Wireless auto note device
Dependencies: BLE_API invisdrum X_NUCLEO_IDB0XA1 kalman mbed
Revision 0:ffd0caf3db9f, committed 2016-11-22
- Comitter:
- fxanhkhoa
- Date:
- Tue Nov 22 02:57:33 2016 +0000
- Commit message:
- WAND PROJECT
Changed in this revision
diff -r 000000000000 -r ffd0caf3db9f BLE_API.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/BLE_API.lib Tue Nov 22 02:57:33 2016 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/teams/Bluetooth-Low-Energy/code/BLE_API/#65474dc93927
diff -r 000000000000 -r ffd0caf3db9f HMC5883L/HMC5883L.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/HMC5883L/HMC5883L.cpp Tue Nov 22 02:57:33 2016 +0000 @@ -0,0 +1,174 @@ +/** + * @author Jose R. Padron + * @author Used HMC6352 library developed by Aaron Berk as template + * @section LICENSE + * + * Copyright (c) 2010 ARM Limited + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + * + * @section DESCRIPTION + * + * Honeywell HMC5883Ldigital compass. + * + * Datasheet: + * + * http://www.ssec.honeywell.com/magnetic/datasheets/HMC5883L.pdf + */ + +/** + * Includes + */ +#include "HMC5883L.h" + +HMC5883L::HMC5883L(PinName sda, PinName scl) { + + i2c_ = new I2C(sda, scl); + //100KHz, as specified by the datasheet. + i2c_->frequency(100000); + + +} + + +void HMC5883L::write(int address, int data) { + + char tx[2]; + + tx[0]=address; + tx[1]=data; + + i2c_->write(HMC5883L_I2C_WRITE,tx,2); + + wait_ms(100); + +} + + +void HMC5883L::setSleepMode() { + + write(HMC5883L_MODE, HMC5883L_SLEEP); +} + +void HMC5883L::setDefault(void) { + + write(HMC5883L_CONFIG_A,HMC5883L_10HZ_NORMAL); + write(HMC5883L_CONFIG_B,HMC5883L_1_0GA); + write(HMC5883L_MODE,HMC5883L_CONTINUOUS); + wait_ms(100); +} + + +void HMC5883L::getAddress(char *buffer) { + + char rx[3]; + char tx[1]; + tx[0]=HMC5883L_IDENT_A; + + + i2c_->write(HMC5883L_I2C_WRITE, tx,1); + + wait_ms(1); + + i2c_->read(HMC5883L_I2C_READ,rx,3); + + buffer[0]=rx[0]; + buffer[1]=rx[1]; + buffer[2]=rx[2]; +} + + + +void HMC5883L::setOpMode(int mode, int ConfigA, int ConfigB) { + + + write(HMC5883L_CONFIG_A,ConfigA); + write(HMC5883L_CONFIG_B,ConfigB); + write(HMC5883L_MODE,mode); + + +} + + + + +void HMC5883L::readData(int* getMag) { + + + char tx[1]; + char rx[2]; + + + tx[0]=HMC5883L_X_MSB; + i2c_->write(HMC5883L_I2C_READ,tx,1); + i2c_->read(HMC5883L_I2C_READ,rx,2); + getMag[0]= (int)rx[0]<<8|(int)rx[1]; + + + tx[0]=HMC5883L_Y_MSB; + i2c_->write(HMC5883L_I2C_READ,tx,1); + i2c_->read(HMC5883L_I2C_READ,rx,2); + getMag[1]= (int)rx[0]<<8|(int)rx[1]; + + tx[0]=HMC5883L_Z_MSB; + i2c_->write(HMC5883L_I2C_READ,tx,1); + i2c_->read(HMC5883L_I2C_READ,rx,2); + getMag[2]= (int)rx[0]<<8|(int)rx[1]; + +} + +int HMC5883L::getMx() { + + char tx[1]; + char rx[2]; + + + tx[0]=HMC5883L_X_MSB; + i2c_->write(HMC5883L_I2C_READ,tx,1); + i2c_->read(HMC5883L_I2C_READ,rx,2); + return ((int)rx[0]<<8|(int)rx[1]); + +} + +int HMC5883L::getMy() { + + char tx[1]; + char rx[2]; + + + tx[0]=HMC5883L_Y_MSB; + i2c_->write(HMC5883L_I2C_READ,tx,1); + i2c_->read(HMC5883L_I2C_READ,rx,2); + return ((int)rx[0]<<8|(int)rx[1]); + +} + + +int HMC5883L::getMz(){ + + char tx[1]; + char rx[2]; + + + tx[0]=HMC5883L_Z_MSB; + i2c_->write(HMC5883L_I2C_READ,tx,1); + i2c_->read(HMC5883L_I2C_READ,rx,2); + return ((int)rx[0]<<8|(int)rx[1]); + +} \ No newline at end of file
diff -r 000000000000 -r ffd0caf3db9f HMC5883L/HMC5883L.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/HMC5883L/HMC5883L.h Tue Nov 22 02:57:33 2016 +0000 @@ -0,0 +1,219 @@ +/** + * @author Uwe Gartmann + * @author Used HMC5883L library developed by Jose R. Padron and Aaron Berk as template + * + * @section LICENSE + * + * Copyright (c) 2010 ARM Limited + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + * + * @section DESCRIPTION + * + * Honeywell HMC5883L digital compass. + * + * Datasheet: + * + * http://www.ssec.honeywell.com/magnetic/datasheets/HMC5883L.pdf + */ + +#ifndef HMC5883L_H +#define HMC5883L_H + +/** + * Includes + */ +#include "mbed.h" + +/** + * Defines + */ +#define HMC5883L_I2C_ADDRESS 0x1E //7-bit address. 0x3C write, 0x3D read. +#define HMC5883L_I2C_WRITE 0x3C +#define HMC5883L_I2C_READ 0x3D + +//Values Config A +#define HMC5883L_0_5HZ_NORMAL 0x00 +#define HMC5883L_0_5HZ_POSITIVE 0x01 +#define HMC5883L_0_5HZ_NEGATIVE 0x02 + +#define HMC5883L_1HZ_NORMAL 0x04 +#define HMC5883L_1HZ_POSITIVE 0x05 +#define HMC5883L_1HZ_NEGATIVE 0x06 + +#define HMC5883L_2HZ_NORMAL 0x08 +#define HMC5883L_2HZ_POSITIVE 0x09 +#define HMC5883L_2HZ_NEGATIVE 0x0A + +#define HMC5883L_5HZ_NORMAL 0x0C +#define HMC5883L_5HZ_POSITIVE 0x0D +#define HMC5883L_5HZ_NEGATIVE 0x0E + +#define HMC5883L_10HZ_NORMAL 0x10 +#define HMC5883L_10HZ_POSITIVE 0x11 +#define HMC5883L_10HZ_NEGATIVE 0x12 + +#define HMC5883L_20HZ_NORMAL 0x14 +#define HMC5883L_20HZ_POSITIVE 0x15 +#define HMC5883L_20HZ_NEGATIVE 0x16 + +#define HMC5883L_50HZ_NORMAL 0x18 +#define HMC5883L_50HZ_POSITIVE 0x19 +#define HMC5883L_50HZ_NEGATIVE 0x1A + +//Values Config B +#define HMC5883L_0_7GA 0x00 +#define HMC5883L_1_0GA 0x20 +#define HMC5883L_1_5GA 0x40 +#define HMC5883L_2_0GA 0x60 +#define HMC5883L_3_2GA 0x80 +#define HMC5883L_3_8GA 0xA0 +#define HMC5883L_4_5GA 0xC0 +#define HMC5883L_6_5GA 0xE0 + +//Values MODE +#define HMC5883L_CONTINUOUS 0x00 +#define HMC5883L_SINGLE 0x01 +#define HMC5883L_IDLE 0x02 +#define HMC5883L_SLEEP 0x03 + + + +#define HMC5883L_CONFIG_A 0x00 +#define HMC5883L_CONFIG_B 0x01 +#define HMC5883L_MODE 0x02 +#define HMC5883L_X_MSB 0x03 +#define HMC5883L_X_LSB 0x04 +#define HMC5883L_Z_MSB 0x05 +#define HMC5883L_Z_LSB 0x06 +#define HMC5883L_Y_MSB 0x07 +#define HMC5883L_Y_LSB 0x08 +#define HMC5883L_STATUS 0x09 +#define HMC5883L_IDENT_A 0x0A +#define HMC5883L_IDENT_B 0x0B +#define HMC5883L_IDENT_C 0x0C + + + +/** + * Honeywell HMC5883L digital compass. + */ +class HMC5883L { + +public: + + /** + * Constructor. + * + * @param sda mbed pin to use for SDA line of I2C interface. + * @param scl mbed pin to use for SCL line of I2C interface. + */ + HMC5883L(PinName sda, PinName scl); + + + /** + * Enter into sleep mode. + * + */ + void setSleepMode(); + + + /** + * Set Device in Default Mode. + * HMC5883L_CONTINUOUS, HMC5883L_10HZ_NORMAL HMC5883L_1_0GA + */ + void setDefault(); + + + /** + * Read the memory location on the device which contains the address. + * + * @param Pointer to a buffer to hold the address value + * Expected H, 4 and 3. + */ + void getAddress(char * address); + + + + /** + * Set the operation mode. + * + * @param mode 0x00 -> Continuous + * 0x01 -> Single + * 0x02 -> Idle + * @param ConfigA values + * @param ConfigB values + */ + void setOpMode(int mode, int ConfigA, int ConfigB); + + /** + * Write to on the device. + * + * @param address Address to write to. + * @param data Data to write. + */ + + void write(int address, int data); + + /** + * Get the output of all three axes. + * + * @param Pointer to a buffer to hold the magnetics value for the + * x-axis, y-axis and z-axis [in that order]. + */ + void readData(int* getMag); + + /** + * Get the output of X axis. + * + * @return x-axis magnetic value + */ + int getMx(); + + /** + * Get the output of Y axis. + * + * @return y-axis magnetic value + */ + int getMy(); + + /** + * Get the output of Z axis. + * + * @return z-axis magnetic value + */ + int getMz(); + + + /** + * Get the current operation mode. + * + * @return Status register values + */ + int getStatus(void); + + + + I2C* i2c_; + + + +}; + +#endif /* HMC5883L_H */ \ No newline at end of file
diff -r 000000000000 -r ffd0caf3db9f MPU6050.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MPU6050.lib Tue Nov 22 02:57:33 2016 +0000 @@ -0,0 +1,1 @@ +https://developer.mbed.org/users/fxanhkhoa/code/invisdrum/#63154afe4f7a
diff -r 000000000000 -r ffd0caf3db9f MPU60501.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MPU60501.h Tue Nov 22 02:57:33 2016 +0000 @@ -0,0 +1,1027 @@ +#ifndef MPU60501_H +#define MPU60501_H + +#include "mbed.h" +#include "math.h" + + // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device +// Invensense Inc., www.invensense.com +// See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in +// above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor +// +#define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD +#define YGOFFS_TC 0x01 +#define ZGOFFS_TC 0x02 +#define X_FINE_GAIN 0x03 // [7:0] fine gain +#define Y_FINE_GAIN 0x04 +#define Z_FINE_GAIN 0x05 +#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer +#define XA_OFFSET_L_TC 0x07 +#define YA_OFFSET_H 0x08 +#define YA_OFFSET_L_TC 0x09 +#define ZA_OFFSET_H 0x0A +#define ZA_OFFSET_L_TC 0x0B +#define SELF_TEST_X 0x0D +#define SELF_TEST_Y 0x0E +#define SELF_TEST_Z 0x0F +#define SELF_TEST_A 0x10 +#define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050? +#define XG_OFFS_USRL 0x14 +#define YG_OFFS_USRH 0x15 +#define YG_OFFS_USRL 0x16 +#define ZG_OFFS_USRH 0x17 +#define ZG_OFFS_USRL 0x18 +#define SMPLRT_DIV 0x19 +#define CONFIG 0x1A +#define GYRO_CONFIG 0x1B +#define ACCEL_CONFIG 0x1C +#define FF_THR 0x1D // Free-fall +#define FF_DUR 0x1E // Free-fall +#define MOT_THR 0x1F // Motion detection threshold bits [7:0] +#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms +#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] +#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms +#define FIFO_EN 0x23 +#define I2C_MST_CTRL 0x24 +#define I2C_SLV0_ADDR 0x25 +#define I2C_SLV0_REG 0x26 +#define I2C_SLV0_CTRL 0x27 +#define I2C_SLV1_ADDR 0x28 +#define I2C_SLV1_REG 0x29 +#define I2C_SLV1_CTRL 0x2A +#define I2C_SLV2_ADDR 0x2B +#define I2C_SLV2_REG 0x2C +#define I2C_SLV2_CTRL 0x2D +#define I2C_SLV3_ADDR 0x2E +#define I2C_SLV3_REG 0x2F +#define I2C_SLV3_CTRL 0x30 +#define I2C_SLV4_ADDR 0x31 +#define I2C_SLV4_REG 0x32 +#define I2C_SLV4_DO 0x33 +#define I2C_SLV4_CTRL 0x34 +#define I2C_SLV4_DI 0x35 +#define I2C_MST_STATUS 0x36 +#define INT_PIN_CFG 0x37 +#define INT_ENABLE 0x38 +#define DMP_INT_STATUS 0x39 // Check DMP interrupt +#define INT_STATUS 0x3A +#define ACCEL_XOUT_H 0x3B +#define ACCEL_XOUT_L 0x3C +#define ACCEL_YOUT_H 0x3D +#define ACCEL_YOUT_L 0x3E +#define ACCEL_ZOUT_H 0x3F +#define ACCEL_ZOUT_L 0x40 +#define TEMP_OUT_H 0x41 +#define TEMP_OUT_L 0x42 +#define GYRO_XOUT_H 0x43 +#define GYRO_XOUT_L 0x44 +#define GYRO_YOUT_H 0x45 +#define GYRO_YOUT_L 0x46 +#define GYRO_ZOUT_H 0x47 +#define GYRO_ZOUT_L 0x48 +#define EXT_SENS_DATA_00 0x49 +#define EXT_SENS_DATA_01 0x4A +#define EXT_SENS_DATA_02 0x4B +#define EXT_SENS_DATA_03 0x4C +#define EXT_SENS_DATA_04 0x4D +#define EXT_SENS_DATA_05 0x4E +#define EXT_SENS_DATA_06 0x4F +#define EXT_SENS_DATA_07 0x50 +#define EXT_SENS_DATA_08 0x51 +#define EXT_SENS_DATA_09 0x52 +#define EXT_SENS_DATA_10 0x53 +#define EXT_SENS_DATA_11 0x54 +#define EXT_SENS_DATA_12 0x55 +#define EXT_SENS_DATA_13 0x56 +#define EXT_SENS_DATA_14 0x57 +#define EXT_SENS_DATA_15 0x58 +#define EXT_SENS_DATA_16 0x59 +#define EXT_SENS_DATA_17 0x5A +#define EXT_SENS_DATA_18 0x5B +#define EXT_SENS_DATA_19 0x5C +#define EXT_SENS_DATA_20 0x5D +#define EXT_SENS_DATA_21 0x5E +#define EXT_SENS_DATA_22 0x5F +#define EXT_SENS_DATA_23 0x60 +#define MOT_DETECT_STATUS 0x61 +#define I2C_SLV0_DO 0x63 +#define I2C_SLV1_DO 0x64 +#define I2C_SLV2_DO 0x65 +#define I2C_SLV3_DO 0x66 +#define I2C_MST_DELAY_CTRL 0x67 +#define SIGNAL_PATH_RESET 0x68 +#define MOT_DETECT_CTRL 0x69 +#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP +#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode +#define PWR_MGMT_2 0x6C +#define DMP_BANK 0x6D // Activates a specific bank in the DMP +#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank +#define DMP_REG 0x6F // Register in DMP from which to read or to which to write +#define DMP_REG_1 0x70 +#define DMP_REG_2 0x71 +#define FIFO_COUNTH 0x72 +#define FIFO_COUNTL 0x73 +#define FIFO_R_W 0x74 +#define WHO_AM_I_MPU6050 0x75 // Should return 0x68 + +// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor +// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 +#define ADO 0 +#if ADO +#define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1 +#else +#define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0 +#endif + +// Set initial input parameters +enum Ascale { + AFS_2G = 0, + AFS_4G, + AFS_8G, + AFS_16G +}; + +enum Gscale { + GFS_250DPS = 0, + GFS_500DPS, + GFS_1000DPS, + GFS_2000DPS +}; + +// Specify sensor full scale +int Gscale = GFS_250DPS; +int Ascale = AFS_2G; + +//Set up I2C, (SDA,SCL) +I2C i2c(I2C_SDA, I2C_SCL); +I2C i2c2(PB_14,PB_13); + +//DigitalOut myled(LED1); + +float aRes, gRes, aRes2, gRes2; // scale resolutions per LSB for the sensors + +// Pin definitions +int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins + +int16_t accelCount[3],accelCount2[3]; // Stores the 16-bit signed accelerometer sensor output +float ax, ay, az, ax2, ay2, az2; // Stores the real accel value in g's +int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output +float gx, gy, gz, gx2, gy2, gz2; // Stores the real gyro value in degrees per seconds +float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer +int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius +float temperature; +float SelfTest[6],SelfTest2[6]; + +int delt_t = 0; // used to control display output rate +int count_mpu = 0; // used to control display output rate + +// parameters for 6 DoF sensor fusion calculations +float PI = 3.14159265358979323846f; +float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 +float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta +float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) +float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value +float pitch, yaw, roll,pitch2,yaw2,roll2; +float deltat = 0.0f; // integration interval for both filter schemes +int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval +float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion + +class MPU60501 { + + protected: + + public: + //=================================================================================================================== +//====== Set of useful function to access acceleratio, gyroscope, and temperature data +//=================================================================================================================== + + void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) +{ + char data_write[2]; + data_write[0] = subAddress; + data_write[1] = data; + i2c.write(address, data_write, 2, 0); +} + + void writeByte2(uint8_t address, uint8_t subAddress, uint8_t data) +{ + char data_write[2]; + data_write[0] = subAddress; + data_write[1] = data; + i2c2.write(address, data_write, 2, 0); +} + + char readByte(uint8_t address, uint8_t subAddress) +{ + char data[1]; // `data` will store the register data + char data_write[1]; + data_write[0] = subAddress; + i2c.write(address, data_write, 1, 1); // no stop + i2c.read(address, data, 1, 0); + return data[0]; +} + +char readByte2(uint8_t address, uint8_t subAddress) +{ + char data[1]; // `data` will store the register data + char data_write[1]; + data_write[0] = subAddress; + i2c2.write(address, data_write, 1, 1); // no stop + i2c2.read(address, data, 1, 0); + return data[0]; +} + + void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) +{ + char data[14]; + char data_write[1]; + data_write[0] = subAddress; + i2c.write(address, data_write, 1, 1); // no stop + i2c.read(address, data, count, 0); + for(int ii = 0; ii < count; ii++) { + dest[ii] = data[ii]; + } +} + + void readBytes2(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) +{ + char data[14]; + char data_write[1]; + data_write[0] = subAddress; + i2c2.write(address, data_write, 1, 1); // no stop + i2c2.read(address, data, count, 0); + for(int ii = 0; ii < count; ii++) { + dest[ii] = data[ii]; + } +} + + +void getGres() { + switch (Gscale) + { + // Possible gyro scales (and their register bit settings) are: + // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case GFS_250DPS: + gRes = 250.0/32768.0; + break; + case GFS_500DPS: + gRes = 500.0/32768.0; + break; + case GFS_1000DPS: + gRes = 1000.0/32768.0; + break; + case GFS_2000DPS: + gRes = 2000.0/32768.0; + break; + } +} + +void getAres() { + switch (Ascale) + { + // Possible accelerometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case AFS_2G: + aRes = 2.0/32768.0; + break; + case AFS_4G: + aRes = 4.0/32768.0; + break; + case AFS_8G: + aRes = 8.0/32768.0; + break; + case AFS_16G: + aRes = 16.0/32768.0; + break; + } +} + + +void readAccelData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; +} + +void readAccelData2(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes2(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; +} + +void readGyroData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; +} + +void readGyroData2(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes2(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; +} + +int16_t readTempData() +{ + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value +} + +int16_t readTempData2() +{ + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes2(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value +} + + + +// Configure the motion detection control for low power accelerometer mode +void LowPowerAccelOnly() +{ + +// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly +// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration +// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a +// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out +// consideration for these threshold evaluations; otherwise, the flags would be set all the time! + + uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6] + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running + + c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); + writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5] + writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running + + c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] +// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter + + c = readByte(MPU6050_ADDRESS, CONFIG); + writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0] + writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate + + c = readByte(MPU6050_ADDRESS, INT_ENABLE); + writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts + writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only + +// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold +// for at least the counter duration + writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg + writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate + + wait(0.1); // Add delay for accumulation of samples + + c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance + + c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); + writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7] + writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2]) + + c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5 + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts + +} + +void LowPowerAccelOnly2() +{ + +// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly +// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration +// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a +// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out +// consideration for these threshold evaluations; otherwise, the flags would be set all the time! + + uint8_t c = readByte2(MPU6050_ADDRESS, PWR_MGMT_1); + writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6] + writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running + + c = readByte2(MPU6050_ADDRESS, PWR_MGMT_2); + writeByte2(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5] + writeByte2(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running + + c = readByte2(MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] +// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold + writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter + + c = readByte2(MPU6050_ADDRESS, CONFIG); + writeByte2(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0] + writeByte2(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate + + c = readByte2(MPU6050_ADDRESS, INT_ENABLE); + writeByte2(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts + writeByte2(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only + +// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold +// for at least the counter duration + writeByte2(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg + writeByte2(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate + + wait(0.1); // Add delay for accumulation of samples + + c = readByte2(MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] + writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance + + c = readByte2(MPU6050_ADDRESS, PWR_MGMT_2); + writeByte2(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7] + writeByte2(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2]) + + c = readByte2(MPU6050_ADDRESS, PWR_MGMT_1); + writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5 + writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts + +} + + +void resetMPU6050() { + // reset device + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait(0.1); + } + +void resetMPU60502() { + // reset device + writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait(0.1); + } + + +void initMPU6050() +{ + // Initialize MPU6050 device + // wake up device + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors + wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt + + // get stable time source + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + + // Configure Gyro and Accelerometer + // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; + // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both + // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate + writeByte(MPU6050_ADDRESS, CONFIG, 0x03); + + // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) + writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above + + // Set gyroscope full scale range + // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 + uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG); + writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] + writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro + + // Set accelerometer configuration + c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer + + // Configure Interrupts and Bypass Enable + // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips + // can join the I2C bus and all can be controlled by the Arduino as master + writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22); + writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt +} + +// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average +// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. +void calibrateMPU6050(float * dest1, float * dest2) +{ + uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data + uint16_t ii, packet_count, fifo_count; + int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; + +// reset device, reset all registers, clear gyro and accelerometer bias registers + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait(0.1); + +// get stable time source +// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); + writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); + wait(0.2); + +// Configure device for bias calculation + writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts + writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source + writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master + writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes + writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP + wait(0.015); + +// Configure MPU6050 gyro and accelerometer for bias calculation + writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz + writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz + writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity + + uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec + uint16_t accelsensitivity = 16384; // = 16384 LSB/g + +// Configure FIFO to capture accelerometer and gyro data for bias calculation + writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO + writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050) + wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes + +// At end of sample accumulation, turn off FIFO sensor read + writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO + readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count + fifo_count = ((uint16_t)data[0] << 8) | data[1]; + packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging + + for (ii = 0; ii < packet_count; ii++) { + int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; + readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging + accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO + accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; + accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; + gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; + gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; + gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; + + accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases + accel_bias[1] += (int32_t) accel_temp[1]; + accel_bias[2] += (int32_t) accel_temp[2]; + gyro_bias[0] += (int32_t) gyro_temp[0]; + gyro_bias[1] += (int32_t) gyro_temp[1]; + gyro_bias[2] += (int32_t) gyro_temp[2]; + +} + accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases + accel_bias[1] /= (int32_t) packet_count; + accel_bias[2] /= (int32_t) packet_count; + gyro_bias[0] /= (int32_t) packet_count; + gyro_bias[1] /= (int32_t) packet_count; + gyro_bias[2] /= (int32_t) packet_count; + + if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation + else {accel_bias[2] += (int32_t) accelsensitivity;} + +// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup + data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format + data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases + data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; + data[3] = (-gyro_bias[1]/4) & 0xFF; + data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; + data[5] = (-gyro_bias[2]/4) & 0xFF; + +// Push gyro biases to hardware registers + writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); + writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]); + writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]); + writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]); + writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]); + writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]); + + dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction + dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; + dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; + +// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain +// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold +// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature +// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that +// the accelerometer biases calculated above must be divided by 8. + + int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases + readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values + accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]); + accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]); + accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + + uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers + uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis + + for(ii = 0; ii < 3; ii++) { + if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit + } + + // Construct total accelerometer bias, including calculated average accelerometer bias from above + accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) + accel_bias_reg[1] -= (accel_bias[1]/8); + accel_bias_reg[2] -= (accel_bias[2]/8); + + data[0] = (accel_bias_reg[0] >> 8) & 0xFF; + data[1] = (accel_bias_reg[0]) & 0xFF; + data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[2] = (accel_bias_reg[1] >> 8) & 0xFF; + data[3] = (accel_bias_reg[1]) & 0xFF; + data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[4] = (accel_bias_reg[2] >> 8) & 0xFF; + data[5] = (accel_bias_reg[2]) & 0xFF; + data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers + + // Push accelerometer biases to hardware registers +// writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]); +// writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]); +// writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]); +// writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]); +// writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]); +// writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]); + +// Output scaled accelerometer biases for manual subtraction in the main program + dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; + dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; + dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; +} + +void initMPU60502() +{ + // Initialize MPU6050 device + // wake up device + writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors + wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt + + // get stable time source + writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + + // Configure Gyro and Accelerometer + // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; + // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both + // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate + writeByte2(MPU6050_ADDRESS, CONFIG, 0x03); + + // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) + writeByte2(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above + + // Set gyroscope full scale range + // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 + uint8_t c = readByte2(MPU6050_ADDRESS, GYRO_CONFIG); + writeByte2(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte2(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] + writeByte2(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro + + // Set accelerometer configuration + c = readByte2(MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] + writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer + + // Configure Interrupts and Bypass Enable + // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips + // can join the I2C bus and all can be controlled by the Arduino as master + writeByte2(MPU6050_ADDRESS, INT_PIN_CFG, 0x22); + writeByte2(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt +} + +// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average +// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. +void calibrateMPU60502(float * dest1, float * dest2) +{ + uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data + uint16_t ii, packet_count, fifo_count; + int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; + +// reset device, reset all registers, clear gyro and accelerometer bias registers + writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait(0.1); + +// get stable time source +// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); + writeByte2(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); + wait(0.2); + +// Configure device for bias calculation + writeByte2(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts + writeByte2(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO + writeByte2(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source + writeByte2(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master + writeByte2(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes + writeByte2(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP + wait(0.015); + +// Configure MPU6050 gyro and accelerometer for bias calculation + writeByte2(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz + writeByte2(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz + writeByte2(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity + writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity + + uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec + uint16_t accelsensitivity = 16384; // = 16384 LSB/g + +// Configure FIFO to capture accelerometer and gyro data for bias calculation + writeByte2(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO + writeByte2(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050) + wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes + +// At end of sample accumulation, turn off FIFO sensor read + writeByte2(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO + readBytes2(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count + fifo_count = ((uint16_t)data[0] << 8) | data[1]; + packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging + + for (ii = 0; ii < packet_count; ii++) { + int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; + readBytes2(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging + accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO + accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; + accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; + gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; + gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; + gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; + + accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases + accel_bias[1] += (int32_t) accel_temp[1]; + accel_bias[2] += (int32_t) accel_temp[2]; + gyro_bias[0] += (int32_t) gyro_temp[0]; + gyro_bias[1] += (int32_t) gyro_temp[1]; + gyro_bias[2] += (int32_t) gyro_temp[2]; + +} + accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases + accel_bias[1] /= (int32_t) packet_count; + accel_bias[2] /= (int32_t) packet_count; + gyro_bias[0] /= (int32_t) packet_count; + gyro_bias[1] /= (int32_t) packet_count; + gyro_bias[2] /= (int32_t) packet_count; + + if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation + else {accel_bias[2] += (int32_t) accelsensitivity;} + +// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup + data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format + data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases + data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; + data[3] = (-gyro_bias[1]/4) & 0xFF; + data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; + data[5] = (-gyro_bias[2]/4) & 0xFF; + +// Push gyro biases to hardware registers + writeByte2(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); + writeByte2(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]); + writeByte2(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]); + writeByte2(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]); + writeByte2(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]); + writeByte2(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]); + + dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction + dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; + dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; + +// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain +// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold +// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature +// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that +// the accelerometer biases calculated above must be divided by 8. + + int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases + readBytes2(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values + accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes2(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]); + accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes2(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]); + accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + + uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers + uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis + + for(ii = 0; ii < 3; ii++) { + if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit + } + + // Construct total accelerometer bias, including calculated average accelerometer bias from above + accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) + accel_bias_reg[1] -= (accel_bias[1]/8); + accel_bias_reg[2] -= (accel_bias[2]/8); + + data[0] = (accel_bias_reg[0] >> 8) & 0xFF; + data[1] = (accel_bias_reg[0]) & 0xFF; + data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[2] = (accel_bias_reg[1] >> 8) & 0xFF; + data[3] = (accel_bias_reg[1]) & 0xFF; + data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[4] = (accel_bias_reg[2] >> 8) & 0xFF; + data[5] = (accel_bias_reg[2]) & 0xFF; + data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers + + // Push accelerometer biases to hardware registers +// writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]); +// writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]); +// writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]); +// writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]); +// writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]); +// writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]); + +// Output scaled accelerometer biases for manual subtraction in the main program + dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; + dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; + dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; +} + + +// Accelerometer and gyroscope self test; check calibration wrt factory settings +void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass +{ + uint8_t rawData[4] = {0, 0, 0, 0}; + uint8_t selfTest[6]; + float factoryTrim[6]; + + // Configure the accelerometer for self-test + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g + writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s + wait(0.25); // Delay a while to let the device execute the self-test + rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results + rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results + rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results + rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results + // Extract the acceleration test results first + selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer + selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer + selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer + // Extract the gyration test results first + selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer + selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer + selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer + // Process results to allow final comparison with factory set values + factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation + factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation + factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation + factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation + factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation + factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation + + // Output self-test results and factory trim calculation if desired + // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]); + // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]); + // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]); + // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]); + + // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response + // To get to percent, must multiply by 100 and subtract result from 100 + for (int i = 0; i < 6; i++) { + destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences + } + +} + +void MPU6050SelfTest2(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass +{ + uint8_t rawData[4] = {0, 0, 0, 0}; + uint8_t selfTest[6]; + float factoryTrim[6]; + + // Configure the accelerometer for self-test + writeByte2(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g + writeByte2(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s + wait(0.25); // Delay a while to let the device execute the self-test + rawData[0] = readByte2(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results + rawData[1] = readByte2(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results + rawData[2] = readByte2(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results + rawData[3] = readByte2(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results + // Extract the acceleration test results first + selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer + selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer + selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer + // Extract the gyration test results first + selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer + selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer + selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer + // Process results to allow final comparison with factory set values + factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation + factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation + factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation + factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation + factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation + factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation + + // Output self-test results and factory trim calculation if desired + // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]); + // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]); + // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]); + // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]); + + // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response + // To get to percent, must multiply by 100 and subtract result from 100 + for (int i = 0; i < 6; i++) { + destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences + } + +} + + +// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" +// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) +// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative +// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. +// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms +// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! + void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz) + { + float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability + float norm; // vector norm + float f1, f2, f3; // objective funcyion elements + float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements + float qDot1, qDot2, qDot3, qDot4; + float hatDot1, hatDot2, hatDot3, hatDot4; + float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error + + // Auxiliary variables to avoid repeated arithmetic + float _halfq1 = 0.5f * q1; + float _halfq2 = 0.5f * q2; + float _halfq3 = 0.5f * q3; + float _halfq4 = 0.5f * q4; + float _2q1 = 2.0f * q1; + float _2q2 = 2.0f * q2; + float _2q3 = 2.0f * q3; + float _2q4 = 2.0f * q4; +// float _2q1q3 = 2.0f * q1 * q3; +// float _2q3q4 = 2.0f * q3 * q4; + + // Normalise accelerometer measurement + norm = sqrt(ax * ax + ay * ay + az * az); + if (norm == 0.0f) return; // handle NaN + norm = 1.0f/norm; + ax *= norm; + ay *= norm; + az *= norm; + + // Compute the objective function and Jacobian + f1 = _2q2 * q4 - _2q1 * q3 - ax; + f2 = _2q1 * q2 + _2q3 * q4 - ay; + f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az; + J_11or24 = _2q3; + J_12or23 = _2q4; + J_13or22 = _2q1; + J_14or21 = _2q2; + J_32 = 2.0f * J_14or21; + J_33 = 2.0f * J_11or24; + + // Compute the gradient (matrix multiplication) + hatDot1 = J_14or21 * f2 - J_11or24 * f1; + hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3; + hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1; + hatDot4 = J_14or21 * f1 + J_11or24 * f2; + + // Normalize the gradient + norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4); + hatDot1 /= norm; + hatDot2 /= norm; + hatDot3 /= norm; + hatDot4 /= norm; + + // Compute estimated gyroscope biases + gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3; + gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2; + gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1; + + // Compute and remove gyroscope biases + gbiasx += gerrx * deltat * zeta; + gbiasy += gerry * deltat * zeta; + gbiasz += gerrz * deltat * zeta; + // gx -= gbiasx; + // gy -= gbiasy; + // gz -= gbiasz; + + // Compute the quaternion derivative + qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz; + qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy; + qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx; + qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx; + + // Compute then integrate estimated quaternion derivative + q1 += (qDot1 -(beta * hatDot1)) * deltat; + q2 += (qDot2 -(beta * hatDot2)) * deltat; + q3 += (qDot3 -(beta * hatDot3)) * deltat; + q4 += (qDot4 -(beta * hatDot4)) * deltat; + + // Normalize the quaternion + norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion + norm = 1.0f/norm; + q[0] = q1 * norm; + q[1] = q2 * norm; + q[2] = q3 * norm; + q[3] = q4 * norm; + + } + + + }; +#endif \ No newline at end of file
diff -r 000000000000 -r ffd0caf3db9f X_NUCLEO_IDB0XA1.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/X_NUCLEO_IDB0XA1.lib Tue Nov 22 02:57:33 2016 +0000 @@ -0,0 +1,1 @@ +http://developer.mbed.org/teams/ST/code/X_NUCLEO_IDB0XA1/#fa98703ece8e
diff -r 000000000000 -r ffd0caf3db9f kalman.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/kalman.lib Tue Nov 22 02:57:33 2016 +0000 @@ -0,0 +1,1 @@ +http://developer.mbed.org/users/cdonate/code/kalman/#8a460b0d6f09
diff -r 000000000000 -r ffd0caf3db9f main.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Tue Nov 22 02:57:33 2016 +0000 @@ -0,0 +1,642 @@ +/* mbed Microcontroller Library + * Copyright (c) 2006-2015 ARM Limited + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "mbed.h" +#include "MPU6050.h" +#include "MPU60501.h" +#include "HMC5883L.h" +#include "ble/BLE.h" +#include "ble/services/HeartRateService.h" +#include "kalman.c" +#include <math.h> + +#define ratio 5 +#define ratioy 9 +#define pitch_ratio 6 +#define PI 3.1415926535897932384626433832795 +#define Rad2Dree 57.295779513082320876798154814105 + +#define wait_time 0.02 + +int i= 0,j = 0; +float sum = 0; +uint32_t sumCount = 0; +volatile uint8_t hrmCounter; + +float central1[3], central2[3]; +float drum1_min[3],drum2_min[3],drum3_min[3],drum4_min[3],drum5_min[3],drum6_min[3],drum7_min[3],drum8_min[3],drum9_min[3],drum10_min[3]; +float drum1_max[3],drum2_max[3],drum3_max[3],drum4_max[3],drum5_max[3],drum6_max[3],drum7_max[3],drum8_max[3],drum9_max[3],drum10_max[3]; +int flag = 0; +int stt1 = 0, stt2 = 0; +int drum1_stt1 = 0,drum2_stt1 = 0,drum3_stt1 = 0,drum4_stt1 = 0,drum5_stt1 = 0; +int drum1_stt2 = 0,drum2_stt2 = 0,drum3_stt2 = 0,drum4_stt2 = 0,drum5_stt2 = 0; + + float Acc[3]; + float Gyro[3]; + float angle[3]; + int Mag[3]; + float R,R2; + unsigned long timer; + long loopStartTime; + + Timer GlobalTime; + Timer ProgramTimer; + kalman filter_pitch; + kalman filter_roll; + kalman filter_yaw; + + + InterruptIn mybutton(USER_BUTTON); + + MPU60501 mpu6050; + + MPU60501 mpu6050_2; + + MPU6050 ark(PB_9,PB_8); + + HMC5883L compass(PB_9, PB_8); + + Timer tmpu; + + Timer gettime; + + Serial pc(USBTX, USBRX); // tx, rx + + // VCC, SCE, RST, D/C, MOSI,S CLK, LED + //N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7); + +void get(); + +DigitalOut led1(LED1, 1); + +const static char DEVICE_NAME[] = "Drum"; +static const uint16_t uuid16_list[] = {GattService::UUID_HEART_RATE_SERVICE}; + +static volatile bool triggerSensorPolling = false; + +void disconnectionCallback(const Gap::DisconnectionCallbackParams_t *params) +{ + (void)params; + BLE::Instance().gap().startAdvertising(); // restart advertising +} + +void periodicCallback(void) +{ + //led1 = !led1; /* Do blinky on LED1 while we're waiting for BLE events */ + /* Note that the periodicCallback() executes in interrupt context, so it is safer to do + * heavy-weight sensor polling from the main thread. */ + triggerSensorPolling = true; +} + +void onBleInitError(BLE &ble, ble_error_t error) +{ + (void)ble; + (void)error; + /* Initialization error handling should go here */ +} + +void bleInitComplete(BLE::InitializationCompleteCallbackContext *params) +{ + BLE& ble = params->ble; + ble_error_t error = params->error; + + if (error != BLE_ERROR_NONE) { + onBleInitError(ble, error); + return; + } + + if (ble.getInstanceID() != BLE::DEFAULT_INSTANCE) { + return; + } + + ble.gap().onDisconnection(disconnectionCallback); + + /* Setup primary service. */ + uint8_t hrmCounter = 'A'; // init HRM to 60bps + HeartRateService hrService(ble, hrmCounter, HeartRateService::LOCATION_FINGER); + + /* Setup advertising. */ + ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE); + ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_16BIT_SERVICE_IDS, (uint8_t *)uuid16_list, sizeof(uuid16_list)); + ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::GENERIC_HEART_RATE_SENSOR); + ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LOCAL_NAME, (uint8_t *)DEVICE_NAME, sizeof(DEVICE_NAME)); + ble.gap().setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED); + ble.gap().setAdvertisingInterval(1000); /* 1000ms */ + ble.gap().startAdvertising(); + + pc.baud(9600); + + //Set up I2C + i2c.frequency(400000); // use fast (400 kHz) I2C + i2c2.frequency(400000); + + compass.setDefault(); + wait(0.1); + + + //lcd.init(); + //lcd.setBrightness(0.05); + + + // Read the WHO_AM_I register, this is a good test of communication + uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050 + //uint8_t whoami2 = mpu6050_2.readByte2(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050 + pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); + + if ((whoami == 0x68) /*|| (whoami2 == 0x68)*/) // WHO_AM_I should always be 0x68 + { + pc.printf("MPU6050 is online..."); + wait(1); + //lcd.clear(); + //lcd.printString("MPU6050 OK", 0, 0); + + + mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values + mpu6050.MPU6050SelfTest2(SelfTest2); // Start by performing self test and reporting values + pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r"); + pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r"); + pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r"); + pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r"); + pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r"); + pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r"); + wait(1); + + if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) + { + mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration + mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + + /*lcd.clear(); + lcd.printString("MPU6050", 0, 0); + lcd.printString("pass self test", 0, 1); + lcd.printString("initializing", 0, 2); */ + wait(2); + } + else + { + pc.printf("Device did not the pass self-test!\n\r"); + + /*lcd.clear(); + lcd.printString("MPU6050", 0, 0); + lcd.printString("no pass", 0, 1); + lcd.printString("self test", 0, 2);*/ + } + } + else + { + pc.printf("Could not connect to MPU6050: \n\r"); + pc.printf("%#x \n", whoami); + + /*lcd.clear(); + lcd.printString("MPU6050", 0, 0); + lcd.printString("no connection", 0, 1); + lcd.printString("0x", 0, 2); lcd.setXYAddress(20, 2); lcd.printChar(whoami);*/ + + while(1) ; // Loop forever if communication doesn't happen + } + i++; + tmpu.start(); + + kalman_init(&filter_pitch, R_matrix, Q_Gyro_matrix, Q_Accel_matrix); + kalman_init(&filter_roll, R_matrix, Q_Gyro_matrix, Q_Accel_matrix); + kalman_init(&filter_yaw, R_matrix, Q_Gyro_matrix, Q_Accel_matrix); + + ProgramTimer.start(); + loopStartTime = ProgramTimer.read_us(); + timer = loopStartTime; + // infinite loop + while (1) { + ark.getAccelero(Acc); + ark.getGyro(Gyro); + Mag[0] = compass.getMx(); + Mag[1] = compass.getMy(); + Mag[2] = compass.getMz(); + R = sqrt(std::pow(Acc[0] , 2) + std::pow(Acc[1] , 2) + std::pow(Acc[2] , 2)); + //R2 = sqrt(std::pow(Acc2[0] , 2) + std::pow(Acc2[1] , 2) + std::pow(Acc2[2] , 2)); + + kalman_predict(&filter_pitch, Gyro[0], (ProgramTimer.read_us() - timer)); + kalman_update(&filter_pitch, acos(Acc[0]/R)); + kalman_predict(&filter_roll, Gyro[1], (ProgramTimer.read_us() - timer)); + kalman_update(&filter_roll, acos(Acc[1]/R)); + kalman_predict(&filter_yaw, (float)Mag[1]/Mag[0], (ProgramTimer.read_us() - timer)); + kalman_update(&filter_yaw, atan((float)Mag[1]/Mag[0])); + + angle[0] = kalman_get_angle(&filter_pitch); + angle[1] = kalman_get_angle(&filter_roll); + angle[2] = kalman_get_angle(&filter_yaw); + + //yaw = atan2( (-Mag[1]*cos(angle[0]*Rad2Dree) + Mag[2]*sin(angle[0]*Rad2Dree)) , (Mag[0]*cos(angle[0] * Rad2Dree) + Mag[1]*sin(angle[0]*Rad2Dree)*sin(angle[1]*Rad2Dree)+ Mag[2]*sin(angle[1]*Rad2Dree)*cos(angle[0]*Rad2Dree)) ); + timer = ProgramTimer.read_us(); + + // If data ready bit set, all data registers have new data + if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt + mpu6050.readAccelData(accelCount); + } + + yaw = angle[2] * Rad2Dree; + if ((yaw < 46) && (yaw > 44) && (flag == 0)) + { + + central1[0] = yaw; + central1[1] = pitch; + central1[2] = roll; + central2[0] = yaw2; + central2[1] = pitch2; + central2[2] = roll2; + + + pc.printf("central x y z : %f %f %f \r\n", central1[0],central1[1],central1[2]); + flag = 1; + } + if (i == 1000) i = 0; + if (flag == 1) + { + pitch = angle[1] * Rad2Dree; + roll = angle[0] * Rad2Dree; + yaw = angle[2] * Rad2Dree; + //yaw = atan((float) Mag[1]/Mag[0])*Rad2Dree; + //yaw =atan2( (-Mag[1]*cos(roll) + Mag[2]*sin(roll) ) , (Mag[0]*cos(pitch) + Mag[1]*sin(pitch)*sin(roll)+ Mag[2]*sin(pitch)*cos(roll)) ); + //pc.printf("Pitch, Roll, Yaw: %f %f %f %f \n\r", angle[1] * Rad2Dree, angle[0] * Rad2Dree,yaw, atan((float)Mag[1]/Mag[0]) * Rad2Dree);// pitch, roll, yaw + //pc.printf("%d %d %d \r\n",Mag[0],Mag[1],Mag[2]); + //pc.printf("Magx Magy Magz : %d %d %d \r\n",Mag[0],Mag[1],Mag[2]); + //wait(0.1); + //hrService.updateHeartRate((uint8_t)yaw); + //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", drum1_min[0], drum1_max[0], drum1_min[2]); + int step = 0, step2 = 0; + //while (triggerSensorPolling && ble.getGapState().connected == 1) {}; + if (triggerSensorPolling && ble.getGapState().connected) { + triggerSensorPolling = false; + switch (stt1) + { + case 0: + //pc.printf("%d\n",stt1); + step = 0; + if ((yaw < drum2_max[0]) && (yaw > drum2_min[0]) && (pitch > drum2_max[1])) stt1 = 2; + else if ((yaw < drum1_max[0]) && (yaw > drum1_min[0]) && (pitch > drum1_max[1])) stt1 = 1; + else if ((yaw < drum3_max[0]) && (yaw > drum3_min[0]) && (pitch > drum3_max[1])) stt1 = 3; + else if ((yaw < drum4_max[0]) && (yaw > drum4_min[0]) && (pitch < drum4_max[1])) stt1 = 4; + else if ((yaw < drum5_max[0]) && (yaw > drum5_min[0]) && (pitch < drum5_max[1])) stt1 = 5; + //hrService.updateHeartRate((uint8_t)96); + break; + case 1: + //pc.printf("%d\n",stt1); + if ((drum1_stt1 == 0) && (yaw < drum1_max[0]) && (yaw > drum1_min[0]) && (pitch > drum1_max[1])) + { + //pc.printf("drum 1_1\r\n"); + drum1_stt1 = 1; + hrService.updateHeartRate((uint8_t)1); + wait(wait_time); + } + //else if ((yaw > drum1_max[0] + 2)|| (yaw < drum1_min[0] - 2) || (pitch < (drum1_max[1] - pitch_ratio)) /*&& (roll > drum1_max[2])*/) { + else if (pitch < (drum1_max[1] - pitch_ratio)){ + stt1 = 0 ; + drum1_stt1 = 0; + //pc.printf("up\r\n"); + } + break; + case 2: + //pc.printf("%d\n",stt1); + if ((drum2_stt1 == 0) && (yaw < drum2_max[0]) && (yaw > drum2_min[0]) && (pitch > drum2_max[1])) + { + //pc.printf("drum 2_2\r\n"); + drum2_stt1 = 1; + hrService.updateHeartRate((uint8_t)2); + wait(wait_time); + } + //else if ((yaw > drum2_max[0])|| (yaw < drum2_min[0]) || (pitch < (drum2_max[1] - pitch_ratio)) /*&& (roll > drum2_max[2])*/) { + else if (pitch < (drum2_max[1] - pitch_ratio)){ + stt1 = 0 ; + drum2_stt1 = 0; + //pc.printf("up\r\n"); + } + break; + case 3: + //pc.printf("%d\n",stt1); + if ((drum3_stt1 == 0) && (yaw < drum3_max[0]) && (yaw > drum3_min[0]) && (pitch > drum3_max[1])) + { + //pc.printf("drum 3_3\r\n"); + drum3_stt1 = 1; + hrService.updateHeartRate((uint8_t)3); + wait(wait_time); + } + //else if ((yaw > drum3_max[0])|| (yaw < drum3_min[0]) || (pitch < (drum3_max[1] - pitch_ratio)) /*&& (roll > drum2_max[2])*/) { + else if (pitch < (drum3_max[1] - pitch_ratio)){ + stt1 = 0 ; + drum3_stt1 = 0; + //pc.printf("up\r\n"); + } + break; + case 4: + //pc.printf("%d\n",stt1); + if (drum4_stt1 == 0) + { + if ((pitch > drum4_max[1]) && (step == 0)) + { + //pc.printf("drum 4_4\r\n"); + drum4_stt1 = 1; + hrService.updateHeartRate((uint8_t)4); + step = 1; + wait(wait_time); + } + } + //else if ((yaw > drum4_max[0])|| (yaw < drum4_min[0]) || (pitch > (drum4_max[1] + pitch_ratio)) /*&& (roll > drum2_max[2])*/) { + else if (pitch > (drum4_max[1] + pitch_ratio)){ + stt1 = 0 ; + drum4_stt1 = 0; + //pc.printf("up\r\n"); + } + break; + case 5: + //pc.printf("%d\n",stt1); + if (drum5_stt1 == 0) + { + if ((pitch > drum5_max[1]) && (step == 0)) + { + pc.printf("drum 5_5\r\n"); + drum5_stt1 = 1; + hrService.updateHeartRate((uint8_t)5); + step = 1; + wait(wait_time); + } + } + //else if ((yaw > drum5_max[0])|| (yaw < drum5_min[0]) || (pitch > (drum5_max[1] + pitch_ratio)) /*&& (roll > drum2_max[2])*/) { + else if (pitch > (drum5_max[1] + pitch_ratio)){ + stt1 = 0 ; + drum5_stt1 = 0; + //pc.printf("up\r\n"); + } + break; + default: + break; + }; + triggerSensorPolling = false; + switch (stt2){ + case 0: + //hrService.updateHeartRate((uint8_t)69); + //pc.printf("%d\r\n",stt2); + step2 = 0; + /* + if ((yaw < drum6_max[0]) && (yaw > drum6_min[0]) && (pitch > drum6_max[1])) stt1 = 1; + else if ((yaw < drum7_max[0]) && (yaw > drum7_min[0]) && (pitch > drum7_max[1])) stt1 = 2; + else if ((yaw < drum8_max[0]) && (yaw > drum8_min[0]) && (pitch > drum8_max[1])) stt1 = 3; + else if ((yaw < drum9_max[0]) && (yaw > drum9_min[0]) && (pitch < drum9_max[1])) stt1 = 4; + else if ((yaw < drum10_max[0]) && (yaw > drum10_min[0]) && (pitch < drum10_max[1])) stt1 = 5; + */ + //hrService.updateHeartRate((uint8_t)35); + break; + case 1: + //pc.printf("stt 2: %d ",stt2); + if ((drum1_stt2 == 0) && (yaw < drum6_max[0]) && (yaw > drum6_min[0]) && (pitch > drum6_max[1])) + { + pc.printf("drum 1_1\r\n"); + drum1_stt2 = 1; + hrService.updateHeartRate((uint8_t)1); + wait(wait_time); + } + //else if ((yaw > drum1_max[0]) || (yaw < drum6_min[0]) || (pitch < drum6_max[1] - pitch_ratio) /*&& (roll > drum1_max[2])*/) { + else if (pitch < (drum6_max[1] - pitch_ratio)){ + stt2 = 0 ; + drum1_stt2 = 0; + //pc.printf("up\r\n"); + } + break; + case 2: + //pc.printf("stt 2:%d ",stt2); + if (drum2_stt2 == 0) + { + pc.printf("drum 2_2\r\n"); + drum2_stt2 = 1; + hrService.updateHeartRate((uint8_t)2); + wait(wait_time); + } + //else if ((yaw > drum2_max[0])|| (yaw < drum7_min[0]) || (pitch < drum7_max[1] - pitch_ratio) /*&& (roll > drum2_max[2])*/) { + else if (pitch < (drum7_max[1] - pitch_ratio)){ + stt2 = 0 ; + drum2_stt2 = 0; + //pc.printf("up\r\n"); + } + break; + case 3: + //pc.printf("stt 2: %d ",stt2); + if (drum3_stt2 == 0) + { + pc.printf("drum 3_3\r\n"); + drum3_stt2 = 1; + hrService.updateHeartRate((uint8_t)3); + wait(wait_time); + } + //else if ((yaw > drum8_max[0])|| (yaw < drum8_min[0]) || (pitch < drum8_max[1] - pitch_ratio) /*&& (roll > drum2_max[2])*/) { + else if (pitch > (drum8_max[1] + pitch_ratio)){ + stt1 = 0 ; + drum3_stt2 = 0; + //pc.printf("up\r\n"); + } + break; + case 4: + pc.printf("stt 2: %d ",stt2); + if (drum4_stt2 == 0) + { + if ((pitch > drum9_max[1]) && (step2 == 0) && (yaw < drum9_max[0]) && (yaw > drum9_min[0]) && (pitch < drum9_max[1])) + { + pc.printf("drum 4_4\r\n"); + drum4_stt2 = 1; + hrService.updateHeartRate((uint8_t)4); + step2 = 1; + wait(wait_time); + } + } + //else if ((yaw > drum9_max[0])|| (yaw < drum9_min[0]) || (pitch > drum9_max[1] + pitch_ratio) /*&& (roll > drum2_max[2])*/) { + else if (pitch > (drum9_max[1] + pitch_ratio)){ + stt2 = 0 ; + drum4_stt2 = 0; + pc.printf("up\r\n"); + } + break; + case 5: + //pc.printf("stt 2: %d ",stt2); + if (drum5_stt2 == 0) + { + if ((pitch > drum10_max[1]) && (step2 == 0) && (yaw < drum10_max[0]) && (yaw > drum10_min[0])) + { + pc.printf("drum 5_5\r\n"); + drum5_stt2 = 1; + hrService.updateHeartRate((uint8_t)5); + step2 = 1; + wait(wait_time); + } + } + //else if ((yaw > drum10_max[0])|| (yaw < drum10_min[0]) || (pitch > drum10_max[1] + pitch_ratio) /*&& (roll > drum2_max[2])*/) { + else if (pitch < (drum10_max[1] - pitch_ratio)){ + stt2 = 0 ; + drum5_stt2 = 0; + pc.printf("up\r\n"); + } + break; + default: + break; + }; + } + else {ble.waitForEvent();} // low power wait for event +} +//} + } +} + +int main(void) +{ + +drum1_min[0] = 15 - ratioy; +drum1_max[0] = 15 + ratioy; +drum2_min[0] = 45 - ratioy; +drum2_max[0] = 45 + ratioy; +drum3_min[0] = 75 - ratioy; +drum3_max[0] = 75 + ratioy; +drum4_min[0] = 16 - ratioy; +drum4_max[0] = 16 + ratioy; +drum5_min[0] = 85 - ratioy; +drum5_max[0] = 85 + ratioy; +drum6_min[0] = 0 - ratioy; +drum6_max[0] = 0 + ratioy; +drum7_min[0] = 0 - ratioy; +drum7_max[0] = 0 + ratioy; +drum8_min[0] = 0 - ratioy; +drum8_max[0] = 0 + ratioy; +drum9_min[0] = 0 - ratioy; +drum9_max[0] = 0 + ratioy; +drum10_min[0] = 0 - ratioy; +drum10_max[0] = 0 + ratioy; + +drum1_max[1] = 105; +drum2_max[1] = 100; +drum3_max[1] = 105; +drum4_max[1] = 20; +drum5_max[1] = 20; +drum6_max[1] = 0; +drum7_max[1] = 0; +drum8_max[1] = 0; +drum9_max[1] = 0; +drum10_max[1] = 0; + + Ticker ticker; + ticker.attach(periodicCallback, 0.0001); // blink LED every second + mybutton.fall(get); + + + BLE::Instance().init(bleInitComplete); +} + +void get() +{ + j++; + led1 = 0; + //gettime.start(); + //while (gettime.read() < 2) {}; + if (j == 1){ + drum1_min[0] = yaw - ratioy; + drum1_min[1] = angle[1] * Rad2Dree; + drum1_min[2] = angle[0] * Rad2Dree - ratio; + + drum1_max[0] = yaw + ratioy; + drum1_max[1] = angle[1] * Rad2Dree; + drum1_max[2] = angle[0] * Rad2Dree + ratio; + } + else if (j == 2){ + drum2_min[0] = yaw - ratioy; + drum2_min[1] = angle[1] * Rad2Dree; + drum2_min[2] = angle[0] * Rad2Dree - ratio; + + drum2_max[0] = yaw + ratioy; + drum2_max[1] = angle[1] * Rad2Dree; + drum2_max[2] = angle[0] * Rad2Dree + ratio; + } + else if (j == 3){ + drum3_min[0] = yaw - ratioy; + drum3_min[1] = angle[1] * Rad2Dree; + drum3_min[2] = angle[0] * Rad2Dree - ratio; + + drum3_max[0] = yaw + ratioy; + drum3_max[1] = angle[1] * Rad2Dree; + drum3_max[2] = angle[0] * Rad2Dree + ratio; + } + else if (j == 4){ + drum4_min[0] = yaw - ratioy; + drum4_min[1] = angle[1] * Rad2Dree; + drum4_min[2] = angle[0] * Rad2Dree - ratio; + + drum4_max[0] = yaw + ratioy; + drum4_max[1] = angle[1] * Rad2Dree; + drum4_max[2] = angle[0] * Rad2Dree + ratio; + } + else if (j == 5){ + drum5_min[0] = yaw - ratioy; + drum5_min[1] = angle[1] * Rad2Dree; + drum5_min[2] = angle[0] * Rad2Dree - ratio; + + drum5_max[0] = yaw + ratioy; + drum5_max[1] = angle[1] * Rad2Dree; + drum5_max[2] = angle[0] * Rad2Dree + ratio; + } + else if (j == 6){ + drum6_min[0] = yaw - ratioy; + drum6_min[1] = angle[1] * Rad2Dree; + drum6_min[2] = angle[0] * Rad2Dree - ratio; + + drum6_max[0] = yaw + ratioy; + drum6_max[1] = angle[1] * Rad2Dree; + drum6_max[2] = angle[0] * Rad2Dree + ratio; + } + else if (j == 7){ + drum7_min[0] = yaw - ratioy; + drum7_min[1] = angle[1] * Rad2Dree; + drum7_min[2] = angle[0] * Rad2Dree - ratio; + + drum7_max[0] = yaw + ratioy; + drum7_max[1] = angle[1] * Rad2Dree; + drum7_max[2] = angle[0] * Rad2Dree + ratio; + } + else if (j == 8){ + drum8_min[0] = yaw - ratioy; + drum8_min[1] = angle[1] * Rad2Dree; + drum8_min[2] = angle[0] * Rad2Dree - ratio; + + drum8_max[0] = yaw + ratioy; + drum8_max[1] = angle[1] * Rad2Dree; + drum8_max[2] = angle[0] * Rad2Dree + ratio; + } + else if (j == 9){ + drum9_min[0] = yaw - ratioy; + drum9_min[1] = angle[1] * Rad2Dree; + drum9_min[2] = angle[0] * Rad2Dree - ratio; + + drum9_max[0] = yaw + ratioy; + drum9_max[1] = angle[1] * Rad2Dree; + drum9_max[2] = angle[0] * Rad2Dree + ratio; + } + else if (j == 10){ + drum10_min[0] = yaw - ratioy; + drum10_min[1] = angle[1] * Rad2Dree; + drum10_min[2] = angle[0] * Rad2Dree - ratio; + + drum10_max[0] = yaw + ratioy; + drum10_max[1] = angle[1] * Rad2Dree; + drum10_max[2] = angle[0] * Rad2Dree + ratio; + } + if (j == 10) j = 0; + pc.printf("x,y,z: %f %f %f \r\n",yaw,pitch,roll); + led1 = 1; +} +
diff -r 000000000000 -r ffd0caf3db9f mbed.bld --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed.bld Tue Nov 22 02:57:33 2016 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed/builds/9bcdf88f62b0 \ No newline at end of file