mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
targets/TARGET_ONSEMI/TARGET_NCS36510/rtc.c
- Committer:
- fwndz
- Date:
- 2016-12-21
- Revision:
- 153:da99e106a1c2
- Parent:
- 150:02e0a0aed4ec
File content as of revision 153:da99e106a1c2:
/** ******************************************************************************* * @file rtc.c * @brief Implementation of a Rtc driver * @internal * @author ON Semiconductor * $Rev: 3525 $ * $Date: 2015-07-20 15:24:25 +0530 (Mon, 20 Jul 2015) $ ****************************************************************************** * Copyright 2016 Semiconductor Components Industries LLC (d/b/a ON Semiconductor). * All rights reserved. This software and/or documentation is licensed by ON Semiconductor * under limited terms and conditions. The terms and conditions pertaining to the software * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf * (ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software) and * if applicable the software license agreement. Do not use this software and/or * documentation unless you have carefully read and you agree to the limited terms and * conditions. By using this software and/or documentation, you agree to the limited * terms and conditions. * * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. * @endinternal * * @ingroup rtc * * @details * A real-time clock (RTC) is a computer clock ,that keeps track of the current time. The heart of the RTC is a series of * freely running counters one for each time unit, The series of counters is linked as follows: a roll over event of * the seconds counter produces a minutes enable pulse; a roll over event of the minutes counter produces an hours * enable pulse, etc.Note that all Counter registers are in an undefined state on power-up. * Use the Reset bit in the Control Register to reset the counters to their default values. * DIVISOR is the register containing the value to divide the clock frequency to produce 1Hz strobe ; 1Hz strobe is used * internally to time the incrementing of the Seconds Counter. * There is a set of register to set the values in the counter for each time unit.from where time is start to increment. * There is another set of register to set the ALARM ...Each of the Alarm Registers can be programmed with a value that * is used to compare to a Counter Register in order to produce an alarm (an interrupt) when the values match. * There is a programmable bit in each Alarm Register that determines if the alarm occurs upon a value match, or * if the alarm occurs upon a Counter increment condition. * */ #include "rtc.h" #include "mbed_assert.h" #include "lp_ticker_api.h" static uint16_t SubSecond; static uint64_t LastRtcTimeus; /* See rtc.h for details */ void fRtcInit(void) { CLOCK_ENABLE(CLOCK_RTC); /* enable rtc peripheral */ CLOCKREG->CCR.BITS.RTCEN = True; /* Enable RTC clock 32K */ /* Reset RTC control register */ RTCREG->CONTROL.WORD = False; /* Initialize all counters */ RTCREG->SECOND_COUNTER = False; RTCREG->SUB_SECOND_COUNTER = False; RTCREG->SECOND_ALARM = False; RTCREG->SUB_SECOND_ALARM = False; LastRtcTimeus = 0; /* Reset RTC Status register */ RTCREG->STATUS.WORD = False; /* Clear interrupt status */ RTCREG->INT_CLEAR.WORD = False; /* Start sec & sub_sec counter */ while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);/* Wait previous write to complete */ RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); /* enable interruption associated with the rtc at NVIC level */ NVIC_SetVector(Rtc_IRQn,(uint32_t)fRtcHandler); /* TODO define lp_ticker_isr */ NVIC_ClearPendingIRQ(Rtc_IRQn); NVIC_EnableIRQ(Rtc_IRQn); while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ return; } /* See rtc.h for details */ void fRtcFree(void) { /* Reset RTC control register */ RTCREG->CONTROL.WORD = False; /* disable interruption associated with the rtc */ NVIC_DisableIRQ(Rtc_IRQn); while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ } /* See rtc.h for details */ void fRtcSetInterrupt(uint32_t timestamp) { SubSecond = False; uint32_t Second = False, EnableInterrupt = False; uint8_t DividerAdjust = 1; if(timestamp) { if(timestamp >= RTC_SEC_TO_US) { /* TimeStamp is big enough to set second alarm */ Second = ((timestamp / RTC_SEC_TO_US) & RTC_SEC_MASK); /* Convert micro second to second */ RTCREG->SECOND_ALARM = Second; /* Write to alarm register */ /* Enable second interrupt */ EnableInterrupt = True << RTC_CONTROL_SEC_CNT_INT_BIT_POS; } timestamp = timestamp - Second * RTC_SEC_TO_US; /* Take out micro second for sub second alarm */ if(timestamp > False) { /* We have some thing for sub second */ /* Convert micro second to sub_seconds(each count = 30.5 us) */ if(timestamp > 131000) { DividerAdjust = 100; } volatile uint64_t Temp = (timestamp / DividerAdjust * RTC_CLOCK_HZ); Temp = (uint64_t)(Temp / RTC_SEC_TO_US * DividerAdjust); SubSecond = Temp & RTC_SUB_SEC_MASK; if(SubSecond <= 5) { SubSecond = 0; } if(SubSecond > False) { /* Second interrupt not enabled */ /* Set SUB SEC_ALARM */ RTCREG->SUB_SECOND_ALARM = SubSecond; /* Write to sub second alarm */ /* Enable sub second interrupt */ EnableInterrupt |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); } } RTCREG->CONTROL.WORD |= EnableInterrupt; /* Enable RTC interrupt */ NVIC_EnableIRQ(Rtc_IRQn); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) | (True << RTC_STATUS_SEC_ALARM_WRT_BIT_POS) | (True << RTC_STATUS_CONTROL_WRT_BIT_POS))) == True); } return; } /* See rtc.h for details */ void fRtcDisableInterrupt(void) { /* Disable RTC interrupt */ NVIC_DisableIRQ(Rtc_IRQn); } /* See rtc.h for details */ void fRtcEnableInterrupt(void) { /* Enable RTC interrupt */ NVIC_EnableIRQ(Rtc_IRQn); } /* See rtc.h for details */ void fRtcClearInterrupt(void) { /* Disable subsec/sec interrupt */ /* Clear sec & sub_sec interrupts */ RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) | (True << RTC_INT_CLR_SEC_BIT_POS)); while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) | (True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS))) == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ } /* See rtc.h for details */ uint64_t fRtcRead(void) { uint32_t Second; uint16_t SubSecond; /* Hardware Bug fix: The rollover of the sub-second counter initiates the increment of the second counter. * That means there is one cycle where the sub-second has rolled back to zero and the second counter has not incremented * and a read during that cycle will be incorrect. That will occur for one RTC cycle and that is about 31us of exposure. * If you read a zero in the sub-second counter then increment the second counter by 1. * Alternatively, subtract 1 from the Sub-seconds counter to align the Second and Sub-Second rollover. */ /* Read the Second and Sub-second counters, then read the Second counter again. * If it changed, then the Second rolled over while reading Sub-seconds, so go back and read them both again. */ do { Second = RTCREG->SECOND_COUNTER; /* Get SEC_COUNTER reg value */ SubSecond = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK; /* Get SUB_SEC_COUNTER reg value */ } while (Second != RTCREG->SECOND_COUNTER); /* Repeat if the second has changed */ //note: casting to float removed to avoid reduction in resolution uint64_t RtcTimeus = ((uint64_t)SubSecond * RTC_SEC_TO_US / RTC_CLOCK_HZ) + ((uint64_t)Second * RTC_SEC_TO_US); /*check that the time did not go backwards */ MBED_ASSERT(RtcTimeus >= LastRtcTimeus); LastRtcTimeus = RtcTimeus; return RtcTimeus; } /* See rtc.h for details */ void fRtcWrite(uint64_t RtcTimeus) { uint32_t Second = False; uint16_t SubSecond = False; /* Stop RTC */ RTCREG->CONTROL.WORD &= ~((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); if(RtcTimeus > RTC_SEC_TO_US) { /* TimeStamp is big enough to set second counter */ Second = ((RtcTimeus / RTC_SEC_TO_US) & RTC_SEC_MASK); } RTCREG->SECOND_COUNTER = Second; RtcTimeus = RtcTimeus - (Second * RTC_SEC_TO_US); if(RtcTimeus > False) { /* Convert TimeStamp to sub_seconds */ SubSecond = (uint16_t)((float)(RtcTimeus * RTC_CLOCK_HZ / RTC_SEC_TO_US)) & RTC_SUB_SEC_MASK; } /* Set SUB_SEC_ALARM */ RTCREG->SUB_SECOND_COUNTER = SubSecond; while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ /* Start RTC */ RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ } /* See rtc.h for details */ void fRtcHandler(void) { /* SUB_SECOND/SECOND interrupt occured */ volatile uint32_t TempStatus = RTCREG->STATUS.WORD; /* Disable RTC interrupt */ NVIC_DisableIRQ(Rtc_IRQn); /* Clear sec & sub_sec interrupts */ RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) | (True << RTC_INT_CLR_SEC_BIT_POS)); /* TODO ANDing SUB_SEC & SEC interrupt - work around for RTC issue - will be resolved in REV G */ if(TempStatus & RTC_SEC_INT_STATUS_MASK) { /* Second interrupt occured */ if(SubSecond > False) { /* Set SUB SEC_ALARM */ RTCREG->SUB_SECOND_ALARM = SubSecond + RTCREG->SUB_SECOND_COUNTER; /* Enable sub second interrupt */ RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); } else { /* We reach here after second interrupt is occured */ RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) | (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS); } } else { /* We reach here after sub_second or (Sub second + second) interrupt occured */ /* Disable Second and sub_second interrupt */ RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) | (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS); } NVIC_EnableIRQ(Rtc_IRQn); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) | (True << RTC_STATUS_CONTROL_WRT_BIT_POS) | (True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) | (True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS))) == True); lp_ticker_irq_handler(); } boolean fIsRtcEnabled(void) { if(RTCREG->CONTROL.BITS.SUB_SEC_COUNTER_EN | RTCREG->CONTROL.BITS.SEC_COUNTER_EN) { return True; } else { return False; } }