Wireless auto note device

Dependencies:   BLE_API invisdrum X_NUCLEO_IDB0XA1 kalman mbed

Files at this revision

API Documentation at this revision

Comitter:
fxanhkhoa
Date:
Tue Nov 22 02:57:33 2016 +0000
Commit message:
WAND PROJECT

Changed in this revision

BLE_API.lib Show annotated file Show diff for this revision Revisions of this file
HMC5883L/HMC5883L.cpp Show annotated file Show diff for this revision Revisions of this file
HMC5883L/HMC5883L.h Show annotated file Show diff for this revision Revisions of this file
MPU6050.lib Show annotated file Show diff for this revision Revisions of this file
MPU60501.h Show annotated file Show diff for this revision Revisions of this file
X_NUCLEO_IDB0XA1.lib Show annotated file Show diff for this revision Revisions of this file
kalman.lib Show annotated file Show diff for this revision Revisions of this file
main.cpp Show annotated file Show diff for this revision Revisions of this file
mbed.bld Show annotated file Show diff for this revision Revisions of this file
diff -r 000000000000 -r ffd0caf3db9f BLE_API.lib
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/BLE_API.lib	Tue Nov 22 02:57:33 2016 +0000
@@ -0,0 +1,1 @@
+http://mbed.org/teams/Bluetooth-Low-Energy/code/BLE_API/#65474dc93927
diff -r 000000000000 -r ffd0caf3db9f HMC5883L/HMC5883L.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/HMC5883L/HMC5883L.cpp	Tue Nov 22 02:57:33 2016 +0000
@@ -0,0 +1,174 @@
+/**
+ * @author Jose R. Padron
+ * @author Used HMC6352 library  developed by Aaron Berk as template
+ * @section LICENSE
+ *
+ * Copyright (c) 2010 ARM Limited
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ * @section DESCRIPTION
+ *
+ * Honeywell HMC5883Ldigital compass.
+ *
+ * Datasheet:
+ *
+ * http://www.ssec.honeywell.com/magnetic/datasheets/HMC5883L.pdf
+ */
+
+/**
+ * Includes
+ */
+#include "HMC5883L.h"
+
+HMC5883L::HMC5883L(PinName sda, PinName scl) {
+
+    i2c_ = new I2C(sda, scl);
+    //100KHz, as specified by the datasheet.
+    i2c_->frequency(100000);
+
+
+}
+
+
+void HMC5883L::write(int address, int data) {
+   
+    char tx[2];
+   
+    tx[0]=address;
+    tx[1]=data;
+
+    i2c_->write(HMC5883L_I2C_WRITE,tx,2);
+   
+    wait_ms(100);
+
+}
+
+
+void HMC5883L::setSleepMode() {
+    
+    write(HMC5883L_MODE, HMC5883L_SLEEP);
+}
+
+void HMC5883L::setDefault(void) {
+   
+   write(HMC5883L_CONFIG_A,HMC5883L_10HZ_NORMAL);
+   write(HMC5883L_CONFIG_B,HMC5883L_1_0GA);
+   write(HMC5883L_MODE,HMC5883L_CONTINUOUS);
+   wait_ms(100);
+}
+
+
+void HMC5883L::getAddress(char *buffer) {
+    
+   char rx[3];
+   char tx[1];
+   tx[0]=HMC5883L_IDENT_A;
+    
+       
+    i2c_->write(HMC5883L_I2C_WRITE, tx,1);
+   
+    wait_ms(1);
+    
+    i2c_->read(HMC5883L_I2C_READ,rx,3);
+    
+    buffer[0]=rx[0];
+    buffer[1]=rx[1];
+    buffer[2]=rx[2];
+}
+
+
+
+void HMC5883L::setOpMode(int mode, int ConfigA, int ConfigB) {
+    
+    
+    write(HMC5883L_CONFIG_A,ConfigA);
+    write(HMC5883L_CONFIG_B,ConfigB);
+    write(HMC5883L_MODE,mode);
+    
+
+}
+
+
+
+
+void HMC5883L::readData(int* getMag) {
+
+  
+    char tx[1];
+    char rx[2];
+    
+    
+    tx[0]=HMC5883L_X_MSB;
+    i2c_->write(HMC5883L_I2C_READ,tx,1);
+    i2c_->read(HMC5883L_I2C_READ,rx,2);
+    getMag[0]= (int)rx[0]<<8|(int)rx[1];
+
+     
+    tx[0]=HMC5883L_Y_MSB;
+    i2c_->write(HMC5883L_I2C_READ,tx,1);
+    i2c_->read(HMC5883L_I2C_READ,rx,2);
+    getMag[1]= (int)rx[0]<<8|(int)rx[1];
+     
+    tx[0]=HMC5883L_Z_MSB;
+    i2c_->write(HMC5883L_I2C_READ,tx,1);
+    i2c_->read(HMC5883L_I2C_READ,rx,2);
+    getMag[2]= (int)rx[0]<<8|(int)rx[1];
+    
+}
+
+int HMC5883L::getMx() {
+
+    char tx[1];
+    char rx[2];
+    
+    
+    tx[0]=HMC5883L_X_MSB;
+    i2c_->write(HMC5883L_I2C_READ,tx,1);
+    i2c_->read(HMC5883L_I2C_READ,rx,2);
+    return ((int)rx[0]<<8|(int)rx[1]);
+
+}
+
+int HMC5883L::getMy() {
+
+    char tx[1];
+    char rx[2];
+    
+    
+    tx[0]=HMC5883L_Y_MSB;
+    i2c_->write(HMC5883L_I2C_READ,tx,1);
+    i2c_->read(HMC5883L_I2C_READ,rx,2);
+    return ((int)rx[0]<<8|(int)rx[1]);
+ 
+}
+
+
+int HMC5883L::getMz(){
+
+    char tx[1];
+    char rx[2];
+    
+    
+    tx[0]=HMC5883L_Z_MSB;
+    i2c_->write(HMC5883L_I2C_READ,tx,1);
+    i2c_->read(HMC5883L_I2C_READ,rx,2);
+    return ((int)rx[0]<<8|(int)rx[1]);
+ 
+}
\ No newline at end of file
diff -r 000000000000 -r ffd0caf3db9f HMC5883L/HMC5883L.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/HMC5883L/HMC5883L.h	Tue Nov 22 02:57:33 2016 +0000
@@ -0,0 +1,219 @@
+/**
+ * @author Uwe Gartmann
+ * @author Used HMC5883L library developed by Jose R. Padron and Aaron Berk as template
+ *
+ * @section LICENSE
+ *
+ * Copyright (c) 2010 ARM Limited
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ * @section DESCRIPTION
+ *
+ * Honeywell HMC5883L digital compass.
+ *
+ * Datasheet:
+ *
+ * http://www.ssec.honeywell.com/magnetic/datasheets/HMC5883L.pdf
+ */
+
+#ifndef HMC5883L_H
+#define HMC5883L_H
+
+/**
+ * Includes
+ */
+#include "mbed.h"
+
+/**
+ * Defines
+ */
+#define HMC5883L_I2C_ADDRESS 0x1E //7-bit address. 0x3C write, 0x3D read.
+#define HMC5883L_I2C_WRITE   0x3C 
+#define HMC5883L_I2C_READ    0x3D 
+
+//Values Config A
+#define HMC5883L_0_5HZ_NORMAL         0x00
+#define HMC5883L_0_5HZ_POSITIVE       0x01
+#define HMC5883L_0_5HZ_NEGATIVE       0x02
+
+#define HMC5883L_1HZ_NORMAL           0x04
+#define HMC5883L_1HZ_POSITIVE         0x05
+#define HMC5883L_1HZ_NEGATIVE         0x06
+
+#define HMC5883L_2HZ_NORMAL           0x08
+#define HMC5883L_2HZ_POSITIVE         0x09
+#define HMC5883L_2HZ_NEGATIVE         0x0A
+
+#define HMC5883L_5HZ_NORMAL           0x0C
+#define HMC5883L_5HZ_POSITIVE         0x0D
+#define HMC5883L_5HZ_NEGATIVE         0x0E
+
+#define HMC5883L_10HZ_NORMAL           0x10
+#define HMC5883L_10HZ_POSITIVE         0x11
+#define HMC5883L_10HZ_NEGATIVE         0x12
+
+#define HMC5883L_20HZ_NORMAL           0x14
+#define HMC5883L_20HZ_POSITIVE         0x15
+#define HMC5883L_20HZ_NEGATIVE         0x16
+
+#define HMC5883L_50HZ_NORMAL           0x18
+#define HMC5883L_50HZ_POSITIVE         0x19
+#define HMC5883L_50HZ_NEGATIVE         0x1A
+
+//Values Config B
+#define HMC5883L_0_7GA         0x00
+#define HMC5883L_1_0GA         0x20
+#define HMC5883L_1_5GA         0x40
+#define HMC5883L_2_0GA         0x60
+#define HMC5883L_3_2GA         0x80
+#define HMC5883L_3_8GA         0xA0
+#define HMC5883L_4_5GA         0xC0
+#define HMC5883L_6_5GA         0xE0
+
+//Values MODE
+#define HMC5883L_CONTINUOUS   0x00
+#define HMC5883L_SINGLE         0x01
+#define HMC5883L_IDLE         0x02
+#define HMC5883L_SLEEP         0x03
+
+
+
+#define HMC5883L_CONFIG_A     0x00
+#define HMC5883L_CONFIG_B     0x01
+#define HMC5883L_MODE         0x02
+#define HMC5883L_X_MSB        0x03
+#define HMC5883L_X_LSB        0x04
+#define HMC5883L_Z_MSB        0x05
+#define HMC5883L_Z_LSB        0x06
+#define HMC5883L_Y_MSB        0x07
+#define HMC5883L_Y_LSB        0x08
+#define HMC5883L_STATUS       0x09
+#define HMC5883L_IDENT_A      0x0A
+#define HMC5883L_IDENT_B      0x0B
+#define HMC5883L_IDENT_C      0x0C
+
+
+
+/**
+ * Honeywell HMC5883L digital compass.
+ */
+class HMC5883L {
+
+public:
+
+    /**
+     * Constructor.
+     *
+     * @param sda mbed pin to use for SDA line of I2C interface.
+     * @param scl mbed pin to use for SCL line of I2C interface.
+     */
+    HMC5883L(PinName sda, PinName scl);
+
+        
+     /**
+     * Enter into sleep mode.
+     *
+     */
+    void setSleepMode();
+    
+       
+     /**
+     * Set Device in Default Mode.
+     * HMC5883L_CONTINUOUS, HMC5883L_10HZ_NORMAL HMC5883L_1_0GA
+     */
+    void setDefault();
+    
+       
+    /**
+     * Read the memory location on the device which contains the address.
+     *
+     * @param Pointer to a buffer to hold the address value
+     * Expected     H, 4 and 3.
+     */
+    void getAddress(char * address);
+
+
+    
+    /**
+     * Set the operation mode.
+     *
+     * @param mode 0x00 -> Continuous
+     *             0x01 -> Single
+     *             0x02 -> Idle
+     * @param ConfigA values
+    * @param ConfigB values
+     */
+    void setOpMode(int mode, int ConfigA, int ConfigB);
+    
+     /**
+     * Write to  on the device.
+     *
+     * @param address Address to write to.
+     * @param data Data to write.
+     */
+    
+    void write(int address, int data);
+
+     /**
+     * Get the output of all three axes.
+     *
+     * @param Pointer to a buffer to hold the magnetics value for the
+     *        x-axis, y-axis and z-axis [in that order].
+     */
+    void readData(int* getMag);
+    
+    /**
+     * Get the output of X axis.
+     *
+     * @return x-axis magnetic value
+     */
+    int getMx();
+    
+    /**
+     * Get the output of Y axis.
+     *
+     * @return y-axis magnetic value
+     */
+    int getMy();
+    
+    /**
+     * Get the output of Z axis.
+     *
+     * @return z-axis magnetic value
+     */
+    int getMz();
+   
+    
+    /**
+     * Get the current operation mode.
+     *
+     * @return Status register values
+     */
+    int getStatus(void);
+
+  
+
+    I2C* i2c_;
+
+   
+
+};
+
+#endif /* HMC5883L_H */
\ No newline at end of file
diff -r 000000000000 -r ffd0caf3db9f MPU6050.lib
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU6050.lib	Tue Nov 22 02:57:33 2016 +0000
@@ -0,0 +1,1 @@
+https://developer.mbed.org/users/fxanhkhoa/code/invisdrum/#63154afe4f7a
diff -r 000000000000 -r ffd0caf3db9f MPU60501.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU60501.h	Tue Nov 22 02:57:33 2016 +0000
@@ -0,0 +1,1027 @@
+#ifndef MPU60501_H
+#define MPU60501_H
+ 
+#include "mbed.h"
+#include "math.h"
+ 
+ // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
+// Invensense Inc., www.invensense.com
+// See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in 
+// above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
+//
+#define XGOFFS_TC        0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD                 
+#define YGOFFS_TC        0x01                                                                          
+#define ZGOFFS_TC        0x02
+#define X_FINE_GAIN      0x03 // [7:0] fine gain
+#define Y_FINE_GAIN      0x04
+#define Z_FINE_GAIN      0x05
+#define XA_OFFSET_H      0x06 // User-defined trim values for accelerometer
+#define XA_OFFSET_L_TC   0x07
+#define YA_OFFSET_H      0x08
+#define YA_OFFSET_L_TC   0x09
+#define ZA_OFFSET_H      0x0A
+#define ZA_OFFSET_L_TC   0x0B
+#define SELF_TEST_X      0x0D
+#define SELF_TEST_Y      0x0E    
+#define SELF_TEST_Z      0x0F
+#define SELF_TEST_A      0x10
+#define XG_OFFS_USRH     0x13  // User-defined trim values for gyroscope; supported in MPU-6050?
+#define XG_OFFS_USRL     0x14
+#define YG_OFFS_USRH     0x15
+#define YG_OFFS_USRL     0x16
+#define ZG_OFFS_USRH     0x17
+#define ZG_OFFS_USRL     0x18
+#define SMPLRT_DIV       0x19
+#define CONFIG           0x1A
+#define GYRO_CONFIG      0x1B
+#define ACCEL_CONFIG     0x1C
+#define FF_THR           0x1D  // Free-fall
+#define FF_DUR           0x1E  // Free-fall
+#define MOT_THR          0x1F  // Motion detection threshold bits [7:0]
+#define MOT_DUR          0x20  // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
+#define ZMOT_THR         0x21  // Zero-motion detection threshold bits [7:0]
+#define ZRMOT_DUR        0x22  // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
+#define FIFO_EN          0x23
+#define I2C_MST_CTRL     0x24   
+#define I2C_SLV0_ADDR    0x25
+#define I2C_SLV0_REG     0x26
+#define I2C_SLV0_CTRL    0x27
+#define I2C_SLV1_ADDR    0x28
+#define I2C_SLV1_REG     0x29
+#define I2C_SLV1_CTRL    0x2A
+#define I2C_SLV2_ADDR    0x2B
+#define I2C_SLV2_REG     0x2C
+#define I2C_SLV2_CTRL    0x2D
+#define I2C_SLV3_ADDR    0x2E
+#define I2C_SLV3_REG     0x2F
+#define I2C_SLV3_CTRL    0x30
+#define I2C_SLV4_ADDR    0x31
+#define I2C_SLV4_REG     0x32
+#define I2C_SLV4_DO      0x33
+#define I2C_SLV4_CTRL    0x34
+#define I2C_SLV4_DI      0x35
+#define I2C_MST_STATUS   0x36
+#define INT_PIN_CFG      0x37
+#define INT_ENABLE       0x38
+#define DMP_INT_STATUS   0x39  // Check DMP interrupt
+#define INT_STATUS       0x3A
+#define ACCEL_XOUT_H     0x3B
+#define ACCEL_XOUT_L     0x3C
+#define ACCEL_YOUT_H     0x3D
+#define ACCEL_YOUT_L     0x3E
+#define ACCEL_ZOUT_H     0x3F
+#define ACCEL_ZOUT_L     0x40
+#define TEMP_OUT_H       0x41
+#define TEMP_OUT_L       0x42
+#define GYRO_XOUT_H      0x43
+#define GYRO_XOUT_L      0x44
+#define GYRO_YOUT_H      0x45
+#define GYRO_YOUT_L      0x46
+#define GYRO_ZOUT_H      0x47
+#define GYRO_ZOUT_L      0x48
+#define EXT_SENS_DATA_00 0x49
+#define EXT_SENS_DATA_01 0x4A
+#define EXT_SENS_DATA_02 0x4B
+#define EXT_SENS_DATA_03 0x4C
+#define EXT_SENS_DATA_04 0x4D
+#define EXT_SENS_DATA_05 0x4E
+#define EXT_SENS_DATA_06 0x4F
+#define EXT_SENS_DATA_07 0x50
+#define EXT_SENS_DATA_08 0x51
+#define EXT_SENS_DATA_09 0x52
+#define EXT_SENS_DATA_10 0x53
+#define EXT_SENS_DATA_11 0x54
+#define EXT_SENS_DATA_12 0x55
+#define EXT_SENS_DATA_13 0x56
+#define EXT_SENS_DATA_14 0x57
+#define EXT_SENS_DATA_15 0x58
+#define EXT_SENS_DATA_16 0x59
+#define EXT_SENS_DATA_17 0x5A
+#define EXT_SENS_DATA_18 0x5B
+#define EXT_SENS_DATA_19 0x5C
+#define EXT_SENS_DATA_20 0x5D
+#define EXT_SENS_DATA_21 0x5E
+#define EXT_SENS_DATA_22 0x5F
+#define EXT_SENS_DATA_23 0x60
+#define MOT_DETECT_STATUS 0x61
+#define I2C_SLV0_DO      0x63
+#define I2C_SLV1_DO      0x64
+#define I2C_SLV2_DO      0x65
+#define I2C_SLV3_DO      0x66
+#define I2C_MST_DELAY_CTRL 0x67
+#define SIGNAL_PATH_RESET  0x68
+#define MOT_DETECT_CTRL   0x69
+#define USER_CTRL        0x6A  // Bit 7 enable DMP, bit 3 reset DMP
+#define PWR_MGMT_1       0x6B // Device defaults to the SLEEP mode
+#define PWR_MGMT_2       0x6C
+#define DMP_BANK         0x6D  // Activates a specific bank in the DMP
+#define DMP_RW_PNT       0x6E  // Set read/write pointer to a specific start address in specified DMP bank
+#define DMP_REG          0x6F  // Register in DMP from which to read or to which to write
+#define DMP_REG_1        0x70
+#define DMP_REG_2        0x71
+#define FIFO_COUNTH      0x72
+#define FIFO_COUNTL      0x73
+#define FIFO_R_W         0x74
+#define WHO_AM_I_MPU6050 0x75 // Should return 0x68
+
+// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
+// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
+#define ADO 0
+#if ADO
+#define MPU6050_ADDRESS 0x69<<1  // Device address when ADO = 1
+#else
+#define MPU6050_ADDRESS 0x68<<1  // Device address when ADO = 0
+#endif
+
+// Set initial input parameters
+enum Ascale {
+  AFS_2G = 0,
+  AFS_4G,
+  AFS_8G,
+  AFS_16G
+};
+
+enum Gscale {
+  GFS_250DPS = 0,
+  GFS_500DPS,
+  GFS_1000DPS,
+  GFS_2000DPS
+};
+
+// Specify sensor full scale
+int Gscale = GFS_250DPS;
+int Ascale = AFS_2G;
+
+//Set up I2C, (SDA,SCL)
+I2C i2c(I2C_SDA, I2C_SCL);
+I2C i2c2(PB_14,PB_13);
+
+//DigitalOut myled(LED1);
+   
+float aRes, gRes, aRes2, gRes2; // scale resolutions per LSB for the sensors
+  
+// Pin definitions
+int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
+
+int16_t accelCount[3],accelCount2[3];  // Stores the 16-bit signed accelerometer sensor output
+float ax, ay, az, ax2, ay2, az2;       // Stores the real accel value in g's
+int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
+float gx, gy, gz, gx2, gy2, gz2;       // Stores the real gyro value in degrees per seconds
+float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
+int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
+float temperature;
+float SelfTest[6],SelfTest2[6];
+
+int delt_t = 0; // used to control display output rate
+int count_mpu = 0;  // used to control display output rate
+
+// parameters for 6 DoF sensor fusion calculations
+float PI = 3.14159265358979323846f;
+float GyroMeasError = PI * (60.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
+float beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
+float GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
+float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
+float pitch, yaw, roll,pitch2,yaw2,roll2;
+float deltat = 0.0f;                              // integration interval for both filter schemes
+int lastUpdate = 0, firstUpdate = 0, Now = 0;     // used to calculate integration interval                               // used to calculate integration interval
+float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};            // vector to hold quaternion
+
+class MPU60501 {
+ 
+    protected:
+ 
+    public:
+  //===================================================================================================================
+//====== Set of useful function to access acceleratio, gyroscope, and temperature data
+//===================================================================================================================
+
+    void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
+{
+   char data_write[2];
+   data_write[0] = subAddress;
+   data_write[1] = data;
+   i2c.write(address, data_write, 2, 0);
+}
+
+    void writeByte2(uint8_t address, uint8_t subAddress, uint8_t data)
+{
+   char data_write[2];
+   data_write[0] = subAddress;
+   data_write[1] = data;
+   i2c2.write(address, data_write, 2, 0);
+}
+
+    char readByte(uint8_t address, uint8_t subAddress)
+{
+    char data[1]; // `data` will store the register data     
+    char data_write[1];
+    data_write[0] = subAddress;
+    i2c.write(address, data_write, 1, 1); // no stop
+    i2c.read(address, data, 1, 0); 
+    return data[0]; 
+}
+
+char readByte2(uint8_t address, uint8_t subAddress)
+{
+    char data[1]; // `data` will store the register data     
+    char data_write[1];
+    data_write[0] = subAddress;
+    i2c2.write(address, data_write, 1, 1); // no stop
+    i2c2.read(address, data, 1, 0); 
+    return data[0]; 
+}
+
+    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
+{     
+    char data[14];
+    char data_write[1];
+    data_write[0] = subAddress;
+    i2c.write(address, data_write, 1, 1); // no stop
+    i2c.read(address, data, count, 0); 
+    for(int ii = 0; ii < count; ii++) {
+     dest[ii] = data[ii];
+    }
+} 
+
+    void readBytes2(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
+{     
+    char data[14];
+    char data_write[1];
+    data_write[0] = subAddress;
+    i2c2.write(address, data_write, 1, 1); // no stop
+    i2c2.read(address, data, count, 0); 
+    for(int ii = 0; ii < count; ii++) {
+     dest[ii] = data[ii];
+    }
+} 
+ 
+
+void getGres() {
+  switch (Gscale)
+  {
+    // Possible gyro scales (and their register bit settings) are:
+    // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
+        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+    case GFS_250DPS:
+          gRes = 250.0/32768.0;
+          break;
+    case GFS_500DPS:
+          gRes = 500.0/32768.0;
+          break;
+    case GFS_1000DPS:
+          gRes = 1000.0/32768.0;
+          break;
+    case GFS_2000DPS:
+          gRes = 2000.0/32768.0;
+          break;
+  }
+}
+
+void getAres() {
+  switch (Ascale)
+  {
+    // Possible accelerometer scales (and their register bit settings) are:
+    // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
+        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+    case AFS_2G:
+          aRes = 2.0/32768.0;
+          break;
+    case AFS_4G:
+          aRes = 4.0/32768.0;
+          break;
+    case AFS_8G:
+          aRes = 8.0/32768.0;
+          break;
+    case AFS_16G:
+          aRes = 16.0/32768.0;
+          break;
+  }
+}
+
+
+void readAccelData(int16_t * destination)
+{
+  uint8_t rawData[6];  // x/y/z accel register data stored here
+  readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
+  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
+  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
+}
+
+void readAccelData2(int16_t * destination)
+{
+  uint8_t rawData[6];  // x/y/z accel register data stored here
+  readBytes2(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
+  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
+  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
+}
+
+void readGyroData(int16_t * destination)
+{
+  uint8_t rawData[6];  // x/y/z gyro register data stored here
+  readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
+  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
+  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
+}
+
+void readGyroData2(int16_t * destination)
+{
+  uint8_t rawData[6];  // x/y/z gyro register data stored here
+  readBytes2(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
+  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
+  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
+}
+
+int16_t readTempData()
+{
+  uint8_t rawData[2];  // x/y/z gyro register data stored here
+  readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
+  return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
+}
+
+int16_t readTempData2()
+{
+  uint8_t rawData[2];  // x/y/z gyro register data stored here
+  readBytes2(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
+  return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
+}
+
+
+
+// Configure the motion detection control for low power accelerometer mode
+void LowPowerAccelOnly()
+{
+
+// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
+// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
+// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a 
+// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
+// consideration for these threshold evaluations; otherwise, the flags would be set all the time!
+  
+  uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
+
+  c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
+    
+  c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
+// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG,  c | 0x00);  // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
+
+  c = readByte(MPU6050_ADDRESS, CONFIG);
+  writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
+  writeByte(MPU6050_ADDRESS, CONFIG, c |  0x00);  // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
+    
+  c = readByte(MPU6050_ADDRESS, INT_ENABLE);
+  writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF);  // Clear all interrupts
+  writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40);  // Enable motion threshold (bits 5) interrupt only
+  
+// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
+// for at least the counter duration
+  writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
+  writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate
+  
+  wait(0.1);  // Add delay for accumulation of samples
+  
+  c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c |  0x07);  // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
+   
+  c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])  
+
+  c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
+
+}
+
+void LowPowerAccelOnly2()
+{
+
+// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
+// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
+// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a 
+// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
+// consideration for these threshold evaluations; otherwise, the flags would be set all the time!
+  
+  uint8_t c = readByte2(MPU6050_ADDRESS, PWR_MGMT_1);
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
+
+  c = readByte2(MPU6050_ADDRESS, PWR_MGMT_2);
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
+    
+  c = readByte2(MPU6050_ADDRESS, ACCEL_CONFIG);
+  writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
+// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
+  writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG,  c | 0x00);  // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
+
+  c = readByte2(MPU6050_ADDRESS, CONFIG);
+  writeByte2(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
+  writeByte2(MPU6050_ADDRESS, CONFIG, c |  0x00);  // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
+    
+  c = readByte2(MPU6050_ADDRESS, INT_ENABLE);
+  writeByte2(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF);  // Clear all interrupts
+  writeByte2(MPU6050_ADDRESS, INT_ENABLE, 0x40);  // Enable motion threshold (bits 5) interrupt only
+  
+// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
+// for at least the counter duration
+  writeByte2(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
+  writeByte2(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate
+  
+  wait(0.1);  // Add delay for accumulation of samples
+  
+  c = readByte2(MPU6050_ADDRESS, ACCEL_CONFIG);
+  writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
+  writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c |  0x07);  // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
+   
+  c = readByte2(MPU6050_ADDRESS, PWR_MGMT_2);
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])  
+
+  c = readByte2(MPU6050_ADDRESS, PWR_MGMT_1);
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
+
+}
+
+
+void resetMPU6050() {
+  // reset device
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+  wait(0.1);
+  }
+  
+void resetMPU60502() {
+  // reset device
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+  wait(0.1);
+  }
+  
+  
+void initMPU6050()
+{  
+ // Initialize MPU6050 device
+ // wake up device
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
+  wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
+
+ // get stable time source
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+
+ // Configure Gyro and Accelerometer
+ // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
+ // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
+ // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
+  writeByte(MPU6050_ADDRESS, CONFIG, 0x03);  
+ 
+ // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+  writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
+ 
+ // Set gyroscope full scale range
+ // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
+  uint8_t c =  readByte(MPU6050_ADDRESS, GYRO_CONFIG);
+  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
+  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
+   
+ // Set accelerometer configuration
+  c =  readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 
+
+  // Configure Interrupts and Bypass Enable
+  // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
+  // can join the I2C bus and all can be controlled by the Arduino as master
+   writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);    
+   writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
+}
+
+// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
+// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
+void calibrateMPU6050(float * dest1, float * dest2)
+{  
+  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
+  uint16_t ii, packet_count, fifo_count;
+  int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+  
+// reset device, reset all registers, clear gyro and accelerometer bias registers
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+  wait(0.1);  
+   
+// get stable time source
+// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); 
+  wait(0.2);
+  
+// Configure device for bias calculation
+  writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
+  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
+  writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
+  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
+  wait(0.015);
+  
+// Configure MPU6050 gyro and accelerometer for bias calculation
+  writeByte(MPU6050_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
+  writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
+  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+ 
+  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
+  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
+
+// Configure FIFO to capture accelerometer and gyro data for bias calculation
+  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
+  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO  (max size 1024 bytes in MPU-6050)
+  wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
+
+// At end of sample accumulation, turn off FIFO sensor read
+  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
+  readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
+  fifo_count = ((uint16_t)data[0] << 8) | data[1];
+  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+
+  for (ii = 0; ii < packet_count; ii++) {
+    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
+    readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
+    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
+    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
+    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
+    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
+    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
+    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
+    
+    accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
+    accel_bias[1] += (int32_t) accel_temp[1];
+    accel_bias[2] += (int32_t) accel_temp[2];
+    gyro_bias[0]  += (int32_t) gyro_temp[0];
+    gyro_bias[1]  += (int32_t) gyro_temp[1];
+    gyro_bias[2]  += (int32_t) gyro_temp[2];
+            
+}
+    accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
+    accel_bias[1] /= (int32_t) packet_count;
+    accel_bias[2] /= (int32_t) packet_count;
+    gyro_bias[0]  /= (int32_t) packet_count;
+    gyro_bias[1]  /= (int32_t) packet_count;
+    gyro_bias[2]  /= (int32_t) packet_count;
+    
+  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
+  else {accel_bias[2] += (int32_t) accelsensitivity;}
+ 
+// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
+  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
+  data[3] = (-gyro_bias[1]/4)       & 0xFF;
+  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
+  data[5] = (-gyro_bias[2]/4)       & 0xFF;
+
+// Push gyro biases to hardware registers
+  writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); 
+  writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
+  writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
+  writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
+  writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
+  writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
+
+  dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
+  dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
+  dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+
+// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
+// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
+// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
+// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
+// the accelerometer biases calculated above must be divided by 8.
+
+  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
+  readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
+  accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+  readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+  accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+  readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+  accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+  
+  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
+  
+  for(ii = 0; ii < 3; ii++) {
+    if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+  }
+
+  // Construct total accelerometer bias, including calculated average accelerometer bias from above
+  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+  accel_bias_reg[1] -= (accel_bias[1]/8);
+  accel_bias_reg[2] -= (accel_bias[2]/8);
+ 
+  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+  data[1] = (accel_bias_reg[0])      & 0xFF;
+  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+  data[3] = (accel_bias_reg[1])      & 0xFF;
+  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+  data[5] = (accel_bias_reg[2])      & 0xFF;
+  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+
+  // Push accelerometer biases to hardware registers
+//  writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);  
+//  writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
+//  writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
+//  writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);  
+//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
+//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
+
+// Output scaled accelerometer biases for manual subtraction in the main program
+   dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
+   dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
+   dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
+}
+
+void initMPU60502()
+{  
+ // Initialize MPU6050 device
+ // wake up device
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
+  wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
+
+ // get stable time source
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+
+ // Configure Gyro and Accelerometer
+ // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
+ // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
+ // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
+  writeByte2(MPU6050_ADDRESS, CONFIG, 0x03);  
+ 
+ // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+  writeByte2(MPU6050_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
+ 
+ // Set gyroscope full scale range
+ // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
+  uint8_t c =  readByte2(MPU6050_ADDRESS, GYRO_CONFIG);
+  writeByte2(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
+  writeByte2(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+  writeByte2(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
+   
+ // Set accelerometer configuration
+  c =  readByte2(MPU6050_ADDRESS, ACCEL_CONFIG);
+  writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
+  writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+  writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 
+
+  // Configure Interrupts and Bypass Enable
+  // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
+  // can join the I2C bus and all can be controlled by the Arduino as master
+   writeByte2(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);    
+   writeByte2(MPU6050_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
+}
+
+// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
+// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
+void calibrateMPU60502(float * dest1, float * dest2)
+{  
+  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
+  uint16_t ii, packet_count, fifo_count;
+  int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+  
+// reset device, reset all registers, clear gyro and accelerometer bias registers
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+  wait(0.1);  
+   
+// get stable time source
+// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); 
+  wait(0.2);
+  
+// Configure device for bias calculation
+  writeByte2(MPU6050_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
+  writeByte2(MPU6050_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
+  writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
+  writeByte2(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+  writeByte2(MPU6050_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
+  writeByte2(MPU6050_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
+  wait(0.015);
+  
+// Configure MPU6050 gyro and accelerometer for bias calculation
+  writeByte2(MPU6050_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
+  writeByte2(MPU6050_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
+  writeByte2(MPU6050_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+  writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+ 
+  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
+  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
+
+// Configure FIFO to capture accelerometer and gyro data for bias calculation
+  writeByte2(MPU6050_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
+  writeByte2(MPU6050_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO  (max size 1024 bytes in MPU-6050)
+  wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
+
+// At end of sample accumulation, turn off FIFO sensor read
+  writeByte2(MPU6050_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
+  readBytes2(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
+  fifo_count = ((uint16_t)data[0] << 8) | data[1];
+  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+
+  for (ii = 0; ii < packet_count; ii++) {
+    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
+    readBytes2(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
+    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
+    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
+    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
+    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
+    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
+    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
+    
+    accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
+    accel_bias[1] += (int32_t) accel_temp[1];
+    accel_bias[2] += (int32_t) accel_temp[2];
+    gyro_bias[0]  += (int32_t) gyro_temp[0];
+    gyro_bias[1]  += (int32_t) gyro_temp[1];
+    gyro_bias[2]  += (int32_t) gyro_temp[2];
+            
+}
+    accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
+    accel_bias[1] /= (int32_t) packet_count;
+    accel_bias[2] /= (int32_t) packet_count;
+    gyro_bias[0]  /= (int32_t) packet_count;
+    gyro_bias[1]  /= (int32_t) packet_count;
+    gyro_bias[2]  /= (int32_t) packet_count;
+    
+  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
+  else {accel_bias[2] += (int32_t) accelsensitivity;}
+ 
+// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
+  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
+  data[3] = (-gyro_bias[1]/4)       & 0xFF;
+  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
+  data[5] = (-gyro_bias[2]/4)       & 0xFF;
+
+// Push gyro biases to hardware registers
+  writeByte2(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); 
+  writeByte2(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
+  writeByte2(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
+  writeByte2(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
+  writeByte2(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
+  writeByte2(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
+
+  dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
+  dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
+  dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+
+// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
+// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
+// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
+// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
+// the accelerometer biases calculated above must be divided by 8.
+
+  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
+  readBytes2(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
+  accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+  readBytes2(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+  accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+  readBytes2(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+  accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+  
+  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
+  
+  for(ii = 0; ii < 3; ii++) {
+    if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+  }
+
+  // Construct total accelerometer bias, including calculated average accelerometer bias from above
+  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+  accel_bias_reg[1] -= (accel_bias[1]/8);
+  accel_bias_reg[2] -= (accel_bias[2]/8);
+ 
+  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+  data[1] = (accel_bias_reg[0])      & 0xFF;
+  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+  data[3] = (accel_bias_reg[1])      & 0xFF;
+  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+  data[5] = (accel_bias_reg[2])      & 0xFF;
+  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+
+  // Push accelerometer biases to hardware registers
+//  writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);  
+//  writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
+//  writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
+//  writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);  
+//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
+//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
+
+// Output scaled accelerometer biases for manual subtraction in the main program
+   dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
+   dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
+   dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
+}
+
+
+// Accelerometer and gyroscope self test; check calibration wrt factory settings
+void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
+{
+   uint8_t rawData[4] = {0, 0, 0, 0};
+   uint8_t selfTest[6];
+   float factoryTrim[6];
+   
+   // Configure the accelerometer for self-test
+   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
+   writeByte(MPU6050_ADDRESS, GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
+   wait(0.25);  // Delay a while to let the device execute the self-test
+   rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
+   rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
+   rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
+   rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
+   // Extract the acceleration test results first
+   selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
+   selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
+   selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
+   // Extract the gyration test results first
+   selfTest[3] = rawData[0]  & 0x1F ; // XG_TEST result is a five-bit unsigned integer
+   selfTest[4] = rawData[1]  & 0x1F ; // YG_TEST result is a five-bit unsigned integer
+   selfTest[5] = rawData[2]  & 0x1F ; // ZG_TEST result is a five-bit unsigned integer   
+   // Process results to allow final comparison with factory set values
+   factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
+   factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
+   factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
+   factoryTrim[3] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) ));             // FT[Xg] factory trim calculation
+   factoryTrim[4] =  (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) ));             // FT[Yg] factory trim calculation
+   factoryTrim[5] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) ));             // FT[Zg] factory trim calculation
+   
+ //  Output self-test results and factory trim calculation if desired
+ //  Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
+ //  Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
+ //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
+ //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
+
+ // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
+ // To get to percent, must multiply by 100 and subtract result from 100
+   for (int i = 0; i < 6; i++) {
+     destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
+   }
+   
+}
+
+void MPU6050SelfTest2(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
+{
+   uint8_t rawData[4] = {0, 0, 0, 0};
+   uint8_t selfTest[6];
+   float factoryTrim[6];
+   
+   // Configure the accelerometer for self-test
+   writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
+   writeByte2(MPU6050_ADDRESS, GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
+   wait(0.25);  // Delay a while to let the device execute the self-test
+   rawData[0] = readByte2(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
+   rawData[1] = readByte2(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
+   rawData[2] = readByte2(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
+   rawData[3] = readByte2(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
+   // Extract the acceleration test results first
+   selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
+   selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
+   selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
+   // Extract the gyration test results first
+   selfTest[3] = rawData[0]  & 0x1F ; // XG_TEST result is a five-bit unsigned integer
+   selfTest[4] = rawData[1]  & 0x1F ; // YG_TEST result is a five-bit unsigned integer
+   selfTest[5] = rawData[2]  & 0x1F ; // ZG_TEST result is a five-bit unsigned integer   
+   // Process results to allow final comparison with factory set values
+   factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
+   factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
+   factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
+   factoryTrim[3] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) ));             // FT[Xg] factory trim calculation
+   factoryTrim[4] =  (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) ));             // FT[Yg] factory trim calculation
+   factoryTrim[5] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) ));             // FT[Zg] factory trim calculation
+   
+ //  Output self-test results and factory trim calculation if desired
+ //  Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
+ //  Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
+ //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
+ //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
+
+ // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
+ // To get to percent, must multiply by 100 and subtract result from 100
+   for (int i = 0; i < 6; i++) {
+     destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
+   }
+   
+}
+
+
+// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
+// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
+// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
+// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
+// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
+// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
+        void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
+        {
+            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];         // short name local variable for readability
+            float norm;                                               // vector norm
+            float f1, f2, f3;                                         // objective funcyion elements
+            float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
+            float qDot1, qDot2, qDot3, qDot4;
+            float hatDot1, hatDot2, hatDot3, hatDot4;
+            float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz;  // gyro bias error
+
+            // Auxiliary variables to avoid repeated arithmetic
+            float _halfq1 = 0.5f * q1;
+            float _halfq2 = 0.5f * q2;
+            float _halfq3 = 0.5f * q3;
+            float _halfq4 = 0.5f * q4;
+            float _2q1 = 2.0f * q1;
+            float _2q2 = 2.0f * q2;
+            float _2q3 = 2.0f * q3;
+            float _2q4 = 2.0f * q4;
+//            float _2q1q3 = 2.0f * q1 * q3;
+//            float _2q3q4 = 2.0f * q3 * q4;
+
+            // Normalise accelerometer measurement
+            norm = sqrt(ax * ax + ay * ay + az * az);
+            if (norm == 0.0f) return; // handle NaN
+            norm = 1.0f/norm;
+            ax *= norm;
+            ay *= norm;
+            az *= norm;
+            
+            // Compute the objective function and Jacobian
+            f1 = _2q2 * q4 - _2q1 * q3 - ax;
+            f2 = _2q1 * q2 + _2q3 * q4 - ay;
+            f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
+            J_11or24 = _2q3;
+            J_12or23 = _2q4;
+            J_13or22 = _2q1;
+            J_14or21 = _2q2;
+            J_32 = 2.0f * J_14or21;
+            J_33 = 2.0f * J_11or24;
+          
+            // Compute the gradient (matrix multiplication)
+            hatDot1 = J_14or21 * f2 - J_11or24 * f1;
+            hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
+            hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
+            hatDot4 = J_14or21 * f1 + J_11or24 * f2;
+            
+            // Normalize the gradient
+            norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
+            hatDot1 /= norm;
+            hatDot2 /= norm;
+            hatDot3 /= norm;
+            hatDot4 /= norm;
+            
+            // Compute estimated gyroscope biases
+            gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
+            gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
+            gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
+            
+            // Compute and remove gyroscope biases
+            gbiasx += gerrx * deltat * zeta;
+            gbiasy += gerry * deltat * zeta;
+            gbiasz += gerrz * deltat * zeta;
+ //           gx -= gbiasx;
+ //           gy -= gbiasy;
+ //           gz -= gbiasz;
+            
+            // Compute the quaternion derivative
+            qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
+            qDot2 =  _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
+            qDot3 =  _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
+            qDot4 =  _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
+
+            // Compute then integrate estimated quaternion derivative
+            q1 += (qDot1 -(beta * hatDot1)) * deltat;
+            q2 += (qDot2 -(beta * hatDot2)) * deltat;
+            q3 += (qDot3 -(beta * hatDot3)) * deltat;
+            q4 += (qDot4 -(beta * hatDot4)) * deltat;
+
+            // Normalize the quaternion
+            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
+            norm = 1.0f/norm;
+            q[0] = q1 * norm;
+            q[1] = q2 * norm;
+            q[2] = q3 * norm;
+            q[3] = q4 * norm;
+            
+        }
+        
+  
+  };
+#endif
\ No newline at end of file
diff -r 000000000000 -r ffd0caf3db9f X_NUCLEO_IDB0XA1.lib
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/X_NUCLEO_IDB0XA1.lib	Tue Nov 22 02:57:33 2016 +0000
@@ -0,0 +1,1 @@
+http://developer.mbed.org/teams/ST/code/X_NUCLEO_IDB0XA1/#fa98703ece8e
diff -r 000000000000 -r ffd0caf3db9f kalman.lib
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kalman.lib	Tue Nov 22 02:57:33 2016 +0000
@@ -0,0 +1,1 @@
+http://developer.mbed.org/users/cdonate/code/kalman/#8a460b0d6f09
diff -r 000000000000 -r ffd0caf3db9f main.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Tue Nov 22 02:57:33 2016 +0000
@@ -0,0 +1,642 @@
+/* mbed Microcontroller Library
+ * Copyright (c) 2006-2015 ARM Limited
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "mbed.h"
+#include "MPU6050.h"
+#include "MPU60501.h"
+#include "HMC5883L.h"
+#include "ble/BLE.h"
+#include "ble/services/HeartRateService.h"
+#include "kalman.c"
+#include <math.h>
+
+#define ratio 5
+#define ratioy 9
+#define pitch_ratio 6
+#define PI             3.1415926535897932384626433832795
+#define Rad2Dree       57.295779513082320876798154814105
+
+#define wait_time 0.02
+
+int i= 0,j = 0;
+float sum = 0;
+uint32_t sumCount = 0;
+volatile uint8_t hrmCounter;
+
+float central1[3], central2[3];
+float drum1_min[3],drum2_min[3],drum3_min[3],drum4_min[3],drum5_min[3],drum6_min[3],drum7_min[3],drum8_min[3],drum9_min[3],drum10_min[3];
+float drum1_max[3],drum2_max[3],drum3_max[3],drum4_max[3],drum5_max[3],drum6_max[3],drum7_max[3],drum8_max[3],drum9_max[3],drum10_max[3]; 
+int flag = 0;
+int stt1 = 0, stt2 = 0;
+int drum1_stt1 = 0,drum2_stt1 = 0,drum3_stt1 = 0,drum4_stt1 = 0,drum5_stt1 = 0;
+int drum1_stt2 = 0,drum2_stt2 = 0,drum3_stt2 = 0,drum4_stt2 = 0,drum5_stt2 = 0;
+
+    float Acc[3];
+    float Gyro[3];
+    float angle[3];
+    int Mag[3];
+    float R,R2;
+    unsigned long timer;
+    long loopStartTime;
+    
+    Timer GlobalTime;
+    Timer ProgramTimer;
+    kalman filter_pitch;
+    kalman filter_roll;
+    kalman filter_yaw;
+
+
+   InterruptIn mybutton(USER_BUTTON);
+
+   MPU60501 mpu6050;
+   
+   MPU60501 mpu6050_2;
+   
+   MPU6050 ark(PB_9,PB_8);
+   
+   HMC5883L compass(PB_9, PB_8);
+   
+   Timer tmpu;
+   
+   Timer gettime;
+
+   Serial pc(USBTX, USBRX); // tx, rx
+
+   //        VCC,   SCE,  RST,  D/C,  MOSI,S CLK, LED
+   //N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7);
+   
+void get();
+
+DigitalOut led1(LED1, 1);
+
+const static char     DEVICE_NAME[]        = "Drum";
+static const uint16_t uuid16_list[]        = {GattService::UUID_HEART_RATE_SERVICE};
+
+static volatile bool  triggerSensorPolling = false;
+
+void disconnectionCallback(const Gap::DisconnectionCallbackParams_t *params)
+{
+    (void)params;
+    BLE::Instance().gap().startAdvertising(); // restart advertising
+}
+
+void periodicCallback(void)
+{
+    //led1 = !led1; /* Do blinky on LED1 while we're waiting for BLE events */
+    /* Note that the periodicCallback() executes in interrupt context, so it is safer to do
+     * heavy-weight sensor polling from the main thread. */
+    triggerSensorPolling = true;
+}
+
+void onBleInitError(BLE &ble, ble_error_t error)
+{
+    (void)ble;
+    (void)error;
+   /* Initialization error handling should go here */
+}
+
+void bleInitComplete(BLE::InitializationCompleteCallbackContext *params)
+{
+    BLE&        ble   = params->ble;
+    ble_error_t error = params->error;
+
+    if (error != BLE_ERROR_NONE) {
+        onBleInitError(ble, error);
+        return;
+    }
+
+    if (ble.getInstanceID() != BLE::DEFAULT_INSTANCE) {
+        return;
+    }
+
+    ble.gap().onDisconnection(disconnectionCallback);
+
+    /* Setup primary service. */
+    uint8_t hrmCounter = 'A'; // init HRM to 60bps
+    HeartRateService hrService(ble, hrmCounter, HeartRateService::LOCATION_FINGER);
+
+    /* Setup advertising. */
+    ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE);
+    ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_16BIT_SERVICE_IDS, (uint8_t *)uuid16_list, sizeof(uuid16_list));
+    ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::GENERIC_HEART_RATE_SENSOR);
+    ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LOCAL_NAME, (uint8_t *)DEVICE_NAME, sizeof(DEVICE_NAME));
+    ble.gap().setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED);
+    ble.gap().setAdvertisingInterval(1000); /* 1000ms */
+    ble.gap().startAdvertising();
+    
+    pc.baud(9600);  
+
+  //Set up I2C
+  i2c.frequency(400000);  // use fast (400 kHz) I2C   
+  i2c2.frequency(400000);
+  
+  compass.setDefault();
+    wait(0.1);
+        
+  
+  //lcd.init();
+  //lcd.setBrightness(0.05);
+  
+    
+  // Read the WHO_AM_I register, this is a good test of communication
+  uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
+  //uint8_t whoami2 = mpu6050_2.readByte2(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
+  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
+  
+  if ((whoami == 0x68) /*|| (whoami2 == 0x68)*/) // WHO_AM_I should always be 0x68
+  {  
+    pc.printf("MPU6050 is online...");
+    wait(1);
+    //lcd.clear();
+    //lcd.printString("MPU6050 OK", 0, 0);
+
+    
+    mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+    mpu6050.MPU6050SelfTest2(SelfTest2); // Start by performing self test and reporting values
+    pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
+    pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
+    pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
+    pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
+    pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
+    pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
+    wait(1);
+
+    if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) 
+    {
+    mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+    mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
+    mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+
+    /*lcd.clear();
+    lcd.printString("MPU6050", 0, 0);
+    lcd.printString("pass self test", 0, 1);
+    lcd.printString("initializing", 0, 2);  */
+    wait(2);
+       }
+    else
+    {
+    pc.printf("Device did not the pass self-test!\n\r");
+ 
+       /*lcd.clear();
+       lcd.printString("MPU6050", 0, 0);
+       lcd.printString("no pass", 0, 1);
+       lcd.printString("self test", 0, 2);*/      
+      }
+    }
+    else
+    {
+    pc.printf("Could not connect to MPU6050: \n\r");
+    pc.printf("%#x \n",  whoami);
+ 
+    /*lcd.clear();
+    lcd.printString("MPU6050", 0, 0);
+    lcd.printString("no connection", 0, 1);
+    lcd.printString("0x", 0, 2);  lcd.setXYAddress(20, 2); lcd.printChar(whoami);*/
+ 
+    while(1) ; // Loop forever if communication doesn't happen
+  }
+  i++;
+    tmpu.start();
+    
+    kalman_init(&filter_pitch, R_matrix, Q_Gyro_matrix, Q_Accel_matrix);
+    kalman_init(&filter_roll, R_matrix, Q_Gyro_matrix, Q_Accel_matrix);
+    kalman_init(&filter_yaw, R_matrix, Q_Gyro_matrix, Q_Accel_matrix);
+    
+    ProgramTimer.start();
+    loopStartTime = ProgramTimer.read_us();
+    timer = loopStartTime;
+    // infinite loop
+    while (1) {
+        ark.getAccelero(Acc);
+        ark.getGyro(Gyro);
+        Mag[0] = compass.getMx();
+        Mag[1] = compass.getMy();
+        Mag[2] = compass.getMz();
+        R = sqrt(std::pow(Acc[0] , 2) + std::pow(Acc[1] , 2) + std::pow(Acc[2] , 2));
+        //R2 = sqrt(std::pow(Acc2[0] , 2) + std::pow(Acc2[1] , 2) + std::pow(Acc2[2] , 2));
+
+        kalman_predict(&filter_pitch, Gyro[0],  (ProgramTimer.read_us() - timer));
+        kalman_update(&filter_pitch, acos(Acc[0]/R));
+        kalman_predict(&filter_roll, Gyro[1],  (ProgramTimer.read_us() - timer));
+        kalman_update(&filter_roll, acos(Acc[1]/R));
+        kalman_predict(&filter_yaw, (float)Mag[1]/Mag[0],  (ProgramTimer.read_us() - timer));
+        kalman_update(&filter_yaw, atan((float)Mag[1]/Mag[0]));
+        
+        angle[0] = kalman_get_angle(&filter_pitch);
+        angle[1] = kalman_get_angle(&filter_roll);
+        angle[2] = kalman_get_angle(&filter_yaw);
+        
+        //yaw = atan2( (-Mag[1]*cos(angle[0]*Rad2Dree) + Mag[2]*sin(angle[0]*Rad2Dree)) , (Mag[0]*cos(angle[0] * Rad2Dree) + Mag[1]*sin(angle[0]*Rad2Dree)*sin(angle[1]*Rad2Dree)+ Mag[2]*sin(angle[1]*Rad2Dree)*cos(angle[0]*Rad2Dree)) );
+        timer = ProgramTimer.read_us();
+
+            // If data ready bit set, all data registers have new data
+  if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+    mpu6050.readAccelData(accelCount);
+    }    
+ 
+    yaw = angle[2] * Rad2Dree;
+    if ((yaw < 46) && (yaw > 44) && (flag == 0))
+    {
+
+        central1[0] = yaw;
+       central1[1] = pitch;
+       central1[2] = roll;
+         central2[0] = yaw2;
+         central2[1] = pitch2;
+         central2[2] = roll2;
+
+
+    pc.printf("central x y z : %f %f %f \r\n", central1[0],central1[1],central1[2]);
+    flag = 1;
+    }
+    if (i == 1000) i = 0;
+    if (flag == 1)
+    {
+        pitch = angle[1] * Rad2Dree;
+        roll = angle[0] * Rad2Dree;
+        yaw = angle[2] * Rad2Dree;
+        //yaw = atan((float) Mag[1]/Mag[0])*Rad2Dree;
+        //yaw =atan2( (-Mag[1]*cos(roll) + Mag[2]*sin(roll) ) , (Mag[0]*cos(pitch) + Mag[1]*sin(pitch)*sin(roll)+ Mag[2]*sin(pitch)*cos(roll)) );
+        //pc.printf("Pitch, Roll, Yaw: %f %f %f %f \n\r", angle[1] * Rad2Dree, angle[0] * Rad2Dree,yaw, atan((float)Mag[1]/Mag[0]) * Rad2Dree);// pitch, roll, yaw
+        //pc.printf("%d %d %d \r\n",Mag[0],Mag[1],Mag[2]);
+        //pc.printf("Magx Magy Magz : %d %d %d \r\n",Mag[0],Mag[1],Mag[2]);
+        //wait(0.1);
+        //hrService.updateHeartRate((uint8_t)yaw);
+        //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", drum1_min[0], drum1_max[0], drum1_min[2]);
+    int step = 0, step2 = 0;
+    //while (triggerSensorPolling && ble.getGapState().connected == 1) {};
+    if (triggerSensorPolling && ble.getGapState().connected) {
+            triggerSensorPolling = false;
+        switch (stt1)
+        {
+        case 0:
+        //pc.printf("%d\n",stt1);
+            step = 0;
+            if ((yaw < drum2_max[0]) && (yaw > drum2_min[0]) && (pitch > drum2_max[1])) stt1 = 2;
+            else if ((yaw < drum1_max[0]) && (yaw > drum1_min[0]) && (pitch > drum1_max[1])) stt1 = 1;
+            else if ((yaw < drum3_max[0]) && (yaw > drum3_min[0]) && (pitch > drum3_max[1])) stt1 = 3;
+            else if ((yaw < drum4_max[0]) && (yaw > drum4_min[0]) && (pitch < drum4_max[1])) stt1 = 4;
+            else if ((yaw < drum5_max[0]) && (yaw > drum5_min[0]) && (pitch < drum5_max[1])) stt1 = 5;
+            //hrService.updateHeartRate((uint8_t)96);
+             break;
+        case 1:
+        //pc.printf("%d\n",stt1);
+            if ((drum1_stt1 == 0) && (yaw < drum1_max[0]) && (yaw > drum1_min[0]) && (pitch > drum1_max[1]))
+            {
+                //pc.printf("drum 1_1\r\n");
+                drum1_stt1 = 1;
+                hrService.updateHeartRate((uint8_t)1);
+                wait(wait_time);
+            } 
+            //else if ((yaw > drum1_max[0] + 2)|| (yaw < drum1_min[0] - 2) || (pitch < (drum1_max[1] - pitch_ratio)) /*&& (roll > drum1_max[2])*/) {
+            else if (pitch < (drum1_max[1] - pitch_ratio)){
+                 stt1 = 0 ;
+                 drum1_stt1 = 0;
+                 //pc.printf("up\r\n");
+                }
+            break;
+        case 2:
+        //pc.printf("%d\n",stt1);
+            if ((drum2_stt1 == 0) && (yaw < drum2_max[0]) && (yaw > drum2_min[0]) && (pitch > drum2_max[1]))
+            {
+                //pc.printf("drum 2_2\r\n");
+                drum2_stt1 = 1;
+                hrService.updateHeartRate((uint8_t)2);
+                wait(wait_time);
+            } 
+            //else if ((yaw > drum2_max[0])|| (yaw < drum2_min[0]) || (pitch < (drum2_max[1] - pitch_ratio)) /*&& (roll > drum2_max[2])*/) {
+            else if (pitch < (drum2_max[1] - pitch_ratio)){
+                 stt1 = 0 ;
+                 drum2_stt1 = 0;
+                 //pc.printf("up\r\n");
+                }
+            break;
+        case 3:
+        //pc.printf("%d\n",stt1);
+            if ((drum3_stt1 == 0) && (yaw < drum3_max[0]) && (yaw > drum3_min[0]) && (pitch > drum3_max[1]))
+            {
+                //pc.printf("drum 3_3\r\n");
+                drum3_stt1 = 1;
+                hrService.updateHeartRate((uint8_t)3);
+                wait(wait_time);
+            } 
+            //else if ((yaw > drum3_max[0])|| (yaw < drum3_min[0]) || (pitch < (drum3_max[1] - pitch_ratio)) /*&& (roll > drum2_max[2])*/) {
+            else if (pitch < (drum3_max[1] - pitch_ratio)){
+                 stt1 = 0 ;
+                 drum3_stt1 = 0;
+                 //pc.printf("up\r\n");
+                }
+            break;
+        case 4:
+            //pc.printf("%d\n",stt1);
+            if (drum4_stt1 == 0)
+            {
+                if ((pitch > drum4_max[1]) && (step == 0)) 
+                {
+                    //pc.printf("drum 4_4\r\n");
+                    drum4_stt1 = 1;
+                    hrService.updateHeartRate((uint8_t)4);
+                    step = 1;
+                    wait(wait_time);
+                }
+            } 
+            //else if ((yaw > drum4_max[0])|| (yaw < drum4_min[0]) || (pitch > (drum4_max[1] + pitch_ratio)) /*&& (roll > drum2_max[2])*/) {
+            else if (pitch > (drum4_max[1] + pitch_ratio)){
+                 stt1 = 0 ;
+                 drum4_stt1 = 0;
+                 //pc.printf("up\r\n");
+                }
+            break;
+        case 5:
+        //pc.printf("%d\n",stt1);
+            if (drum5_stt1 == 0)
+            {
+                if ((pitch > drum5_max[1]) && (step == 0)) 
+                {
+                    pc.printf("drum 5_5\r\n");
+                    drum5_stt1 = 1;
+                    hrService.updateHeartRate((uint8_t)5);
+                    step = 1;
+                    wait(wait_time);
+                }
+            } 
+            //else if ((yaw > drum5_max[0])|| (yaw < drum5_min[0]) || (pitch > (drum5_max[1] + pitch_ratio)) /*&& (roll > drum2_max[2])*/) {
+            else if (pitch > (drum5_max[1] + pitch_ratio)){
+                 stt1 = 0 ;
+                 drum5_stt1 = 0;
+                 //pc.printf("up\r\n");
+                }
+            break;  
+        default:
+            break;
+    };
+    triggerSensorPolling = false;
+    switch (stt2){
+        case 0:
+            //hrService.updateHeartRate((uint8_t)69);
+            //pc.printf("%d\r\n",stt2);
+            step2 = 0; 
+            /*
+            if ((yaw < drum6_max[0]) && (yaw > drum6_min[0]) && (pitch > drum6_max[1])) stt1 = 1;
+            else if ((yaw < drum7_max[0]) && (yaw > drum7_min[0]) && (pitch > drum7_max[1])) stt1 = 2;
+            else if ((yaw < drum8_max[0]) && (yaw > drum8_min[0]) && (pitch > drum8_max[1])) stt1 = 3;
+            else if ((yaw < drum9_max[0]) && (yaw > drum9_min[0]) && (pitch < drum9_max[1])) stt1 = 4;
+            else if ((yaw < drum10_max[0]) && (yaw > drum10_min[0]) && (pitch < drum10_max[1])) stt1 = 5;
+            */
+            //hrService.updateHeartRate((uint8_t)35);
+            break;
+        case 1:
+        //pc.printf("stt 2: %d ",stt2);
+            if ((drum1_stt2 == 0) && (yaw < drum6_max[0]) && (yaw > drum6_min[0]) && (pitch > drum6_max[1]))
+            {
+                pc.printf("drum 1_1\r\n");
+                drum1_stt2 = 1;
+                hrService.updateHeartRate((uint8_t)1);
+                wait(wait_time);
+            } 
+            //else if ((yaw > drum1_max[0]) || (yaw < drum6_min[0]) || (pitch < drum6_max[1] - pitch_ratio) /*&& (roll > drum1_max[2])*/) {
+            else if (pitch < (drum6_max[1] - pitch_ratio)){
+                 stt2 = 0 ;
+                 drum1_stt2 = 0;
+                 //pc.printf("up\r\n");
+                }
+            break;
+        case 2:
+        //pc.printf("stt 2:%d ",stt2);
+            if (drum2_stt2 == 0)
+            {
+                pc.printf("drum 2_2\r\n");
+                drum2_stt2 = 1;
+                hrService.updateHeartRate((uint8_t)2);
+                wait(wait_time);
+            } 
+            //else if ((yaw > drum2_max[0])|| (yaw < drum7_min[0]) || (pitch < drum7_max[1] - pitch_ratio) /*&& (roll > drum2_max[2])*/) {
+            else if (pitch < (drum7_max[1] - pitch_ratio)){
+                 stt2 = 0 ;
+                 drum2_stt2 = 0;
+                 //pc.printf("up\r\n");
+                }
+            break;
+        case 3:
+        //pc.printf("stt 2: %d ",stt2);
+            if (drum3_stt2 == 0)
+            {
+                pc.printf("drum 3_3\r\n");
+                drum3_stt2 = 1;
+                hrService.updateHeartRate((uint8_t)3);
+                wait(wait_time);
+            } 
+            //else if ((yaw > drum8_max[0])|| (yaw < drum8_min[0]) || (pitch < drum8_max[1] - pitch_ratio) /*&& (roll > drum2_max[2])*/) {
+            else if (pitch > (drum8_max[1] + pitch_ratio)){
+                 stt1 = 0 ;
+                 drum3_stt2 = 0;
+                 //pc.printf("up\r\n");
+                }
+            break;
+        case 4:
+            pc.printf("stt 2: %d ",stt2);
+            if (drum4_stt2 == 0)
+            {
+                if ((pitch > drum9_max[1]) && (step2 == 0) && (yaw < drum9_max[0]) && (yaw > drum9_min[0]) && (pitch < drum9_max[1])) 
+                {
+                    pc.printf("drum 4_4\r\n");
+                    drum4_stt2 = 1;
+                    hrService.updateHeartRate((uint8_t)4);
+                    step2 = 1;
+                    wait(wait_time);
+                }
+            } 
+            //else if ((yaw > drum9_max[0])|| (yaw < drum9_min[0]) || (pitch > drum9_max[1] + pitch_ratio) /*&& (roll > drum2_max[2])*/) {
+            else if (pitch > (drum9_max[1] + pitch_ratio)){
+                 stt2 = 0 ;
+                 drum4_stt2 = 0;
+                 pc.printf("up\r\n");
+                }
+            break;
+        case 5:
+        //pc.printf("stt 2: %d ",stt2);
+            if (drum5_stt2 == 0)
+            {
+                if ((pitch > drum10_max[1]) && (step2 == 0) && (yaw < drum10_max[0]) && (yaw > drum10_min[0])) 
+                {
+                    pc.printf("drum 5_5\r\n");
+                    drum5_stt2 = 1;
+                    hrService.updateHeartRate((uint8_t)5);
+                    step2 = 1;
+                    wait(wait_time);
+                }              
+            } 
+            //else if ((yaw > drum10_max[0])|| (yaw < drum10_min[0]) || (pitch > drum10_max[1] + pitch_ratio) /*&& (roll > drum2_max[2])*/) {
+            else if (pitch < (drum10_max[1] - pitch_ratio)){
+                 stt2 = 0 ;
+                 drum5_stt2 = 0;
+                 pc.printf("up\r\n");
+                }
+            break;
+        default:
+            break;
+    };
+    }
+    else  {ble.waitForEvent();} // low power wait for event  
+}
+//}
+    }
+}
+
+int main(void)
+{
+    
+drum1_min[0] = 15 - ratioy;
+drum1_max[0] = 15 + ratioy;
+drum2_min[0] = 45 - ratioy;
+drum2_max[0] = 45 + ratioy;
+drum3_min[0] = 75 - ratioy;
+drum3_max[0] = 75 + ratioy;
+drum4_min[0] = 16 - ratioy;
+drum4_max[0] = 16 + ratioy;
+drum5_min[0] = 85 - ratioy;
+drum5_max[0] = 85 + ratioy;
+drum6_min[0] = 0 - ratioy;
+drum6_max[0] = 0 + ratioy;
+drum7_min[0] = 0 - ratioy;
+drum7_max[0] = 0 + ratioy;
+drum8_min[0] = 0 - ratioy;
+drum8_max[0] = 0 + ratioy;
+drum9_min[0] = 0 - ratioy;
+drum9_max[0] = 0 + ratioy;
+drum10_min[0] = 0 - ratioy;
+drum10_max[0] = 0 + ratioy;
+
+drum1_max[1] = 105;
+drum2_max[1] = 100;
+drum3_max[1] = 105;
+drum4_max[1] = 20;
+drum5_max[1] = 20;
+drum6_max[1] = 0;
+drum7_max[1] = 0;
+drum8_max[1] = 0;
+drum9_max[1] = 0;
+drum10_max[1] = 0;
+
+    Ticker ticker;
+    ticker.attach(periodicCallback, 0.0001); // blink LED every second
+     mybutton.fall(get);
+   
+
+    BLE::Instance().init(bleInitComplete);
+}
+
+void get()
+{
+    j++;
+    led1 = 0;
+    //gettime.start();
+    //while (gettime.read() < 2) {};
+    if (j == 1){
+    drum1_min[0] = yaw - ratioy;
+    drum1_min[1] = angle[1] * Rad2Dree;
+    drum1_min[2] = angle[0] * Rad2Dree - ratio;
+    
+    drum1_max[0] = yaw + ratioy;
+    drum1_max[1] = angle[1] * Rad2Dree;
+    drum1_max[2] = angle[0] * Rad2Dree + ratio;
+    }
+    else if (j == 2){
+    drum2_min[0] = yaw - ratioy;
+    drum2_min[1] = angle[1] * Rad2Dree;
+    drum2_min[2] = angle[0] * Rad2Dree - ratio;
+    
+    drum2_max[0] = yaw + ratioy;
+    drum2_max[1] = angle[1] * Rad2Dree;
+    drum2_max[2] = angle[0] * Rad2Dree + ratio;
+    }
+    else if (j == 3){
+    drum3_min[0] = yaw - ratioy;
+    drum3_min[1] = angle[1] * Rad2Dree;
+    drum3_min[2] = angle[0] * Rad2Dree - ratio;
+    
+    drum3_max[0] = yaw + ratioy;
+    drum3_max[1] = angle[1] * Rad2Dree;
+    drum3_max[2] = angle[0] * Rad2Dree + ratio;
+    }
+    else if (j == 4){
+    drum4_min[0] = yaw - ratioy;
+    drum4_min[1] = angle[1] * Rad2Dree;
+    drum4_min[2] = angle[0] * Rad2Dree - ratio;
+    
+    drum4_max[0] = yaw + ratioy;
+    drum4_max[1] = angle[1] * Rad2Dree;
+    drum4_max[2] = angle[0] * Rad2Dree + ratio;
+    }
+    else if (j == 5){
+    drum5_min[0] = yaw - ratioy;
+    drum5_min[1] = angle[1] * Rad2Dree;
+    drum5_min[2] = angle[0] * Rad2Dree - ratio;
+    
+    drum5_max[0] = yaw + ratioy;
+    drum5_max[1] = angle[1] * Rad2Dree;
+    drum5_max[2] = angle[0] * Rad2Dree + ratio;
+    }
+    else if (j == 6){
+    drum6_min[0] = yaw - ratioy;
+    drum6_min[1] = angle[1] * Rad2Dree;
+    drum6_min[2] = angle[0] * Rad2Dree - ratio;
+    
+    drum6_max[0] = yaw + ratioy;
+    drum6_max[1] = angle[1] * Rad2Dree;
+    drum6_max[2] = angle[0] * Rad2Dree + ratio;
+    }
+    else if (j == 7){
+    drum7_min[0] = yaw - ratioy;
+    drum7_min[1] = angle[1] * Rad2Dree;
+    drum7_min[2] = angle[0] * Rad2Dree - ratio;
+    
+    drum7_max[0] = yaw + ratioy;
+    drum7_max[1] = angle[1] * Rad2Dree;
+    drum7_max[2] = angle[0] * Rad2Dree + ratio;
+    }
+    else if (j == 8){
+    drum8_min[0] = yaw - ratioy;
+    drum8_min[1] = angle[1] * Rad2Dree;
+    drum8_min[2] = angle[0] * Rad2Dree - ratio;
+    
+    drum8_max[0] = yaw + ratioy;
+    drum8_max[1] = angle[1] * Rad2Dree;
+    drum8_max[2] = angle[0] * Rad2Dree + ratio;
+    }
+    else if (j == 9){
+    drum9_min[0] = yaw - ratioy;
+    drum9_min[1] = angle[1] * Rad2Dree;
+    drum9_min[2] = angle[0] * Rad2Dree - ratio;
+    
+    drum9_max[0] = yaw + ratioy;
+    drum9_max[1] = angle[1] * Rad2Dree;
+    drum9_max[2] = angle[0] * Rad2Dree + ratio;
+    }
+    else if (j == 10){
+    drum10_min[0] = yaw - ratioy;
+    drum10_min[1] = angle[1] * Rad2Dree;
+    drum10_min[2] = angle[0] * Rad2Dree - ratio;
+    
+    drum10_max[0] = yaw + ratioy;
+    drum10_max[1] = angle[1] * Rad2Dree;
+    drum10_max[2] = angle[0] * Rad2Dree + ratio;
+    }
+    if (j == 10) j = 0;
+    pc.printf("x,y,z: %f %f %f \r\n",yaw,pitch,roll);
+    led1 = 1;
+}
+
diff -r 000000000000 -r ffd0caf3db9f mbed.bld
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mbed.bld	Tue Nov 22 02:57:33 2016 +0000
@@ -0,0 +1,1 @@
+http://mbed.org/users/mbed_official/code/mbed/builds/9bcdf88f62b0
\ No newline at end of file