mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
targets/TARGET_ONSEMI/TARGET_NCS36510/ncs36510_i2c.c@153:da99e106a1c2, 2016-12-21 (annotated)
- Committer:
- fwndz
- Date:
- Wed Dec 21 13:29:33 2016 +0000
- Revision:
- 153:da99e106a1c2
- Parent:
- 149:156823d33999
init
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
<> | 149:156823d33999 | 1 | /** |
<> | 149:156823d33999 | 2 | ****************************************************************************** |
<> | 149:156823d33999 | 3 | * @file i2c.c |
<> | 149:156823d33999 | 4 | * @brief I2C driver |
<> | 149:156823d33999 | 5 | * @internal |
<> | 149:156823d33999 | 6 | * @author ON Semiconductor |
<> | 149:156823d33999 | 7 | * $Rev: $ |
<> | 149:156823d33999 | 8 | * $Date: 2016-04-12 $ |
<> | 149:156823d33999 | 9 | ****************************************************************************** |
<> | 149:156823d33999 | 10 | * Copyright 2016 Semiconductor Components Industries LLC (d/b/a ON Semiconductor). |
<> | 149:156823d33999 | 11 | * All rights reserved. This software and/or documentation is licensed by ON Semiconductor |
<> | 149:156823d33999 | 12 | * under limited terms and conditions. The terms and conditions pertaining to the software |
<> | 149:156823d33999 | 13 | * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf |
<> | 149:156823d33999 | 14 | * (ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software) and |
<> | 149:156823d33999 | 15 | * if applicable the software license agreement. Do not use this software and/or |
<> | 149:156823d33999 | 16 | * documentation unless you have carefully read and you agree to the limited terms and |
<> | 149:156823d33999 | 17 | * conditions. By using this software and/or documentation, you agree to the limited |
<> | 149:156823d33999 | 18 | * terms and conditions. |
<> | 149:156823d33999 | 19 | * |
<> | 149:156823d33999 | 20 | * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED |
<> | 149:156823d33999 | 21 | * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF |
<> | 149:156823d33999 | 22 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. |
<> | 149:156823d33999 | 23 | * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, |
<> | 149:156823d33999 | 24 | * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. |
<> | 149:156823d33999 | 25 | * @endinternal |
<> | 149:156823d33999 | 26 | * |
<> | 149:156823d33999 | 27 | * @ingroup i2c |
<> | 149:156823d33999 | 28 | * |
<> | 149:156823d33999 | 29 | * @details |
<> | 149:156823d33999 | 30 | * |
<> | 149:156823d33999 | 31 | * <h1> Reference document(s) </h1> |
<> | 149:156823d33999 | 32 | * <p> |
<> | 149:156823d33999 | 33 | * IPC7208 APB I2C Master Design Specification v1.3 |
<> | 149:156823d33999 | 34 | * </p> |
<> | 149:156823d33999 | 35 | * The I2C bus is an industry-standard two-wire (clock and data) serial communication bus between master(initiator) and slave device. |
<> | 149:156823d33999 | 36 | * Within the procedure of the I2C-bus, unique situations arise which are defined as START and STOP conditions .A HIGH to LOW transition on |
<> | 149:156823d33999 | 37 | * the SDA line while SCL is HIGH is one such unique case. This situation indicates a START condition.A LOW to HIGH transition on the |
<> | 149:156823d33999 | 38 | * SDA line while SCL is HIGH defines a STOP condition.START and STOP conditions are always generated by the master. The bus is considered |
<> | 149:156823d33999 | 39 | * to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition. |
<> | 149:156823d33999 | 40 | * A master may start a transfer only if the bus is free. Two or more masters may generate a START condition. |
<> | 149:156823d33999 | 41 | * Every byte put on the SDA line must be 8-bits long.Each byte has to be followed by an acknowledge bit. |
<> | 149:156823d33999 | 42 | * This APB(Advanced peripheral bus) I2C Master is an APB Slave peripheral that can also serves as an I2C bus Master. The Command register |
<> | 149:156823d33999 | 43 | * is the programming interface to the I2C Engine. The commands arrive at the I2C Engine via the Command FIFO,so the first valid command |
<> | 149:156823d33999 | 44 | * that is written to the Command register is the first I2C instruction implemented on the I2C bus.Because the command interface provides |
<> | 149:156823d33999 | 45 | * the basic building blocks for any I2C transaction, access to a wide range of I2C slave devices is supported. |
<> | 149:156823d33999 | 46 | * I2C can be enabled by setting bit 7 of the control register . |
<> | 149:156823d33999 | 47 | * There is a generated clock (a divided version of the APB clock) in this module that may be used as the I2C System Clock. |
<> | 149:156823d33999 | 48 | * There are two FIFO in the I2C; Command FIFO and Read data FIFO |
<> | 149:156823d33999 | 49 | * The commands(I2C instructions) and data arrive at the I2C Engine via the Command FIFO. |
<> | 149:156823d33999 | 50 | * if the command FIFO is empty , up to 32 commands can be written to the command interface , it is programmer's responsibility to keep |
<> | 149:156823d33999 | 51 | * the track of command FIFO's status either by interrupt or by polling method by reading status register, which represents Operational |
<> | 149:156823d33999 | 52 | * Status of the I2C Module and its sub-modules.The action from the processor may be necessary after reading the status register.Reading |
<> | 149:156823d33999 | 53 | * the Status register clears the blkInt Interrupt signal.Read data FIFO is where data read by the processor from I2C slave is placed . |
<> | 149:156823d33999 | 54 | * |
<> | 149:156823d33999 | 55 | * |
<> | 149:156823d33999 | 56 | * <h1> Functional description (internal) </h1> |
<> | 149:156823d33999 | 57 | * <p> |
<> | 149:156823d33999 | 58 | * |
<> | 149:156823d33999 | 59 | * </p> |
<> | 149:156823d33999 | 60 | */ |
<> | 149:156823d33999 | 61 | #if DEVICE_I2C |
<> | 149:156823d33999 | 62 | #include "i2c.h" |
<> | 149:156823d33999 | 63 | |
<> | 149:156823d33999 | 64 | /* See i2c.h for details */ |
<> | 149:156823d33999 | 65 | void fI2cInit(i2c_t *obj,PinName sda,PinName scl) |
<> | 149:156823d33999 | 66 | { |
<> | 149:156823d33999 | 67 | uint32_t clockDivisor; |
<> | 149:156823d33999 | 68 | /* determine the I2C to use */ |
<> | 149:156823d33999 | 69 | I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA); |
<> | 149:156823d33999 | 70 | I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL); |
<> | 149:156823d33999 | 71 | obj->membase = (I2cIpc7208Reg_pt)pinmap_merge(i2c_sda, i2c_scl); |
<> | 149:156823d33999 | 72 | MBED_ASSERT((int)obj->membase != NC); |
<> | 149:156823d33999 | 73 | |
<> | 149:156823d33999 | 74 | /* By default disbale interrupts */ |
<> | 149:156823d33999 | 75 | obj->membase->IER.WORD = False; |
<> | 149:156823d33999 | 76 | |
<> | 149:156823d33999 | 77 | /* enable interrupt associated with the device */ |
<> | 149:156823d33999 | 78 | if(obj->membase == I2C1REG) { |
<> | 149:156823d33999 | 79 | CLOCK_ENABLE(CLOCK_I2C); /* enable i2c peripheral */ |
<> | 149:156823d33999 | 80 | NVIC_ClearPendingIRQ(I2C_IRQn); |
<> | 149:156823d33999 | 81 | NVIC_EnableIRQ(I2C_IRQn); |
<> | 149:156823d33999 | 82 | } else { |
<> | 149:156823d33999 | 83 | CLOCK_ENABLE(CLOCK_I2C2); /* enable i2c peripheral */ |
<> | 149:156823d33999 | 84 | NVIC_ClearPendingIRQ(I2C2_IRQn); |
<> | 149:156823d33999 | 85 | NVIC_EnableIRQ(I2C2_IRQn); |
<> | 149:156823d33999 | 86 | } |
<> | 149:156823d33999 | 87 | |
<> | 149:156823d33999 | 88 | /*select I2C clock source */ |
<> | 149:156823d33999 | 89 | obj->membase->CR.BITS.I2C_CLK_SRC = True; |
<> | 149:156823d33999 | 90 | |
<> | 149:156823d33999 | 91 | /* enable I2C clock divider */ |
<> | 149:156823d33999 | 92 | obj->membase->CR.BITS.I2C_APB_CD_EN = True; |
<> | 149:156823d33999 | 93 | |
<> | 149:156823d33999 | 94 | /* set default baud rate at 100k */ |
<> | 149:156823d33999 | 95 | clockDivisor = ((fClockGetPeriphClockfrequency() / 100000) >> 2) - 2; |
<> | 149:156823d33999 | 96 | obj->membase->CR.BITS.CD_VAL = (clockDivisor & I2C_CLOCKDIVEDER_VAL_MASK); |
<> | 149:156823d33999 | 97 | obj->membase->PRE_SCALE_REG = (clockDivisor & I2C_APB_CLK_DIVIDER_VAL_MASK) >> 5; /**< Zero pre-scale value not allowed */ |
<> | 149:156823d33999 | 98 | |
<> | 149:156823d33999 | 99 | /* Cross bar setting */ |
<> | 149:156823d33999 | 100 | pinmap_pinout(sda, PinMap_I2C_SDA); |
<> | 149:156823d33999 | 101 | pinmap_pinout(scl, PinMap_I2C_SCL); |
<> | 149:156823d33999 | 102 | |
<> | 149:156823d33999 | 103 | /*Enable open drain & pull up for sda & scl pin */ |
<> | 149:156823d33999 | 104 | pin_mode(sda, OpenDrainPullUp); |
<> | 149:156823d33999 | 105 | pin_mode(scl, OpenDrainPullUp); |
<> | 149:156823d33999 | 106 | |
<> | 149:156823d33999 | 107 | /* PAD drive strength */ |
<> | 149:156823d33999 | 108 | PadReg_t *padRegSda = (PadReg_t*)(PADREG_BASE + (sda * PAD_REG_ADRS_BYTE_SIZE)); |
<> | 149:156823d33999 | 109 | PadReg_t *padRegScl = (PadReg_t*)(PADREG_BASE + (scl * PAD_REG_ADRS_BYTE_SIZE)); |
<> | 149:156823d33999 | 110 | |
<> | 149:156823d33999 | 111 | CLOCK_ENABLE(CLOCK_PAD); |
<> | 149:156823d33999 | 112 | padRegSda->PADIO0.BITS.POWER = 1; /* sda: Drive strength */ |
<> | 149:156823d33999 | 113 | padRegScl->PADIO0.BITS.POWER = 1; /* scl: Drive strength */ |
<> | 149:156823d33999 | 114 | CLOCK_DISABLE(CLOCK_PAD); |
<> | 149:156823d33999 | 115 | |
<> | 149:156823d33999 | 116 | CLOCK_ENABLE(CLOCK_GPIO); |
<> | 149:156823d33999 | 117 | GPIOREG->W_OUT |= ((True << sda) | (True << scl)); |
<> | 149:156823d33999 | 118 | CLOCK_DISABLE(CLOCK_GPIO); |
<> | 149:156823d33999 | 119 | |
<> | 149:156823d33999 | 120 | /* Enable i2c module */ |
<> | 149:156823d33999 | 121 | obj->membase->CR.BITS.I2C_MODULE_EN = True; |
<> | 149:156823d33999 | 122 | } |
<> | 149:156823d33999 | 123 | |
<> | 149:156823d33999 | 124 | /* See i2c.h for details */ |
<> | 149:156823d33999 | 125 | void fI2cFrequency(i2c_t *obj, uint32_t hz) |
<> | 149:156823d33999 | 126 | { |
<> | 149:156823d33999 | 127 | /* Set user baud rate */ |
<> | 149:156823d33999 | 128 | uint32_t clockDivisor; |
<> | 149:156823d33999 | 129 | clockDivisor = ((fClockGetPeriphClockfrequency() / hz) >> 2) - 2; |
<> | 149:156823d33999 | 130 | obj->membase->CR.BITS.CD_VAL = (clockDivisor & I2C_CLOCKDIVEDER_VAL_MASK); |
<> | 149:156823d33999 | 131 | obj->membase->PRE_SCALE_REG = (clockDivisor & I2C_APB_CLK_DIVIDER_VAL_MASK) >> 5; /**< Zero pre-scale value not allowed */ |
<> | 149:156823d33999 | 132 | } |
<> | 149:156823d33999 | 133 | |
<> | 149:156823d33999 | 134 | /* See i2c.h for details */ |
<> | 149:156823d33999 | 135 | int32_t fI2cStart(i2c_t *obj) |
<> | 149:156823d33999 | 136 | { |
<> | 149:156823d33999 | 137 | /* Send start bit */ |
<> | 149:156823d33999 | 138 | obj->membase->CMD_REG = I2C_CMD_START; |
<> | 149:156823d33999 | 139 | return I2C_API_STATUS_SUCCESS; |
<> | 149:156823d33999 | 140 | } |
<> | 149:156823d33999 | 141 | |
<> | 149:156823d33999 | 142 | /* See i2c.h for details */ |
<> | 149:156823d33999 | 143 | int32_t fI2cStop(i2c_t *obj) |
<> | 149:156823d33999 | 144 | { |
<> | 149:156823d33999 | 145 | /* Send stop bit */ |
<> | 149:156823d33999 | 146 | obj->membase->CMD_REG = I2C_CMD_STOP; |
<> | 149:156823d33999 | 147 | if (obj->membase->STATUS.WORD & (I2C_STATUS_CMD_FIFO_FULL_BIT | |
<> | 149:156823d33999 | 148 | I2C_STATUS_CMD_FIFO_OFL_BIT | |
<> | 149:156823d33999 | 149 | I2C_STATUS_BUS_ERR_BIT)) { |
<> | 149:156823d33999 | 150 | /* I2c error occured */ |
<> | 149:156823d33999 | 151 | return I2C_ERROR_BUS_BUSY; |
<> | 149:156823d33999 | 152 | } |
<> | 149:156823d33999 | 153 | return I2C_API_STATUS_SUCCESS; |
<> | 149:156823d33999 | 154 | } |
<> | 149:156823d33999 | 155 | |
<> | 149:156823d33999 | 156 | /* See i2c.h for details */ |
<> | 149:156823d33999 | 157 | int32_t fI2cReadB(i2c_t *d, char *buf, int len) |
<> | 149:156823d33999 | 158 | { |
<> | 149:156823d33999 | 159 | int32_t read = 0; |
<> | 149:156823d33999 | 160 | |
<> | 149:156823d33999 | 161 | while (read < len) { |
<> | 149:156823d33999 | 162 | /* Send read command */ |
<> | 149:156823d33999 | 163 | d->membase->CMD_REG = I2C_CMD_RDAT8; |
<> | 149:156823d33999 | 164 | while(!RD_DATA_READY) { |
<> | 149:156823d33999 | 165 | if (I2C_BUS_ERR_CHECK) { |
<> | 149:156823d33999 | 166 | /* Bus error occured */ |
<> | 149:156823d33999 | 167 | return I2C_ERROR_BUS_BUSY; |
<> | 149:156823d33999 | 168 | } |
<> | 149:156823d33999 | 169 | } |
<> | 149:156823d33999 | 170 | buf[read++] = d->membase->RD_FIFO_REG; /**< Reading 'read FIFO register' will clear status register */ |
<> | 149:156823d33999 | 171 | |
<> | 149:156823d33999 | 172 | if(!(read>=len)) { /* No ACK will be generated for the last read, upper level I2C protocol should generate */ |
<> | 149:156823d33999 | 173 | d->membase->CMD_REG=I2C_CMD_WDAT0; /* TODO based on requirement generate ACK or NACK Based on the requirement. */ |
<> | 149:156823d33999 | 174 | } |
<> | 149:156823d33999 | 175 | |
<> | 149:156823d33999 | 176 | /* check for FIFO underflow */ |
<> | 149:156823d33999 | 177 | if(I2C_UFL_CHECK) { |
<> | 149:156823d33999 | 178 | return I2C_ERROR_NO_SLAVE; /* TODO No error available for this in i2c_api.h */ |
<> | 149:156823d33999 | 179 | } |
<> | 149:156823d33999 | 180 | if(I2C_BUS_ERR_CHECK) { |
<> | 149:156823d33999 | 181 | /* Bus error */ |
<> | 149:156823d33999 | 182 | return I2C_ERROR_BUS_BUSY; |
<> | 149:156823d33999 | 183 | } |
<> | 149:156823d33999 | 184 | } |
<> | 149:156823d33999 | 185 | |
<> | 149:156823d33999 | 186 | return read; |
<> | 149:156823d33999 | 187 | } |
<> | 149:156823d33999 | 188 | |
<> | 149:156823d33999 | 189 | /* See i2c.h for details */ |
<> | 149:156823d33999 | 190 | int32_t fI2cWriteB(i2c_t *d, const char *buf, int len) |
<> | 149:156823d33999 | 191 | { |
<> | 149:156823d33999 | 192 | int32_t write = 0; |
<> | 149:156823d33999 | 193 | |
<> | 149:156823d33999 | 194 | while (write < len) { |
<> | 149:156823d33999 | 195 | /* Send write command */ |
<> | 149:156823d33999 | 196 | d->membase->CMD_REG = I2C_CMD_WDAT8; |
<> | 149:156823d33999 | 197 | if(buf[write] == I2C_CMD_RDAT8) { |
<> | 149:156823d33999 | 198 | /* SW work around to counter FSM issue. If the only command in the CMD FIFO is the WDAT8 command (data of 0x13) |
<> | 149:156823d33999 | 199 | then as the command is read out (i.e. the FIFO goes empty), the WDAT8 command will be misinterpreted as a |
<> | 149:156823d33999 | 200 | RDAT8 command by the data FSM; resulting in an I2C bus error (NACK instead of an ACK). */ |
<> | 149:156823d33999 | 201 | /* Send 0x13 bit wise */ |
<> | 149:156823d33999 | 202 | d->membase->CMD_REG = I2C_CMD_WDAT0; |
<> | 149:156823d33999 | 203 | d->membase->CMD_REG = I2C_CMD_WDAT0; |
<> | 149:156823d33999 | 204 | d->membase->CMD_REG = I2C_CMD_WDAT0; |
<> | 149:156823d33999 | 205 | d->membase->CMD_REG = I2C_CMD_WDAT1; |
<> | 149:156823d33999 | 206 | |
<> | 149:156823d33999 | 207 | d->membase->CMD_REG = I2C_CMD_WDAT0; |
<> | 149:156823d33999 | 208 | d->membase->CMD_REG = I2C_CMD_WDAT0; |
<> | 149:156823d33999 | 209 | d->membase->CMD_REG = I2C_CMD_WDAT1; |
<> | 149:156823d33999 | 210 | d->membase->CMD_REG = I2C_CMD_WDAT1; |
<> | 149:156823d33999 | 211 | } else { |
<> | 149:156823d33999 | 212 | /* Send data */ |
<> | 149:156823d33999 | 213 | d->membase->CMD_REG = buf[write++]; |
<> | 149:156823d33999 | 214 | } |
<> | 149:156823d33999 | 215 | d->membase->CMD_REG = I2C_CMD_VRFY_ACK; /* TODO Verify ACK based on requirement, Do we need? */ |
<> | 149:156823d33999 | 216 | |
<> | 149:156823d33999 | 217 | while(FIFO_OFL_CHECK); /* Wait till command overflow ends */ |
<> | 149:156823d33999 | 218 | |
<> | 149:156823d33999 | 219 | if (I2C_BUS_ERR_CHECK) { |
<> | 149:156823d33999 | 220 | /* Bus error */ |
<> | 149:156823d33999 | 221 | return I2C_ERROR_BUS_BUSY; |
<> | 149:156823d33999 | 222 | } |
<> | 149:156823d33999 | 223 | } |
<> | 149:156823d33999 | 224 | |
<> | 149:156823d33999 | 225 | return write; |
<> | 149:156823d33999 | 226 | } |
<> | 149:156823d33999 | 227 | |
<> | 149:156823d33999 | 228 | #endif /* DEVICE_I2C */ |