mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
targets/TARGET_NUVOTON/TARGET_NUC472/serial_api.c
- Committer:
- <>
- Date:
- 2017-03-30
- Revision:
- 161:2cc1468da177
- Parent:
- 153:fa9ff456f731
File content as of revision 161:2cc1468da177:
/* mbed Microcontroller Library * Copyright (c) 2015-2016 Nuvoton * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "serial_api.h" #if DEVICE_SERIAL #include "cmsis.h" #include "mbed_error.h" #include "mbed_assert.h" #include "PeripheralPins.h" #include "nu_modutil.h" #include "nu_bitutil.h" #if DEVICE_SERIAL_ASYNCH #include "dma_api.h" #include "dma.h" #endif struct nu_uart_var { uint32_t ref_cnt; // Reference count of the H/W module serial_t * obj; uint32_t fifo_size_tx; uint32_t fifo_size_rx; void (*vec)(void); #if DEVICE_SERIAL_ASYNCH void (*vec_async)(void); uint8_t pdma_perp_tx; uint8_t pdma_perp_rx; #endif }; static void uart0_vec(void); static void uart1_vec(void); static void uart2_vec(void); static void uart3_vec(void); static void uart4_vec(void); static void uart5_vec(void); static void uart_irq(serial_t *obj); #if DEVICE_SERIAL_ASYNCH static void uart0_vec_async(void); static void uart1_vec_async(void); static void uart2_vec_async(void); static void uart3_vec_async(void); static void uart4_vec_async(void); static void uart5_vec_async(void); static void uart_irq_async(serial_t *obj); static void uart_dma_handler_tx(uint32_t id, uint32_t event); static void uart_dma_handler_rx(uint32_t id, uint32_t event); static void serial_tx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable); static void serial_rx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable); static int serial_write_async(serial_t *obj); static int serial_read_async(serial_t *obj); static uint32_t serial_rx_event_check(serial_t *obj); static uint32_t serial_tx_event_check(serial_t *obj); static int serial_is_tx_complete(serial_t *obj); static void serial_tx_enable_event(serial_t *obj, int event, uint8_t enable); static void serial_tx_buffer_set(serial_t *obj, const void *tx, size_t length, uint8_t width); static void serial_rx_buffer_set(serial_t *obj, void *rx, size_t length, uint8_t width); static void serial_rx_set_char_match(serial_t *obj, uint8_t char_match); static void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable); static int serial_is_rx_complete(serial_t *obj); static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch); static int serial_is_irq_en(serial_t *obj, SerialIrq irq); #endif static struct nu_uart_var uart0_var = { .ref_cnt = 0, .obj = NULL, .fifo_size_tx = 64, .fifo_size_rx = 64, .vec = uart0_vec, #if DEVICE_SERIAL_ASYNCH .vec_async = uart0_vec_async, .pdma_perp_tx = PDMA_UART0_TX, .pdma_perp_rx = PDMA_UART0_RX #endif }; static struct nu_uart_var uart1_var = { .ref_cnt = 0, .obj = NULL, .fifo_size_tx = 16, .fifo_size_rx = 16, .vec = uart1_vec, #if DEVICE_SERIAL_ASYNCH .vec_async = uart1_vec_async, .pdma_perp_tx = PDMA_UART1_TX, .pdma_perp_rx = PDMA_UART1_RX #endif }; static struct nu_uart_var uart2_var = { .ref_cnt = 0, .obj = NULL, .fifo_size_tx = 16, .fifo_size_rx = 16, .vec = uart2_vec, #if DEVICE_SERIAL_ASYNCH .vec_async = uart2_vec_async, .pdma_perp_tx = PDMA_UART2_TX, .pdma_perp_rx = PDMA_UART2_RX #endif }; static struct nu_uart_var uart3_var = { .ref_cnt = 0, .obj = NULL, .fifo_size_tx = 16, .fifo_size_rx = 16, .vec = uart3_vec, #if DEVICE_SERIAL_ASYNCH .vec_async = uart3_vec_async, .pdma_perp_tx = PDMA_UART3_TX, .pdma_perp_rx = PDMA_UART3_RX #endif }; static struct nu_uart_var uart4_var = { .ref_cnt = 0, .obj = NULL, .fifo_size_tx = 16, .fifo_size_rx = 16, .vec = uart4_vec, #if DEVICE_SERIAL_ASYNCH .vec_async = uart4_vec_async, .pdma_perp_tx = PDMA_UART4_TX, .pdma_perp_rx = PDMA_UART4_RX #endif }; static struct nu_uart_var uart5_var = { .ref_cnt = 0, .obj = NULL, .fifo_size_tx = 16, .fifo_size_rx = 16, .vec = uart5_vec, #if DEVICE_SERIAL_ASYNCH .vec_async = uart5_vec_async, .pdma_perp_tx = PDMA_UART5_TX, .pdma_perp_rx = PDMA_UART5_RX #endif }; int stdio_uart_inited = 0; serial_t stdio_uart; static uint32_t uart_modinit_mask = 0; static const struct nu_modinit_s uart_modinit_tab[] = { {UART_0, UART0_MODULE, CLK_CLKSEL1_UARTSEL_HIRC, CLK_CLKDIV0_UART(1), UART0_RST, UART0_IRQn, &uart0_var}, {UART_1, UART1_MODULE, CLK_CLKSEL1_UARTSEL_HIRC, CLK_CLKDIV0_UART(1), UART1_RST, UART1_IRQn, &uart1_var}, {UART_2, UART2_MODULE, CLK_CLKSEL1_UARTSEL_HIRC, CLK_CLKDIV0_UART(1), UART2_RST, UART2_IRQn, &uart2_var}, {UART_3, UART3_MODULE, CLK_CLKSEL1_UARTSEL_HIRC, CLK_CLKDIV0_UART(1), UART3_RST, UART3_IRQn, &uart3_var}, {UART_4, UART4_MODULE, CLK_CLKSEL1_UARTSEL_HIRC, CLK_CLKDIV0_UART(1), UART4_RST, UART4_IRQn, &uart4_var}, {UART_5, UART5_MODULE, CLK_CLKSEL1_UARTSEL_HIRC, CLK_CLKDIV0_UART(1), UART5_RST, UART5_IRQn, &uart5_var}, {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL} }; extern void mbed_sdk_init(void); void serial_init(serial_t *obj, PinName tx, PinName rx) { // NOTE: With armcc, serial_init() gets called from _sys_open() timing of which is before main()/mbed_sdk_init(). mbed_sdk_init(); // Determine which UART_x the pins are used for uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX); uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX); // Get the peripheral name (UART_x) from the pins and assign it to the object obj->serial.uart = (UARTName) pinmap_merge(uart_tx, uart_rx); MBED_ASSERT((int)obj->serial.uart != NC); const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->serial.uart); struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; if (! var->ref_cnt) { // Reset this module SYS_ResetModule(modinit->rsetidx); // Select IP clock source CLK_SetModuleClock(modinit->clkidx, modinit->clksrc, modinit->clkdiv); // Enable IP clock CLK_EnableModuleClock(modinit->clkidx); pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); obj->serial.pin_tx = tx; obj->serial.pin_rx = rx; } var->ref_cnt ++; // Configure the UART module and set its baudrate serial_baud(obj, 9600); // Configure data bits, parity, and stop bits serial_format(obj, 8, ParityNone, 1); obj->serial.vec = var->vec; #if DEVICE_SERIAL_ASYNCH obj->serial.dma_usage_tx = DMA_USAGE_NEVER; obj->serial.dma_usage_rx = DMA_USAGE_NEVER; obj->serial.event = 0; obj->serial.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; #endif // For stdio management if (obj->serial.uart == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } if (var->ref_cnt) { // Mark this module to be inited. int i = modinit - uart_modinit_tab; uart_modinit_mask |= 1 << i; } } void serial_free(serial_t *obj) { const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->serial.uart); struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; var->ref_cnt --; if (! var->ref_cnt) { #if DEVICE_SERIAL_ASYNCH if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { dma_channel_free(obj->serial.dma_chn_id_tx); obj->serial.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; } if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { dma_channel_free(obj->serial.dma_chn_id_rx); obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; } #endif UART_Close((UART_T *) NU_MODBASE(obj->serial.uart)); UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_THREIEN_Msk | UART_INTEN_RXTOIEN_Msk)); NVIC_DisableIRQ(modinit->irq_n); // Disable IP clock CLK_DisableModuleClock(modinit->clkidx); } if (var->obj == obj) { var->obj = NULL; } if (obj->serial.uart == STDIO_UART) { stdio_uart_inited = 0; } if (! var->ref_cnt) { // Mark this module to be deinited. int i = modinit - uart_modinit_tab; uart_modinit_mask &= ~(1 << i); } } void serial_baud(serial_t *obj, int baudrate) { // Flush Tx FIFO. Otherwise, output data may get lost on this change. while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart)))); obj->serial.baudrate = baudrate; UART_Open((UART_T *) NU_MODBASE(obj->serial.uart), baudrate); } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { // Flush Tx FIFO. Otherwise, output data may get lost on this change. while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart)))); // TODO: Assert for not supported parity and data bits obj->serial.databits = data_bits; obj->serial.parity = parity; obj->serial.stopbits = stop_bits; uint32_t databits_intern = (data_bits == 5) ? UART_WORD_LEN_5 : (data_bits == 6) ? UART_WORD_LEN_6 : (data_bits == 7) ? UART_WORD_LEN_7 : UART_WORD_LEN_8; uint32_t parity_intern = (parity == ParityOdd || parity == ParityForced1) ? UART_PARITY_ODD : (parity == ParityEven || parity == ParityForced0) ? UART_PARITY_EVEN : UART_PARITY_NONE; uint32_t stopbits_intern = (stop_bits == 2) ? UART_STOP_BIT_2 : UART_STOP_BIT_1; UART_SetLine_Config((UART_T *) NU_MODBASE(obj->serial.uart), 0, // Don't change baudrate databits_intern, parity_intern, stopbits_intern); } #if DEVICE_SERIAL_FC void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart); // First, disable flow control completely. uart_base->INTEN &= ~(UART_INTEN_ATORTSEN_Msk | UART_INTEN_ATOCTSEN_Msk); if ((type == FlowControlRTS || type == FlowControlRTSCTS) && rxflow != NC) { // Check if RTS pin matches. uint32_t uart_rts = pinmap_peripheral(rxflow, PinMap_UART_RTS); MBED_ASSERT(uart_rts == obj->serial.uart); // Enable the pin for RTS function pinmap_pinout(rxflow, PinMap_UART_RTS); // nRTS pin output is low level active uart_base->MODEM |= UART_MODEM_RTSACTLV_Msk; uart_base->MODEM &= ~UART_MODEM_RTS_Msk; uart_base->FIFO = (uart_base->FIFO & ~UART_FIFO_RTSTRGLV_Msk) | UART_FIFO_RTSTRGLV_8BYTES; // Enable RTS uart_base->INTEN |= UART_INTEN_ATORTSEN_Msk; } if ((type == FlowControlCTS || type == FlowControlRTSCTS) && txflow != NC) { // Check if CTS pin matches. uint32_t uart_cts = pinmap_peripheral(txflow, PinMap_UART_CTS); MBED_ASSERT(uart_cts == obj->serial.uart); // Enable the pin for CTS function pinmap_pinout(txflow, PinMap_UART_CTS); // nCTS pin input is low level active uart_base->MODEMSTS |= UART_MODEMSTS_CTSACTLV_Msk; // Enable CTS uart_base->INTEN |= UART_INTEN_ATOCTSEN_Msk; } } #endif //DEVICE_SERIAL_FC void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { // Flush Tx FIFO. Otherwise, output data may get lost on this change. while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart)))); const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->serial.uart); obj->serial.irq_handler = (uint32_t) handler; obj->serial.irq_id = id; // Restore sync-mode vector obj->serial.vec = ((struct nu_uart_var *) modinit->var)->vec; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { if (enable) { const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->serial.uart); NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec); NVIC_EnableIRQ(modinit->irq_n); struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; // Multiple serial S/W objects for single UART H/W module possibly. // Bind serial S/W object to UART H/W module as interrupt is enabled. var->obj = obj; switch (irq) { // NOTE: Setting inten_msk first to avoid race condition case RxIrq: obj->serial.inten_msk = obj->serial.inten_msk | (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk); UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); break; case TxIrq: obj->serial.inten_msk = obj->serial.inten_msk | UART_INTEN_THREIEN_Msk; UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); break; } } else { // disable switch (irq) { case RxIrq: UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); obj->serial.inten_msk = obj->serial.inten_msk & ~(UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk); break; case TxIrq: UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); obj->serial.inten_msk = obj->serial.inten_msk & ~UART_INTEN_THREIEN_Msk; break; } } } int serial_getc(serial_t *obj) { // TODO: Fix every byte access requires accompaniness of one interrupt. This degrades performance much. while (! serial_readable(obj)); int c = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); // Simulate clear of the interrupt flag if (obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); } return c; } void serial_putc(serial_t *obj, int c) { // TODO: Fix every byte access requires accompaniness of one interrupt. This degrades performance much. while (! serial_writable(obj)); UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), c); // Simulate clear of the interrupt flag if (obj->serial.inten_msk & UART_INTEN_THREIEN_Msk) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); } } int serial_readable(serial_t *obj) { //return UART_IS_RX_READY(((UART_T *) NU_MODBASE(obj->serial.uart))); return ! (((UART_T *) NU_MODBASE(obj->serial.uart))->FIFOSTS & UART_FIFOSTS_RXEMPTY_Msk); } int serial_writable(serial_t *obj) { return ! UART_IS_TX_FULL(((UART_T *) NU_MODBASE(obj->serial.uart))); } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { ((UART_T *) NU_MODBASE(obj->serial.uart))->LINE |= UART_LINE_BCB_Msk; } void serial_break_clear(serial_t *obj) { ((UART_T *) NU_MODBASE(obj->serial.uart))->LINE &= ~UART_LINE_BCB_Msk; } static void uart0_vec(void) { uart_irq(uart0_var.obj); } static void uart1_vec(void) { uart_irq(uart1_var.obj); } static void uart2_vec(void) { uart_irq(uart2_var.obj); } static void uart3_vec(void) { uart_irq(uart3_var.obj); } static void uart4_vec(void) { uart_irq(uart4_var.obj); } static void uart5_vec(void) { uart_irq(uart5_var.obj); } static void uart_irq(serial_t *obj) { UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart); if (uart_base->INTSTS & (UART_INTSTS_RDAINT_Msk | UART_INTSTS_RXTOINT_Msk)) { // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next read. UART_DISABLE_INT(uart_base, (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); if (obj->serial.irq_handler) { ((uart_irq_handler) obj->serial.irq_handler)(obj->serial.irq_id, RxIrq); } } if (uart_base->INTSTS & UART_INTSTS_THREINT_Msk) { // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next write. UART_DISABLE_INT(uart_base, UART_INTEN_THREIEN_Msk); if (obj->serial.irq_handler) { ((uart_irq_handler) obj->serial.irq_handler)(obj->serial.irq_id, TxIrq); } } // FIXME: Ignore all other interrupt flags. Clear them. Otherwise, program will get stuck in interrupt. uart_base->INTSTS = uart_base->INTSTS; uart_base->FIFOSTS = uart_base->FIFOSTS; } #if DEVICE_SERIAL_ASYNCH int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint) { MBED_ASSERT(tx_width == 8 || tx_width == 16 || tx_width == 32); obj->serial.dma_usage_tx = hint; serial_check_dma_usage(&obj->serial.dma_usage_tx, &obj->serial.dma_chn_id_tx); // UART IRQ is necessary for both interrupt way and DMA way serial_tx_enable_event(obj, event, 1); serial_tx_buffer_set(obj, tx, tx_length, tx_width); //UART_HAL_DisableTransmitter(obj->serial.address); //UART_HAL_FlushTxFifo(obj->serial.address); //UART_HAL_EnableTransmitter(obj->serial.address); int n_word = 0; if (obj->serial.dma_usage_tx == DMA_USAGE_NEVER) { // Interrupt way n_word = serial_write_async(obj); serial_tx_enable_interrupt(obj, handler, 1); } else { // DMA way const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->serial.uart); PDMA_T *pdma_base = dma_modbase(); pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_tx; // Enable this DMA channel PDMA_SetTransferMode(obj->serial.dma_chn_id_tx, ((struct nu_uart_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA 0, // Scatter-gather disabled 0); // Scatter-gather descriptor address PDMA_SetTransferCnt(obj->serial.dma_chn_id_tx, (tx_width == 8) ? PDMA_WIDTH_8 : (tx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, tx_length); PDMA_SetTransferAddr(obj->serial.dma_chn_id_tx, ((uint32_t) tx) + (tx_width / 8) * tx_length, // NOTE: End of source address PDMA_SAR_INC, // Source address incremental (uint32_t) NU_MODBASE(obj->serial.uart), // Destination address PDMA_DAR_FIX); // Destination address fixed PDMA_SetBurstType(obj->serial.dma_chn_id_tx, PDMA_REQ_SINGLE, // Single mode 0); // Burst size PDMA_EnableInt(obj->serial.dma_chn_id_tx, 0); // Interrupt type. No use here // Register DMA event handler dma_set_handler(obj->serial.dma_chn_id_tx, (uint32_t) uart_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL); serial_tx_enable_interrupt(obj, handler, 1); ((UART_T *) NU_MODBASE(obj->serial.uart))->INTEN |= UART_INTEN_TXPDMAEN_Msk; // Start DMA transfer } return n_word; } void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint) { MBED_ASSERT(rx_width == 8 || rx_width == 16 || rx_width == 32); obj->serial.dma_usage_rx = hint; serial_check_dma_usage(&obj->serial.dma_usage_rx, &obj->serial.dma_chn_id_rx); // DMA doesn't support char match, so fall back to IRQ if it is requested. if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER && (event & SERIAL_EVENT_RX_CHARACTER_MATCH) && char_match != SERIAL_RESERVED_CHAR_MATCH) { obj->serial.dma_usage_rx = DMA_USAGE_NEVER; dma_channel_free(obj->serial.dma_chn_id_rx); obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; } // UART IRQ is necessary for both interrupt way and DMA way serial_rx_enable_event(obj, event, 1); serial_rx_buffer_set(obj, rx, rx_length, rx_width); serial_rx_set_char_match(obj, char_match); //UART_HAL_DisableReceiver(obj->serial.address); //UART_HAL_FlushRxFifo(obj->serial.address); //UART_HAL_EnableReceiver(obj->serial.address); if (obj->serial.dma_usage_rx == DMA_USAGE_NEVER) { // Interrupt way serial_rx_enable_interrupt(obj, handler, 1); } else { // DMA way const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->serial.uart); PDMA_T *pdma_base = dma_modbase(); pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_rx; // Enable this DMA channel PDMA_SetTransferMode(obj->serial.dma_chn_id_rx, ((struct nu_uart_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA 0, // Scatter-gather disabled 0); // Scatter-gather descriptor address PDMA_SetTransferCnt(obj->serial.dma_chn_id_rx, (rx_width == 8) ? PDMA_WIDTH_8 : (rx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, rx_length); PDMA_SetTransferAddr(obj->serial.dma_chn_id_rx, (uint32_t) NU_MODBASE(obj->serial.uart), // Source address PDMA_SAR_FIX, // Source address fixed ((uint32_t) rx) + (rx_width / 8) * rx_length, // NOTE: End of destination address PDMA_DAR_INC); // Destination address incremental PDMA_SetBurstType(obj->serial.dma_chn_id_rx, PDMA_REQ_SINGLE, // Single mode 0); // Burst size PDMA_EnableInt(obj->serial.dma_chn_id_rx, 0); // Interrupt type. No use here // Register DMA event handler dma_set_handler(obj->serial.dma_chn_id_rx, (uint32_t) uart_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL); serial_rx_enable_interrupt(obj, handler, 1); ((UART_T *) NU_MODBASE(obj->serial.uart))->INTEN |= UART_INTEN_RXPDMAEN_Msk; // Start DMA transfer } } void serial_tx_abort_asynch(serial_t *obj) { // Flush Tx FIFO. Otherwise, output data may get lost on this change. while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart)))); if (obj->serial.dma_usage_tx != DMA_USAGE_NEVER) { PDMA_T *pdma_base = dma_modbase(); if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { PDMA_DisableInt(obj->serial.dma_chn_id_tx, 0); // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. //PDMA_STOP(obj->serial.dma_chn_id_tx); pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_tx); } UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_TXPDMAEN_Msk); } // Necessary for both interrupt way and DMA way serial_irq_set(obj, TxIrq, 0); // FIXME: more complete abort operation //UART_HAL_DisableTransmitter(obj->serial.serial.address); //UART_HAL_FlushTxFifo(obj->serial.serial.address); } void serial_rx_abort_asynch(serial_t *obj) { if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER) { PDMA_T *pdma_base = dma_modbase(); if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { PDMA_DisableInt(obj->serial.dma_chn_id_rx, 0); // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. //PDMA_STOP(obj->serial.dma_chn_id_rx); pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_rx); } UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RXPDMAEN_Msk); } // Necessary for both interrupt way and DMA way serial_irq_set(obj, RxIrq, 0); // FIXME: more complete abort operation //UART_HAL_DisableReceiver(obj->serial.serial.address); //UART_HAL_FlushRxFifo(obj->serial.serial.address); } uint8_t serial_tx_active(serial_t *obj) { return serial_is_irq_en(obj, TxIrq); } uint8_t serial_rx_active(serial_t *obj) { return serial_is_irq_en(obj, RxIrq); } int serial_irq_handler_asynch(serial_t *obj) { int event_rx = 0; int event_tx = 0; // Necessary for both interrupt way and DMA way if (serial_is_irq_en(obj, RxIrq)) { event_rx = serial_rx_event_check(obj); if (event_rx) { serial_rx_abort_asynch(obj); } } if (serial_is_irq_en(obj, TxIrq)) { event_tx = serial_tx_event_check(obj); if (event_tx) { serial_tx_abort_asynch(obj); } } return (obj->serial.event & (event_rx | event_tx)); } int serial_allow_powerdown(void) { uint32_t modinit_mask = uart_modinit_mask; while (modinit_mask) { int uart_idx = nu_ctz(modinit_mask); const struct nu_modinit_s *modinit = uart_modinit_tab + uart_idx; if (modinit->modname != NC) { UART_T *uart_base = (UART_T *) NU_MODBASE(modinit->modname); // Disallow entering power-down mode if Tx FIFO has data to flush if (! UART_IS_TX_EMPTY((uart_base))) { return 0; } // Disallow entering power-down mode if async Rx transfer (not PDMA) is on-going if (uart_base->INTEN & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)) { return 0; } // Disallow entering power-down mode if async Rx transfer (PDMA) is on-going if (uart_base->INTEN & UART_INTEN_RXPDMAEN_Msk) { return 0; } } modinit_mask &= ~(1 << uart_idx); } return 1; } static void uart0_vec_async(void) { uart_irq_async(uart0_var.obj); } static void uart1_vec_async(void) { uart_irq_async(uart1_var.obj); } static void uart2_vec_async(void) { uart_irq_async(uart2_var.obj); } static void uart3_vec_async(void) { uart_irq_async(uart3_var.obj); } static void uart4_vec_async(void) { uart_irq_async(uart4_var.obj); } static void uart5_vec_async(void) { uart_irq_async(uart5_var.obj); } static void uart_irq_async(serial_t *obj) { if (serial_is_irq_en(obj, RxIrq)) { (*obj->serial.irq_handler_rx_async)(); } if (serial_is_irq_en(obj, TxIrq)) { (*obj->serial.irq_handler_tx_async)(); } } static void serial_rx_set_char_match(serial_t *obj, uint8_t char_match) { obj->char_match = char_match; obj->char_found = 0; } static void serial_tx_enable_event(serial_t *obj, int event, uint8_t enable) { obj->serial.event &= ~SERIAL_EVENT_TX_MASK; obj->serial.event |= (event & SERIAL_EVENT_TX_MASK); //if (event & SERIAL_EVENT_TX_COMPLETE) { //} } static void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable) { obj->serial.event &= ~SERIAL_EVENT_RX_MASK; obj->serial.event |= (event & SERIAL_EVENT_RX_MASK); //if (event & SERIAL_EVENT_RX_COMPLETE) { //} //if (event & SERIAL_EVENT_RX_OVERRUN_ERROR) { //} if (event & SERIAL_EVENT_RX_FRAMING_ERROR) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RLSIEN_Msk); } if (event & SERIAL_EVENT_RX_PARITY_ERROR) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RLSIEN_Msk); } if (event & SERIAL_EVENT_RX_OVERFLOW) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_BUFERRIEN_Msk); } //if (event & SERIAL_EVENT_RX_CHARACTER_MATCH) { //} } static int serial_is_tx_complete(serial_t *obj) { // NOTE: Exclude tx fifo empty check due to no such interrupt on DMA way //return (obj->tx_buff.pos == obj->tx_buff.length) && UART_GET_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))); // FIXME: Premature abort??? return (obj->tx_buff.pos == obj->tx_buff.length); } static int serial_is_rx_complete(serial_t *obj) { //return (obj->rx_buff.pos == obj->rx_buff.length) && UART_GET_RX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))); return (obj->rx_buff.pos == obj->rx_buff.length); } static uint32_t serial_tx_event_check(serial_t *obj) { UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart); if (uart_base->INTSTS & UART_INTSTS_THREINT_Msk) { // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next write. UART_DISABLE_INT(uart_base, UART_INTEN_THREIEN_Msk); } uint32_t event = 0; if (obj->serial.dma_usage_tx == DMA_USAGE_NEVER) { serial_write_async(obj); } if (serial_is_tx_complete(obj)) { event |= SERIAL_EVENT_TX_COMPLETE; } return event; } static uint32_t serial_rx_event_check(serial_t *obj) { UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart); if (uart_base->INTSTS & (UART_INTSTS_RDAINT_Msk | UART_INTSTS_RXTOINT_Msk)) { // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next read. UART_DISABLE_INT(uart_base, (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); } uint32_t event = 0; if (uart_base->FIFOSTS & UART_FIFOSTS_BIF_Msk) { uart_base->FIFOSTS = UART_FIFOSTS_BIF_Msk; } if (uart_base->FIFOSTS & UART_FIFOSTS_FEF_Msk) { uart_base->FIFOSTS = UART_FIFOSTS_FEF_Msk; event |= SERIAL_EVENT_RX_FRAMING_ERROR; } if (uart_base->FIFOSTS & UART_FIFOSTS_PEF_Msk) { uart_base->FIFOSTS = UART_FIFOSTS_PEF_Msk; event |= SERIAL_EVENT_RX_PARITY_ERROR; } if (uart_base->FIFOSTS & UART_FIFOSTS_RXOVIF_Msk) { uart_base->FIFOSTS = UART_FIFOSTS_RXOVIF_Msk; event |= SERIAL_EVENT_RX_OVERFLOW; } if (obj->serial.dma_usage_rx == DMA_USAGE_NEVER) { serial_read_async(obj); } if (serial_is_rx_complete(obj)) { event |= SERIAL_EVENT_RX_COMPLETE; } if ((obj->char_match != SERIAL_RESERVED_CHAR_MATCH) && obj->char_found) { event |= SERIAL_EVENT_RX_CHARACTER_MATCH; // FIXME: Timing to reset char_found? //obj->char_found = 0; } return event; } static void uart_dma_handler_tx(uint32_t id, uint32_t event_dma) { serial_t *obj = (serial_t *) id; // FIXME: Pass this error to caller if (event_dma & DMA_EVENT_ABORT) { } // Expect UART IRQ will catch this transfer done event if (event_dma & DMA_EVENT_TRANSFER_DONE) { obj->tx_buff.pos = obj->tx_buff.length; } // FIXME: Pass this error to caller if (event_dma & DMA_EVENT_TIMEOUT) { } uart_irq_async(obj); } static void uart_dma_handler_rx(uint32_t id, uint32_t event_dma) { serial_t *obj = (serial_t *) id; // FIXME: Pass this error to caller if (event_dma & DMA_EVENT_ABORT) { } // Expect UART IRQ will catch this transfer done event if (event_dma & DMA_EVENT_TRANSFER_DONE) { obj->rx_buff.pos = obj->rx_buff.length; } // FIXME: Pass this error to caller if (event_dma & DMA_EVENT_TIMEOUT) { } uart_irq_async(obj); } static int serial_write_async(serial_t *obj) { const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->serial.uart); UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart); uint32_t tx_fifo_max = ((struct nu_uart_var *) modinit->var)->fifo_size_tx; uint32_t tx_fifo_busy = (uart_base->FIFOSTS & UART_FIFOSTS_TXPTR_Msk) >> UART_FIFOSTS_TXPTR_Pos; if (uart_base->FIFOSTS & UART_FIFOSTS_TXFULL_Msk) { tx_fifo_busy = tx_fifo_max; } uint32_t tx_fifo_free = tx_fifo_max - tx_fifo_busy; if (tx_fifo_free == 0) { // Simulate clear of the interrupt flag if (obj->serial.inten_msk & UART_INTEN_THREIEN_Msk) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); } return 0; } uint32_t bytes_per_word = obj->tx_buff.width / 8; uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos; int n_words = 0; while (obj->tx_buff.pos < obj->tx_buff.length && tx_fifo_free >= bytes_per_word) { switch (bytes_per_word) { case 4: UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); case 2: UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); case 1: UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); } n_words ++; tx_fifo_free -= bytes_per_word; obj->tx_buff.pos ++; } if (n_words) { // Simulate clear of the interrupt flag if (obj->serial.inten_msk & UART_INTEN_THREIEN_Msk) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); } } return n_words; } static int serial_read_async(serial_t *obj) { const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->serial.uart); uint32_t rx_fifo_busy = (((UART_T *) NU_MODBASE(obj->serial.uart))->FIFOSTS & UART_FIFOSTS_RXPTR_Msk) >> UART_FIFOSTS_RXPTR_Pos; //uint32_t rx_fifo_free = ((struct nu_uart_var *) modinit->var)->fifo_size_rx - rx_fifo_busy; //if (rx_fifo_free == 0) { // return 0; //} uint32_t bytes_per_word = obj->rx_buff.width / 8; uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos; int n_words = 0; while (obj->rx_buff.pos < obj->rx_buff.length && rx_fifo_busy >= bytes_per_word) { switch (bytes_per_word) { case 4: *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); case 2: *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); case 1: *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); } n_words ++; rx_fifo_busy -= bytes_per_word; obj->rx_buff.pos ++; if ((obj->serial.event & SERIAL_EVENT_RX_CHARACTER_MATCH) && obj->char_match != SERIAL_RESERVED_CHAR_MATCH) { uint8_t *rx_cmp = rx; switch (bytes_per_word) { case 4: rx_cmp -= 2; case 2: rx_cmp --; case 1: rx_cmp --; } if (*rx_cmp == obj->char_match) { obj->char_found = 1; break; } } } if (n_words) { // Simulate clear of the interrupt flag if (obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); } } return n_words; } static void serial_tx_buffer_set(serial_t *obj, const void *tx, size_t length, uint8_t width) { obj->tx_buff.buffer = (void *) tx; obj->tx_buff.length = length; obj->tx_buff.pos = 0; obj->tx_buff.width = width; } static void serial_rx_buffer_set(serial_t *obj, void *rx, size_t length, uint8_t width) { obj->rx_buff.buffer = rx; obj->rx_buff.length = length; obj->rx_buff.pos = 0; obj->rx_buff.width = width; } static void serial_tx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t enable) { const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->serial.uart); // Necessary for both interrupt way and DMA way struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; // With our own async vector, tx/rx handlers can be different. obj->serial.vec = var->vec_async; obj->serial.irq_handler_tx_async = (void (*)(void)) handler; serial_irq_set(obj, TxIrq, enable); } static void serial_rx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t enable) { const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->serial.uart); // Necessary for both interrupt way and DMA way struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; // With our own async vector, tx/rx handlers can be different. obj->serial.vec = var->vec_async; obj->serial.irq_handler_rx_async = (void (*) (void)) handler; serial_irq_set(obj, RxIrq, enable); } static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch) { if (*dma_usage != DMA_USAGE_NEVER) { if (*dma_ch == DMA_ERROR_OUT_OF_CHANNELS) { *dma_ch = dma_channel_allocate(DMA_CAP_NONE); } if (*dma_ch == DMA_ERROR_OUT_OF_CHANNELS) { *dma_usage = DMA_USAGE_NEVER; } } else { dma_channel_free(*dma_ch); *dma_ch = DMA_ERROR_OUT_OF_CHANNELS; } } static int serial_is_irq_en(serial_t *obj, SerialIrq irq) { int inten_msk = 0; switch (irq) { case RxIrq: inten_msk = obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk); break; case TxIrq: inten_msk = obj->serial.inten_msk & UART_INTEN_THREIEN_Msk; break; } return !! inten_msk; } #endif // #if DEVICE_SERIAL_ASYNCH #endif // #if DEVICE_SERIAL