mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
targets/TARGET_STM/TARGET_STM32F0/us_ticker.c
- Committer:
- fwndz
- Date:
- 2016-12-21
- Revision:
- 153:da99e106a1c2
- Parent:
- 149:156823d33999
File content as of revision 153:da99e106a1c2:
/* mbed Microcontroller Library * Copyright (c) 2014, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <stddef.h> #include "us_ticker_api.h" #include "PeripheralNames.h" #if defined(TARGET_STM32F030R8) || defined(TARGET_STM32F070RB) // Timer selection #define TIM_MST TIM1 static TIM_HandleTypeDef TimMasterHandle; static int us_ticker_inited = 0; volatile uint32_t SlaveCounter = 0; volatile uint32_t oc_int_part = 0; volatile uint16_t oc_rem_part = 0; void set_compare(uint16_t count) { TimMasterHandle.Instance = TIM_MST; // Set new output compare value __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_1, count); // Enable IT __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC1); } void us_ticker_init(void) { if (us_ticker_inited) return; us_ticker_inited = 1; HAL_InitTick(0); // The passed value is not used } uint32_t us_ticker_read() { uint32_t counter, counter2; if (!us_ticker_inited) us_ticker_init(); // A situation might appear when Master overflows right after Slave is read and before the // new (overflowed) value of Master is read. Which would make the code below consider the // previous (incorrect) value of Slave and the new value of Master, which would return a // value in the past. Avoid this by computing consecutive values of the timer until they // are properly ordered. counter = (uint32_t)(SlaveCounter << 16); counter += TIM_MST->CNT; while (1) { counter2 = (uint32_t)(SlaveCounter << 16); counter2 += TIM_MST->CNT; if (counter2 > counter) { break; } counter = counter2; } return counter2; } void us_ticker_set_interrupt(timestamp_t timestamp) { int delta = (int)((uint32_t)timestamp - us_ticker_read()); uint16_t cval = TIM_MST->CNT; if (delta <= 0) { // This event was in the past us_ticker_irq_handler(); } else { oc_int_part = (uint32_t)(delta >> 16); oc_rem_part = (uint16_t)(delta & 0xFFFF); if (oc_rem_part <= (0xFFFF - cval)) { set_compare(cval + oc_rem_part); oc_rem_part = 0; } else { set_compare(0xFFFF); oc_rem_part = oc_rem_part - (0xFFFF - cval); } } } void us_ticker_disable_interrupt(void) { TimMasterHandle.Instance = TIM_MST; __HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1); } void us_ticker_clear_interrupt(void) { TimMasterHandle.Instance = TIM_MST; if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) { __HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1); } } #elif defined (TARGET_STM32F051R8) // Timer selection: #define TIM_MST TIM1 #define TIM_MST_UP_IRQ TIM1_BRK_UP_TRG_COM_IRQn #define TIM_MST_OC_IRQ TIM1_CC_IRQn #define TIM_MST_RCC __TIM1_CLK_ENABLE() static TIM_HandleTypeDef TimMasterHandle; static int us_ticker_inited = 0; static volatile uint32_t SlaveCounter = 0; static volatile uint32_t oc_int_part = 0; static volatile uint16_t oc_rem_part = 0; void set_compare(uint16_t count) { TimMasterHandle.Instance = TIM_MST; // Set new output compare value __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_1, count); // Enable IT __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC1); } // Used to increment the slave counter static void tim_update_irq_handler(void) { TimMasterHandle.Instance = TIM_MST; // Clear Update interrupt flag if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_UPDATE) == SET) { __HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_UPDATE); SlaveCounter++; } } // Used by interrupt system static void tim_oc_irq_handler(void) { uint16_t cval = TIM_MST->CNT; TimMasterHandle.Instance = TIM_MST; // Clear CC1 interrupt flag if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) { __HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1); } if (oc_rem_part > 0) { set_compare(oc_rem_part); // Finish the remaining time left oc_rem_part = 0; } else { if (oc_int_part > 0) { set_compare(0xFFFF); oc_rem_part = cval; // To finish the counter loop the next time oc_int_part--; } else { us_ticker_irq_handler(); } } } void us_ticker_init(void) { if (us_ticker_inited) return; us_ticker_inited = 1; // Enable timer clock TIM_MST_RCC; // Configure time base TimMasterHandle.Instance = TIM_MST; TimMasterHandle.Init.Period = 0xFFFF; TimMasterHandle.Init.Prescaler = (uint32_t)(SystemCoreClock / 1000000) - 1; // 1 us tick TimMasterHandle.Init.ClockDivision = 0; TimMasterHandle.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_Base_Init(&TimMasterHandle); // Configure interrupts __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_UPDATE); // Update interrupt used for 32-bit counter NVIC_SetVector(TIM_MST_UP_IRQ, (uint32_t)tim_update_irq_handler); NVIC_EnableIRQ(TIM_MST_UP_IRQ); // Output compare interrupt used for timeout feature NVIC_SetVector(TIM_MST_OC_IRQ, (uint32_t)tim_oc_irq_handler); NVIC_EnableIRQ(TIM_MST_OC_IRQ); // Enable timer HAL_TIM_Base_Start(&TimMasterHandle); } uint32_t us_ticker_read() { uint32_t counter, counter2; if (!us_ticker_inited) us_ticker_init(); // A situation might appear when Master overflows right after Slave is read and before the // new (overflowed) value of Master is read. Which would make the code below consider the // previous (incorrect) value of Slave and the new value of Master, which would return a // value in the past. Avoid this by computing consecutive values of the timer until they // are properly ordered. counter = (uint32_t)(SlaveCounter << 16); counter += TIM_MST->CNT; while (1) { counter2 = (uint32_t)(SlaveCounter << 16); counter2 += TIM_MST->CNT; if (counter2 > counter) { break; } counter = counter2; } return counter2; } void us_ticker_set_interrupt(timestamp_t timestamp) { int delta = (int)((uint32_t)timestamp - us_ticker_read()); uint16_t cval = TIM_MST->CNT; if (delta <= 0) { // This event was in the past us_ticker_irq_handler(); } else { oc_int_part = (uint32_t)(delta >> 16); oc_rem_part = (uint16_t)(delta & 0xFFFF); if (oc_rem_part <= (0xFFFF - cval)) { set_compare(cval + oc_rem_part); oc_rem_part = 0; } else { set_compare(0xFFFF); oc_rem_part = oc_rem_part - (0xFFFF - cval); } } } void us_ticker_disable_interrupt(void) { TimMasterHandle.Instance = TIM_MST; __HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1); } void us_ticker_clear_interrupt(void) { TimMasterHandle.Instance = TIM_MST; if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) { __HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1); } } #else // 32-bit timer selection #define TIM_MST TIM2 static TIM_HandleTypeDef TimMasterHandle; static int us_ticker_inited = 0; void us_ticker_init(void) { if (us_ticker_inited) return; us_ticker_inited = 1; TimMasterHandle.Instance = TIM_MST; HAL_InitTick(0); // The passed value is not used } uint32_t us_ticker_read() { if (!us_ticker_inited) us_ticker_init(); return TIM_MST->CNT; } void us_ticker_set_interrupt(timestamp_t timestamp) { // Set new output compare value __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_1, (uint32_t)timestamp); // Enable IT __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC1); } void us_ticker_disable_interrupt(void) { __HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1); } void us_ticker_clear_interrupt(void) { __HAL_TIM_CLEAR_IT(&TimMasterHandle, TIM_IT_CC1); } #endif