles_lengthT * sizeof(shape_msgs::MeshTriangle));
      offset += 3;
      triangles_length = triangles_lengthT;
      for( uint8_t i = 0; i < triangles_length; i++){
      offset += this->st_triangles.deserialize(inbuffer + offset);
        memcpy( &(this->triangles[i]), &(this->st_triangles), sizeof(shape_msgs::MeshTriangle));
      }
      uint8_t vertices_lengthT = *(inbuffer + offset++);
      if(vertices_lengthT > vertices_length)
        this->vertices = (geometry_msgs::Point*)realloc(this->vertices, vertices_lengthT * sizeof(geometry_msgs::Point));
      offset += 3;
      vertices_length = vertices_lengthT;
      for( uint8_t i = 0; i < vertices_length; i++){
      offset += this->st_vertices.deserialize(inbuffer + offset);
        memcpy( &(this->vertices[i]), &(this->st_vertices), sizeof(geometry_msgs::Point));
      }
     return offset;
    }

    const char * getType(){ return "shape_msgs/Mesh"; };
    const char * getMD5(){ return "1ffdae9486cd3316a121c578b47a85cc"; };

  };

}
#endif