mbed library sources. Supersedes mbed-src.

Fork of mbed-dev by mbed official

Revision:
153:9398a535854b
Parent:
152:9a67f0b066fc
--- a/targets/TARGET_NUVOTON/TARGET_NUC472/spi_api.c	Thu Dec 15 11:48:27 2016 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,768 +0,0 @@
-/* mbed Microcontroller Library
- * Copyright (c) 2015-2016 Nuvoton
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "spi_api.h"
-
-#if DEVICE_SPI
-
-#include "cmsis.h"
-#include "pinmap.h"
-#include "PeripheralPins.h"
-#include "nu_modutil.h"
-#include "nu_miscutil.h"
-#include "nu_bitutil.h"
-
-#if DEVICE_SPI_ASYNCH
-#include "dma_api.h"
-#include "dma.h"
-#endif
-
-#define NU_SPI_FRAME_MIN    8
-#define NU_SPI_FRAME_MAX    32
-#define NU_SPI_FIFO_DEPTH   8
-
-struct nu_spi_var {
-#if DEVICE_SPI_ASYNCH
-    uint8_t     pdma_perp_tx;
-    uint8_t     pdma_perp_rx;
-#endif
-};
-
-static struct nu_spi_var spi0_var = {
-#if DEVICE_SPI_ASYNCH
-    .pdma_perp_tx       =   PDMA_SPI0_TX,
-    .pdma_perp_rx       =   PDMA_SPI0_RX
-#endif
-};
-static struct nu_spi_var spi1_var = {
-#if DEVICE_SPI_ASYNCH
-    .pdma_perp_tx       =   PDMA_SPI1_TX,
-    .pdma_perp_rx       =   PDMA_SPI1_RX
-#endif
-};
-static struct nu_spi_var spi2_var = {
-#if DEVICE_SPI_ASYNCH
-    .pdma_perp_tx       =   PDMA_SPI2_TX,
-    .pdma_perp_rx       =   PDMA_SPI2_RX
-#endif
-};
-static struct nu_spi_var spi3_var = {
-#if DEVICE_SPI_ASYNCH
-    .pdma_perp_tx       =   PDMA_SPI3_TX,
-    .pdma_perp_rx       =   PDMA_SPI3_RX
-#endif
-};
-
-#if DEVICE_SPI_ASYNCH
-static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable);
-static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable);
-static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit);
-static uint32_t spi_master_read_asynch(spi_t *obj);
-static uint32_t spi_event_check(spi_t *obj);
-static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable);
-static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length);
-static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx);
-static uint8_t spi_get_data_width(spi_t *obj);
-static int spi_is_tx_complete(spi_t *obj);
-static int spi_is_rx_complete(spi_t *obj);
-static int spi_writeable(spi_t * obj);
-static int spi_readable(spi_t * obj);
-static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma);
-static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma);
-#endif
-
-static uint32_t spi_modinit_mask = 0;
-
-static const struct nu_modinit_s spi_modinit_tab[] = {
-    {SPI_0, SPI0_MODULE, 0, 0, SPI0_RST, SPI0_IRQn, &spi0_var},
-    {SPI_1, SPI1_MODULE, 0, 0, SPI1_RST, SPI1_IRQn, &spi1_var},
-    {SPI_2, SPI2_MODULE, 0, 0, SPI2_RST, SPI2_IRQn, &spi2_var},
-    {SPI_3, SPI3_MODULE, 0, 0, SPI3_RST, SPI3_IRQn, &spi3_var},
-    
-    {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL}
-};
-
-void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
-    // Determine which SPI_x the pins are used for
-    uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
-    uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
-    uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
-    uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
-    uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
-    uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
-    obj->spi.spi = (SPIName) pinmap_merge(spi_data, spi_cntl);
-    MBED_ASSERT((int)obj->spi.spi != NC);
-
-    const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
-    MBED_ASSERT(modinit != NULL);
-    MBED_ASSERT(modinit->modname == obj->spi.spi);
-    
-    // Reset this module
-    SYS_ResetModule(modinit->rsetidx);
-    
-    // Enable IP clock
-    CLK_EnableModuleClock(modinit->clkidx);
-
-    //SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    pinmap_pinout(mosi, PinMap_SPI_MOSI);
-    pinmap_pinout(miso, PinMap_SPI_MISO);
-    pinmap_pinout(sclk, PinMap_SPI_SCLK);
-    pinmap_pinout(ssel, PinMap_SPI_SSEL);
-        
-    obj->spi.pin_mosi = mosi;
-    obj->spi.pin_miso = miso;
-    obj->spi.pin_sclk = sclk;
-    obj->spi.pin_ssel = ssel;
-    
-    // Configure the SPI data format and frequency
-    //spi_format(obj, 8, 0, SPI_MSB); // 8 bits, mode 0
-    //spi_frequency(obj, 1000000);
-    
-#if DEVICE_SPI_ASYNCH
-    obj->spi.dma_usage = DMA_USAGE_NEVER;
-    obj->spi.event = 0;
-    obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
-    obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
-#endif
-
-    // Mark this module to be inited.
-    int i = modinit - spi_modinit_tab;
-    spi_modinit_mask |= 1 << i;
-}
-
-void spi_free(spi_t *obj)
-{
-#if DEVICE_SPI_ASYNCH
-    if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
-        dma_channel_free(obj->spi.dma_chn_id_tx);
-        obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
-    }
-    if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
-        dma_channel_free(obj->spi.dma_chn_id_rx);
-        obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
-    }
-#endif
-
-    SPI_Close((SPI_T *) NU_MODBASE(obj->spi.spi));
-    
-    const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
-    MBED_ASSERT(modinit != NULL);
-    MBED_ASSERT(modinit->modname == obj->spi.spi);
-    
-    SPI_DisableInt(((SPI_T *) NU_MODBASE(obj->spi.spi)), (SPI_FIFO_RXOVIEN_MASK | SPI_FIFO_RXTHIEN_MASK | SPI_FIFO_TXTHIEN_MASK));
-    NVIC_DisableIRQ(modinit->irq_n);
-    
-    // Disable IP clock
-    CLK_DisableModuleClock(modinit->clkidx);
-    
-    //((struct nu_spi_var *) modinit->var)->obj = NULL;
-    
-    // Mark this module to be deinited.
-    int i = modinit - spi_modinit_tab;
-    spi_modinit_mask &= ~(1 << i);
-}
-void spi_format(spi_t *obj, int bits, int mode, int slave)
-{
-    MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX);
-    
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    // NOTE 1: All configurations should be ready before enabling SPI peripheral.
-    // NOTE 2: Re-configuration is allowed only as SPI peripheral is idle.
-    while (SPI_IS_BUSY(spi_base));
-    SPI_DISABLE(spi_base);
-    
-    SPI_Open(spi_base,
-        slave ? SPI_SLAVE : SPI_MASTER,
-        (mode == 0) ? SPI_MODE_0 : (mode == 1) ? SPI_MODE_1 : (mode == 2) ? SPI_MODE_2 : SPI_MODE_3,
-        bits,
-        SPI_GetBusClock(spi_base));
-    // NOTE: Hardcode to be MSB first.
-    SPI_SET_MSB_FIRST(spi_base);
-    
-    if (! slave) {
-        // Master
-        if (obj->spi.pin_ssel != NC) {
-            // Configure SS as low active.            
-            SPI_EnableAutoSS(spi_base, SPI_SS0, SPI_SS_ACTIVE_LOW);
-            // NOTE: In NUC472 series, all SPI SS pins are SS0, so we can hardcode SS0 here.
-        }
-        else {
-            SPI_DisableAutoSS(spi_base);
-        }
-    }
-    else {
-        // Slave
-        // Configure SS as low active.
-        spi_base->SSCTL &= ~SPI_SSCTL_SSACTPOL_Msk;
-        // NOTE: SPI_SS0 is defined as the slave select input in Slave mode.
-    }
-}
-
-void spi_frequency(spi_t *obj, int hz)
-{
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    while (SPI_IS_BUSY(spi_base));
-    SPI_DISABLE(spi_base);
-    
-    SPI_SetBusClock((SPI_T *) NU_MODBASE(obj->spi.spi), hz);
-}
-
-
-int spi_master_write(spi_t *obj, int value)
-{
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    // NOTE: Data in receive FIFO can be read out via ICE.
-    SPI_ENABLE(spi_base);
-    
-    // Wait for tx buffer empty
-    while(! spi_writeable(obj));
-    SPI_WRITE_TX(spi_base, value);
-
-    // Wait for rx buffer full
-    while (! spi_readable(obj));
-    int value2 = SPI_READ_RX(spi_base);
-    
-    SPI_DISABLE(spi_base);
-    
-    return value2;
-}
-
-#if DEVICE_SPISLAVE
-int spi_slave_receive(spi_t *obj)
-{
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    SPI_ENABLE(spi_base);
-    
-    return spi_readable(obj);
-};
-
-int spi_slave_read(spi_t *obj)
-{
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    SPI_ENABLE(spi_base);
-    
-    // Wait for rx buffer full
-    while (! spi_readable(obj));
-    int value = SPI_READ_RX(spi_base);
-    return value;
-}
-
-void spi_slave_write(spi_t *obj, int value)
-{
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    SPI_ENABLE(spi_base);
-    
-    // Wait for tx buffer empty
-    while(! spi_writeable(obj));
-    SPI_WRITE_TX(spi_base, value);
-}
-#endif
-
-#if DEVICE_SPI_ASYNCH
-void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
-{
-    //MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX);
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    SPI_SET_DATA_WIDTH(spi_base, bit_width);
-    
-    obj->spi.dma_usage = hint;
-    spi_check_dma_usage(&obj->spi.dma_usage, &obj->spi.dma_chn_id_tx, &obj->spi.dma_chn_id_rx);
-    uint32_t data_width = spi_get_data_width(obj);
-    // Conditions to go DMA way:
-    // (1) No DMA support for non-8 multiple data width.
-    // (2) tx length >= rx length. Otherwise, as tx DMA is done, no bus activity for remaining rx.
-    if ((data_width % 8) ||
-        (tx_length < rx_length)) {
-        obj->spi.dma_usage = DMA_USAGE_NEVER;
-        dma_channel_free(obj->spi.dma_chn_id_tx);
-        obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
-        dma_channel_free(obj->spi.dma_chn_id_rx);
-        obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
-    }
-    
-    // SPI IRQ is necessary for both interrupt way and DMA way
-    spi_enable_event(obj, event, 1);
-    spi_buffer_set(obj, tx, tx_length, rx, rx_length);
-            
-    SPI_ENABLE(spi_base);
-    
-    if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
-        // Interrupt way
-        spi_master_write_asynch(obj, NU_SPI_FIFO_DEPTH / 2);
-        spi_enable_vector_interrupt(obj, handler, 1);
-        spi_master_enable_interrupt(obj, 1);
-    } else {
-        // DMA way
-        const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
-        MBED_ASSERT(modinit != NULL);
-        MBED_ASSERT(modinit->modname == obj->spi.spi);
-    
-        // Configure tx DMA
-        PDMA->CHCTL |= 1 << obj->spi.dma_chn_id_tx;  // Enable this DMA channel
-        PDMA_SetTransferMode(obj->spi.dma_chn_id_tx,
-            ((struct nu_spi_var *) modinit->var)->pdma_perp_tx,    // Peripheral connected to this PDMA
-            0,  // Scatter-gather disabled
-            0); // Scatter-gather descriptor address
-        PDMA_SetTransferCnt(obj->spi.dma_chn_id_tx, 
-            (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, 
-            tx_length);
-        PDMA_SetTransferAddr(obj->spi.dma_chn_id_tx, 
-            ((uint32_t) tx) + (data_width / 8) * tx_length,   // NOTE: End of source address
-            PDMA_SAR_INC,   // Source address incremental
-            (uint32_t) &spi_base->TX,   // Destination address
-            PDMA_DAR_FIX);  // Destination address fixed
-        PDMA_SetBurstType(obj->spi.dma_chn_id_tx, 
-            PDMA_REQ_SINGLE,    // Single mode
-            0); // Burst size
-        PDMA_EnableInt(obj->spi.dma_chn_id_tx,
-            0); // Interrupt type. No use here
-        // Register DMA event handler
-        dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL);
-        
-        // Configure rx DMA
-        PDMA->CHCTL |= 1 << obj->spi.dma_chn_id_rx;  // Enable this DMA channel
-        PDMA_SetTransferMode(obj->spi.dma_chn_id_rx,
-            ((struct nu_spi_var *) modinit->var)->pdma_perp_rx,    // Peripheral connected to this PDMA
-            0,  // Scatter-gather disabled
-            0); // Scatter-gather descriptor address
-        PDMA_SetTransferCnt(obj->spi.dma_chn_id_rx, 
-            (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, 
-            rx_length);
-        PDMA_SetTransferAddr(obj->spi.dma_chn_id_rx,
-            (uint32_t) &spi_base->RX,   // Source address
-            PDMA_SAR_FIX,   // Source address fixed
-            ((uint32_t) rx) + (data_width / 8) * rx_length,   // NOTE: End of destination address
-            PDMA_DAR_INC);  // Destination address incremental
-        PDMA_SetBurstType(obj->spi.dma_chn_id_rx, 
-            PDMA_REQ_SINGLE,    // Single mode
-            0); // Burst size
-        PDMA_EnableInt(obj->spi.dma_chn_id_rx,
-            0); // Interrupt type. No use here
-        // Register DMA event handler
-        dma_set_handler(obj->spi.dma_chn_id_rx, (uint32_t) spi_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL);
-        
-        // Start tx/rx DMA transfer
-        spi_enable_vector_interrupt(obj, handler, 1);
-        // NOTE: It is safer to start rx DMA first and then tx DMA. Otherwise, receive FIFO is subject to overflow by tx DMA.
-        SPI_TRIGGER_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
-        SPI_TRIGGER_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
-        spi_master_enable_interrupt(obj, 1);
-    }
-}
-
-/**
- * Abort an SPI transfer
- * This is a helper function for event handling. When any of the events listed occurs, the HAL will abort any ongoing
- * transfers
- * @param[in] obj The SPI peripheral to stop
- */
-void spi_abort_asynch(spi_t *obj)
-{
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    if (obj->spi.dma_usage != DMA_USAGE_NEVER) {
-        // Receive FIFO Overrun in case of tx length > rx length on DMA way
-        if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) {
-            spi_base->STATUS = SPI_STATUS_RXOVIF_Msk;
-        }
-        
-        if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
-            PDMA_DisableInt(obj->spi.dma_chn_id_tx, 0);
-            // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
-            //PDMA_STOP(obj->spi.dma_chn_id_tx);
-            PDMA->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx);
-        }
-        SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
-        
-        if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
-            PDMA_DisableInt(obj->spi.dma_chn_id_rx, 0);
-            // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
-            //PDMA_STOP(obj->spi.dma_chn_id_rx);
-            PDMA->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx);
-        }
-        SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
-    }
-    
-    // Necessary for both interrupt way and DMA way
-    spi_enable_vector_interrupt(obj, 0, 0);
-    spi_master_enable_interrupt(obj, 0);
-    
-    // FIXME: SPI H/W may get out of state without the busy check.
-    while (SPI_IS_BUSY(spi_base));
-    SPI_DISABLE(spi_base);
-    
-    SPI_ClearRxFIFO(spi_base);
-    SPI_ClearTxFIFO(spi_base);
-}
-
-/**
- * Handle the SPI interrupt
- * Read frames until the RX FIFO is empty.  Write at most as many frames as were read.  This way,
- * it is unlikely that the RX FIFO will overflow.
- * @param[in] obj The SPI peripheral that generated the interrupt
- * @return
- */
-uint32_t spi_irq_handler_asynch(spi_t *obj)
-{
-    // Check for SPI events
-    uint32_t event = spi_event_check(obj);
-    if (event) {
-        spi_abort_asynch(obj);
-    }
-
-    return (obj->spi.event & event) | ((event & SPI_EVENT_COMPLETE) ? SPI_EVENT_INTERNAL_TRANSFER_COMPLETE : 0);
-}
-
-uint8_t spi_active(spi_t *obj)
-{
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    // FIXME
-    /*
-    if ((obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length)
-            || (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) ){
-        return 1;
-    } else  {
-        // interrupts are disabled, all transaction have been completed
-        // TODO: checking rx fifo, it reports data eventhough RFDF is not set
-        return DSPI_HAL_GetIntMode(obj->spi.address, kDspiRxFifoDrainRequest);
-    }*/
-    
-    //return SPI_IS_BUSY(spi_base);
-    return (spi_base->CTL & SPI_CTL_SPIEN_Msk);
-}
-
-int spi_allow_powerdown(void)
-{
-    uint32_t modinit_mask = spi_modinit_mask;
-    while (modinit_mask) {
-        int spi_idx = nu_ctz(modinit_mask);
-        const struct nu_modinit_s *modinit = spi_modinit_tab + spi_idx;
-        if (modinit->modname != NC) {
-            SPI_T *spi_base = (SPI_T *) NU_MODBASE(modinit->modname);
-            // Disallow entering power-down mode if SPI transfer is enabled.
-            if (spi_base->CTL & SPI_CTL_SPIEN_Msk) {
-                return 0;
-            }
-        }
-        modinit_mask &= ~(1 << spi_idx);
-    }
-    
-    return 1;
-}
-
-static int spi_writeable(spi_t * obj)
-{
-    // Receive FIFO must not be full to avoid receive FIFO overflow on next transmit/receive
-    //return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))) && (SPI_GET_RX_FIFO_COUNT(((SPI_T *) NU_MODBASE(obj->spi.spi))) < NU_SPI_FIFO_DEPTH);
-    return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))));
-}
-
-static int spi_readable(spi_t * obj)
-{
-    return ! SPI_GET_RX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)));
-}
-
-static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable)
-{   
-    obj->spi.event &= ~SPI_EVENT_ALL;
-    obj->spi.event |= (event & SPI_EVENT_ALL);
-    if (event & SPI_EVENT_RX_OVERFLOW) {
-        SPI_EnableInt((SPI_T *) NU_MODBASE(obj->spi.spi), SPI_FIFO_RXOVIEN_MASK);
-    }
-}
-
-static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable)
-{
-    const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
-    MBED_ASSERT(modinit != NULL);
-    MBED_ASSERT(modinit->modname == obj->spi.spi);
-    
-    if (enable) {
-        NVIC_SetVector(modinit->irq_n, handler);
-        NVIC_EnableIRQ(modinit->irq_n);
-    }
-    else {
-        //NVIC_SetVector(modinit->irq_n, handler);
-        NVIC_DisableIRQ(modinit->irq_n);
-    }
-}
-
-static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable)
-{   
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    if (enable) {
-        SPI_SetFIFOThreshold(spi_base, 4, 4);
-        //SPI_SET_SUSPEND_CYCLE(spi_base, 4);
-        // Enable tx/rx FIFO threshold interrupt
-        SPI_EnableInt(spi_base, SPI_FIFO_RXTHIEN_MASK | SPI_FIFO_TXTHIEN_MASK);
-    }
-    else {
-        SPI_DisableInt(spi_base, SPI_FIFO_RXTHIEN_MASK | SPI_FIFO_TXTHIEN_MASK);
-    }
-}
-
-static uint32_t spi_event_check(spi_t *obj)
-{
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    uint32_t event = 0;
-    
-    if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
-        uint32_t n_rec = spi_master_read_asynch(obj);
-        spi_master_write_asynch(obj, n_rec);
-    }
-    
-    if (spi_is_tx_complete(obj) && spi_is_rx_complete(obj)) {
-        event |= SPI_EVENT_COMPLETE;
-    }
-    
-    // Receive FIFO Overrun
-    if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) {
-        spi_base->STATUS = SPI_STATUS_RXOVIF_Msk;
-        // In case of tx length > rx length on DMA way
-        if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
-            event |= SPI_EVENT_RX_OVERFLOW;
-        }
-    }
-    
-    // Receive Time-Out
-    if (spi_base->STATUS & SPI_STATUS_RXTOIF_Msk) {
-        spi_base->STATUS = SPI_STATUS_RXTOIF_Msk;
-        //event |= SPI_EVENT_ERROR;
-    }
-    // Transmit FIFO Under-Run
-    if (spi_base->STATUS & SPI_STATUS_TXUFIF_Msk) {
-        spi_base->STATUS = SPI_STATUS_TXUFIF_Msk;
-        event |= SPI_EVENT_ERROR;
-    }
-    
-    return event;
-}
-
-/**
- * Send words from the SPI TX buffer until the send limit is reached or the TX FIFO is full
- * tx_limit is provided to ensure that the number of SPI frames (words) in flight can be managed.
- * @param[in] obj       The SPI object on which to operate
- * @param[in] tx_limit  The maximum number of words to send
- * @return The number of SPI words that have been transfered
- */
-static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit)
-{
-    uint32_t n_words = 0;
-    uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos;
-    uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos;
-    uint32_t max_tx = NU_MAX(tx_rmn, rx_rmn);
-    max_tx = NU_MIN(max_tx, tx_limit);
-    uint8_t data_width = spi_get_data_width(obj);
-    uint8_t bytes_per_word = (data_width + 7) / 8;
-    uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos;
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    while ((n_words < max_tx) && spi_writeable(obj)) {
-        if (spi_is_tx_complete(obj)) {
-            // Transmit dummy as transmit buffer is empty
-            SPI_WRITE_TX(spi_base, 0);
-        }
-        else {
-            switch (bytes_per_word) {
-                case 4:
-                    SPI_WRITE_TX(spi_base, nu_get32_le(tx));
-                    tx += 4;
-                    break;
-                case 2:
-                    SPI_WRITE_TX(spi_base, nu_get16_le(tx));
-                    tx += 2;
-                    break;
-                case 1:
-                    SPI_WRITE_TX(spi_base, *((uint8_t *) tx));
-                    tx += 1;
-                    break;
-            }
-        
-            obj->tx_buff.pos ++;
-        }
-        n_words ++;
-    }
-    
-    //Return the number of words that have been sent
-    return n_words;
-}
-
-/**
- * Read SPI words out of the RX FIFO
- * Continues reading words out of the RX FIFO until the following condition is met:
- * o There are no more words in the FIFO
- * OR BOTH OF:
- * o At least as many words as the TX buffer have been received
- * o At least as many words as the RX buffer have been received
- * This way, RX overflows are not generated when the TX buffer size exceeds the RX buffer size
- * @param[in] obj The SPI object on which to operate
- * @return Returns the number of words extracted from the RX FIFO
- */
-static uint32_t spi_master_read_asynch(spi_t *obj)
-{
-    uint32_t n_words = 0;
-    uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos;
-    uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos;
-    uint32_t max_rx = NU_MAX(tx_rmn, rx_rmn);
-    uint8_t data_width = spi_get_data_width(obj);
-    uint8_t bytes_per_word = (data_width + 7) / 8;
-    uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos;
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    while ((n_words < max_rx) && spi_readable(obj)) {
-        if (spi_is_rx_complete(obj)) {
-            // Disregard as receive buffer is full
-            SPI_READ_RX(spi_base);
-        }
-        else {
-            switch (bytes_per_word) {
-                case 4: {
-                    uint32_t val = SPI_READ_RX(spi_base);
-                    nu_set32_le(rx, val);
-                    rx += 4;
-                    break;
-                }
-                case 2: {
-                    uint16_t val = SPI_READ_RX(spi_base);
-                    nu_set16_le(rx, val);
-                    rx += 2;
-                    break;
-                }
-                case 1:
-                    *rx ++ = SPI_READ_RX(spi_base);
-                    break;
-            }
-        
-            obj->rx_buff.pos ++;
-        }
-        n_words ++;
-    }
-    
-    // Return the number of words received
-    return n_words;
-}
-
-static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length)
-{
-    obj->tx_buff.buffer = (void *) tx;
-    obj->tx_buff.length = tx_length;
-    obj->tx_buff.pos = 0;
-    obj->tx_buff.width = spi_get_data_width(obj);
-    obj->rx_buff.buffer = rx;
-    obj->rx_buff.length = rx_length;
-    obj->rx_buff.pos = 0;
-    obj->rx_buff.width = spi_get_data_width(obj);
-}
-
-static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx)
-{
-    if (*dma_usage != DMA_USAGE_NEVER) {
-        if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS) {
-            *dma_ch_tx = dma_channel_allocate(DMA_CAP_NONE);
-        }
-        if (*dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) {
-            *dma_ch_rx = dma_channel_allocate(DMA_CAP_NONE);
-        }
-        
-        if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS || *dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) {
-            *dma_usage = DMA_USAGE_NEVER;
-        }
-    }
-    
-    if (*dma_usage == DMA_USAGE_NEVER) {
-        dma_channel_free(*dma_ch_tx);
-        *dma_ch_tx = DMA_ERROR_OUT_OF_CHANNELS;
-        dma_channel_free(*dma_ch_rx);
-        *dma_ch_rx = DMA_ERROR_OUT_OF_CHANNELS;
-    }
-}
-
-static uint8_t spi_get_data_width(spi_t *obj)
-{    
-    SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
-    
-    return ((spi_base->CTL & SPI_CTL_DWIDTH_Msk) >> SPI_CTL_DWIDTH_Pos);
-}
-
-static int spi_is_tx_complete(spi_t *obj)
-{
-    // ???: Exclude tx fifo empty check due to no such interrupt on DMA way
-    return (obj->tx_buff.pos == obj->tx_buff.length);
-    //return (obj->tx_buff.pos == obj->tx_buff.length && SPI_GET_TX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))));
-}
-
-static int spi_is_rx_complete(spi_t *obj)
-{
-    return (obj->rx_buff.pos == obj->rx_buff.length);
-}
-
-static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma)
-{
-    spi_t *obj = (spi_t *) id;
-    
-    // FIXME: Pass this error to caller
-    if (event_dma & DMA_EVENT_ABORT) {
-    }
-    // Expect SPI IRQ will catch this transfer done event
-    if (event_dma & DMA_EVENT_TRANSFER_DONE) {
-        obj->tx_buff.pos = obj->tx_buff.length;
-    }
-    // FIXME: Pass this error to caller
-    if (event_dma & DMA_EVENT_TIMEOUT) {
-    }
-    
-    const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
-    MBED_ASSERT(modinit != NULL);
-    MBED_ASSERT(modinit->modname == obj->spi.spi);
-    
-    void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n);
-    vec();
-}
-
-static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma)
-{
-    spi_t *obj = (spi_t *) id;
-    
-    // FIXME: Pass this error to caller
-    if (event_dma & DMA_EVENT_ABORT) {
-    }
-    // Expect SPI IRQ will catch this transfer done event
-    if (event_dma & DMA_EVENT_TRANSFER_DONE) {
-        obj->rx_buff.pos = obj->rx_buff.length;
-    }
-    // FIXME: Pass this error to caller
-    if (event_dma & DMA_EVENT_TIMEOUT) {
-    }
-    
-    const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
-    MBED_ASSERT(modinit != NULL);
-    MBED_ASSERT(modinit->modname == obj->spi.spi);
-    
-    void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n);
-    vec();
-}
-
-#endif
-
-#endif