mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
targets/TARGET_NXP/TARGET_LPC82X/i2c_api.c
- Committer:
- funshine
- Date:
- 2017-04-08
- Revision:
- 162:16168a1438f3
- Parent:
- 149:156823d33999
File content as of revision 162:16168a1438f3:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdlib.h> #include <string.h> #include "i2c_api.h" #include "cmsis.h" #include "pinmap.h" #define LPC824_I2C0_FMPLUS 1 #if DEVICE_I2C static const SWM_Map SWM_I2C_SDA[] = { //PINASSIGN Register ID, Pinselect bitfield position { 9, 8}, { 9, 24}, {10, 8}, }; static const SWM_Map SWM_I2C_SCL[] = { //PINASSIGN Register ID, Pinselect bitfield position { 9, 16}, {10, 0}, {10, 16}, }; static int i2c_used = 0; static uint8_t repeated_start = 0; #define I2C_DAT(x) (x->i2c->MSTDAT) #define I2C_STAT(x) ((x->i2c->STAT >> 1) & (0x07)) static inline void i2c_power_enable(int ch) { switch(ch) { case 0: // I2C0, Same as for LPC812 LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 5); LPC_SYSCON->PRESETCTRL &= ~(1 << 6); LPC_SYSCON->PRESETCTRL |= (1 << 6); break; case 1: case 2: case 3: // I2C1,I2C2 or I2C3. Not available for LPC812 LPC_SYSCON->SYSAHBCLKCTRL |= (1 << (20 + ch)); LPC_SYSCON->PRESETCTRL &= ~(1 << (13 + ch)); LPC_SYSCON->PRESETCTRL |= (1 << (13 + ch)); break; default: break; } } static inline void i2c_interface_enable(i2c_t *obj) { obj->i2c->CFG |= (1 << 0); // Enable Master mode // obj->i2c->CFG &= ~(1 << 1); // Disable Slave mode } static int get_available_i2c(void) { int i; for (i=0; i<3; i++) { if ((i2c_used & (1 << i)) == 0) return i+1; } return -1; } void i2c_init(i2c_t *obj, PinName sda, PinName scl) { const SWM_Map *swm; uint32_t regVal; int i2c_ch = 0; //LPC824 //I2C0 can support FM+ but only on P0_11 and P0_10 if (sda == I2C_SDA && scl == I2C_SCL) { //Select I2C mode for P0_11 and P0_10 LPC_SWM->PINENABLE0 &= ~(0x3 << 11); #if(LPC824_I2C0_FMPLUS == 1) // Enable FM+ mode on P0_11, P0_10 LPC_IOCON->PIO0_10 &= ~(0x3 << 8); LPC_IOCON->PIO0_10 |= (0x2 << 8); //FM+ mode LPC_IOCON->PIO0_11 &= ~(0x3 << 8); LPC_IOCON->PIO0_11 |= (0x2 << 8); //FM+ mode #endif } else { //Select any other pin for I2C1, I2C2 or I2C3 i2c_ch = get_available_i2c(); if (i2c_ch == -1) return; i2c_used |= (1 << (i2c_ch - 1)); swm = &SWM_I2C_SDA[i2c_ch - 1]; regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset); LPC_SWM->PINASSIGN[swm->n] = regVal | ((sda >> PIN_SHIFT) << swm->offset); swm = &SWM_I2C_SCL[i2c_ch - 1]; regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset); LPC_SWM->PINASSIGN[swm->n] = regVal | ((scl >> PIN_SHIFT) << swm->offset); } switch(i2c_ch) { case 0: obj->i2c = (LPC_I2C0_Type *)LPC_I2C0; break; case 1: obj->i2c = (LPC_I2C0_Type *)LPC_I2C1; break; case 2: obj->i2c = (LPC_I2C0_Type *)LPC_I2C2; break; case 3: obj->i2c = (LPC_I2C0_Type *)LPC_I2C3; break; default: break; } // enable power i2c_power_enable(i2c_ch); // set default frequency at 100k i2c_frequency(obj, 100000); i2c_interface_enable(obj); } static inline int i2c_status(i2c_t *obj) { return I2C_STAT(obj); } // Wait until the Master Serial Interrupt (SI) is set // Timeout when it takes too long. static int i2c_wait_SI(i2c_t *obj) { int timeout = 0; while (!(obj->i2c->STAT & (1 << 0))) { timeout++; if (timeout > 100000) return -1; } return 0; } //Attention. Spec says: First store Address in DAT before setting STA ! //Undefined state when using single byte I2C operations and too much delay //between i2c_start and do_i2c_write(Address). //Also note that lpc812/824 will immediately continue reading a byte when Address b0 == 1 inline int i2c_start(i2c_t *obj) { int status = 0; if (repeated_start) { obj->i2c->MSTCTL = (1 << 1) | (1 << 0); // STA bit and Continue bit to complete previous RD or WR repeated_start = 0; } else { obj->i2c->MSTCTL = (1 << 1); // STA bit } return status; } //Generate Stop condition and wait until bus is Idle //Will also send NAK for previous RD inline int i2c_stop(i2c_t *obj) { int timeout = 0; // STP bit and Continue bit. Sends NAK to complete previous RD obj->i2c->MSTCTL = (1 << 2) | (1 << 0); //Spin until Ready (b0 == 1)and Status is Idle (b3..b1 == 000) while ((obj->i2c->STAT & ((7 << 1) | (1 << 0))) != ((0 << 1) | (1 << 0))) { timeout ++; if (timeout > 100000) return 1; } // repeated_start = 0; // bus free return 0; } //Spec says: first check Idle and status is Ok static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) { // write the data I2C_DAT(obj) = value; if (!addr) obj->i2c->MSTCTL = (1 << 0); //Set continue for data. Should not be set for addr since that uses STA // wait and return status i2c_wait_SI(obj); return i2c_status(obj); } //Attention, correct Order: wait for data ready, read data, read status, continue, return //Dont read DAT or STAT when not ready, so dont read after setting continue. //Results may be invalid when next read is underway. static inline int i2c_do_read(i2c_t *obj, int last) { // wait for it to arrive i2c_wait_SI(obj); if (!last) obj->i2c->MSTCTL = (1 << 0); //ACK and Continue // return the data return (I2C_DAT(obj) & 0xFF); } void i2c_frequency(i2c_t *obj, int hz) { // No peripheral clock divider on the M0 uint32_t PCLK = SystemCoreClock; uint32_t clkdiv = PCLK / (hz * 4) - 1; obj->i2c->CLKDIV = clkdiv; obj->i2c->MSTTIME = 0; } // The I2C does a read or a write as a whole operation // There are two types of error conditions it can encounter // 1) it can not obtain the bus // 2) it gets error responses at part of the transmission // // We tackle them as follows: // 1) we retry until we get the bus. we could have a "timeout" if we can not get it // which basically turns it in to a 2) // 2) on error, we use the standard error mechanisms to report/debug // // Therefore an I2C transaction should always complete. If it doesn't it is usually // because something is setup wrong (e.g. wiring), and we don't need to programatically // check for that int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) { int count, status; //Store the address+RD and then generate STA I2C_DAT(obj) = address | 0x01; i2c_start(obj); // Wait for completion of STA and Sending of SlaveAddress+RD and first Read byte i2c_wait_SI(obj); status = i2c_status(obj); if (status == 0x03) { // NAK on SlaveAddress i2c_stop(obj); return I2C_ERROR_NO_SLAVE; } // Read in all except last byte for (count = 0; count < (length-1); count++) { // Wait for it to arrive, note that first byte read after address+RD is already waiting i2c_wait_SI(obj); status = i2c_status(obj); if (status != 0x01) { // RX RDY i2c_stop(obj); return count; } data[count] = I2C_DAT(obj) & 0xFF; // Store read byte obj->i2c->MSTCTL = (1 << 0); // Send ACK and Continue to read } // Read final byte // Wait for it to arrive i2c_wait_SI(obj); status = i2c_status(obj); if (status != 0x01) { // RX RDY i2c_stop(obj); return count; } data[count] = I2C_DAT(obj) & 0xFF; // Store final read byte // If not repeated start, send stop. if (stop) { i2c_stop(obj); // Also sends NAK for last read byte } else { repeated_start = 1; } return length; } int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) { int i, status; //Store the address+/WR and then generate STA I2C_DAT(obj) = address & 0xFE; i2c_start(obj); // Wait for completion of STA and Sending of SlaveAddress+/WR i2c_wait_SI(obj); status = i2c_status(obj); if (status == 0x03) { // NAK SlaveAddress i2c_stop(obj); return I2C_ERROR_NO_SLAVE; } //Write all bytes for (i=0; i<length; i++) { status = i2c_do_write(obj, data[i], 0); if (status != 0x02) { // TX RDY. Handles a Slave NAK on datawrite i2c_stop(obj); return i; } } // If not repeated start, send stop. if (stop) { i2c_stop(obj); } else { repeated_start = 1; } return length; } void i2c_reset(i2c_t *obj) { i2c_stop(obj); } int i2c_byte_read(i2c_t *obj, int last) { return (i2c_do_read(obj, last) & 0xFF); // return (i2c_do_read(obj, last, 0) & 0xFF); } int i2c_byte_write(i2c_t *obj, int data) { int ack; int status = i2c_do_write(obj, (data & 0xFF), 0); switch(status) { case 2: // TX RDY. Handles a Slave NAK on datawrite ack = 1; break; default: ack = 0; break; } return ack; } #if DEVICE_I2CSLAVE #define I2C_SLVDAT(x) (x->i2c->SLVDAT) #define I2C_SLVSTAT(x) ((x->i2c->STAT >> 9) & (0x03)) #define I2C_SLVSI(x) ((x->i2c->STAT >> 8) & (0x01)) //#define I2C_SLVCNT(x) (x->i2c->SLVCTL = (1 << 0)) //#define I2C_SLVNAK(x) (x->i2c->SLVCTL = (1 << 1)) #if(0) // Wait until the Slave Serial Interrupt (SI) is set // Timeout when it takes too long. static int i2c_wait_slave_SI(i2c_t *obj) { int timeout = 0; while (!(obj->i2c->STAT & (1 << 8))) { timeout++; if (timeout > 100000) return -1; } return 0; } #endif void i2c_slave_mode(i2c_t *obj, int enable_slave) { if (enable_slave) { // obj->i2c->CFG &= ~(1 << 0); //Disable Master mode obj->i2c->CFG |= (1 << 1); //Enable Slave mode } else { // obj->i2c->CFG |= (1 << 0); //Enable Master mode obj->i2c->CFG &= ~(1 << 1); //Disable Slave mode } } // Wait for next I2C event and find out what is going on // int i2c_slave_receive(i2c_t *obj) { int addr; // Check if there is any data pending if (! I2C_SLVSI(obj)) { return 0; //NoData }; // Check State switch(I2C_SLVSTAT(obj)) { case 0x0: // Slave address plus R/W received // At least one of the four slave addresses has been matched by hardware. // You can figure out which address by checking Slave address match Index in STAT register. // Get the received address addr = I2C_SLVDAT(obj) & 0xFF; // Send ACK on address and Continue obj->i2c->SLVCTL = (1 << 0); if (addr == 0x00) { return 2; //WriteGeneral } //check the RW bit if ((addr & 0x01) == 0x01) { return 1; //ReadAddressed } else { return 3; //WriteAddressed } //break; case 0x1: // Slave receive. Received data is available (Slave Receiver mode). // Oops, should never get here... obj->i2c->SLVCTL = (1 << 1); // Send NACK on received data, try to recover... return 0; //NoData case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode). // Oops, should never get here... I2C_SLVDAT(obj) = 0xFF; // Send dummy data for transmission obj->i2c->SLVCTL = (1 << 0); // Continue and try to recover... return 0; //NoData case 0x3: // Reserved. default: // Oops, should never get here... obj->i2c->SLVCTL = (1 << 0); // Continue and try to recover... return 0; //NoData //break; } //switch status } // The dedicated I2C Slave byte read and byte write functions need to be called // from 'common' mbed I2CSlave API for devices that have separate Master and // Slave engines such as the lpc812 and lpc1549. //Called when Slave is addressed for Write, Slave will receive Data in polling mode //Parameter last=1 means received byte will be NACKed. int i2c_slave_byte_read(i2c_t *obj, int last) { int data; // Wait for data while (!I2C_SLVSI(obj)); // Wait forever //if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout // Dont bother to check State, were not returning it anyhow.. //if (I2C_SLVSTAT(obj)) == 0x01) { // Slave receive. Received data is available (Slave Receiver mode). //}; data = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data if (last) { obj->i2c->SLVCTL = (1 << 1); // Send NACK on received data and Continue } else { obj->i2c->SLVCTL = (1 << 0); // Send ACK on data and Continue to read } return data; } //Called when Slave is addressed for Read, Slave will send Data in polling mode // int i2c_slave_byte_write(i2c_t *obj, int data) { // Wait until Ready while (!I2C_SLVSI(obj)); // Wait forever // if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout // Check State switch(I2C_SLVSTAT(obj)) { case 0x0: // Slave address plus R/W received // At least one of the four slave addresses has been matched by hardware. // You can figure out which address by checking Slave address match Index in STAT register. // I2C Restart occurred return -1; //break; case 0x1: // Slave receive. Received data is available (Slave Receiver mode). // Should not get here... return -2; //break; case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode). I2C_SLVDAT(obj) = data & 0xFF; // Store the data for transmission obj->i2c->SLVCTL = (1 << 0); // Continue to send return 1; //break; case 0x3: // Reserved. default: // Should not get here... return -3; //break; } // switch status } //Called when Slave is addressed for Write, Slave will receive Data in polling mode //Parameter length (>=1) is the maximum allowable number of bytes. All bytes will be ACKed. int i2c_slave_read(i2c_t *obj, char *data, int length) { int count=0; // Read and ACK all expected bytes while (count < length) { // Wait for data while (!I2C_SLVSI(obj)); // Wait forever // if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout // Check State switch(I2C_SLVSTAT(obj)) { case 0x0: // Slave address plus R/W received // At least one of the four slave addresses has been matched by hardware. // You can figure out which address by checking Slave address match Index in STAT register. // I2C Restart occurred return -1; //break; case 0x1: // Slave receive. Received data is available (Slave Receiver mode). data[count] = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data obj->i2c->SLVCTL = (1 << 0); // Send ACK on data and Continue to read break; case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode). case 0x3: // Reserved. default: // Should never get here... return -2; //break; } // switch status count++; } // for all bytes return count; // Received the expected number of bytes } //Called when Slave is addressed for Read, Slave will send Data in polling mode //Parameter length (>=1) is the maximum number of bytes. Exit when Slave byte is NACKed. int i2c_slave_write(i2c_t *obj, const char *data, int length) { int count; // Send and all bytes or Exit on NAK for (count=0; count < length; count++) { // Wait until Ready for data while (!I2C_SLVSI(obj)); // Wait forever // if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout // Check State switch(I2C_SLVSTAT(obj)) { case 0x0: // Slave address plus R/W received // At least one of the four slave addresses has been matched by hardware. // You can figure out which address by checking Slave address match Index in STAT register. // I2C Restart occurred return -1; //break; case 0x1: // Slave receive. Received data is available (Slave Receiver mode). // Should not get here... return -2; //break; case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode). I2C_SLVDAT(obj) = data[count] & 0xFF; // Store the data for transmission obj->i2c->SLVCTL = (1 << 0); // Continue to send break; case 0x3: // Reserved. default: // Should not get here... return -3; //break; } // switch status } // for all bytes return length; // Transmitted the max number of bytes } // Set the four slave addresses. void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) { obj->i2c->SLVADR0 = (address & 0xFE); // Store address in address 0 register obj->i2c->SLVADR1 = (0x00 & 0xFE); // Store general call write address in address 1 register obj->i2c->SLVADR2 = (0x01); // Disable address 2 register obj->i2c->SLVADR3 = (0x01); // Disable address 3 register obj->i2c->SLVQUAL0 = (mask & 0xFE); // Qualifier mask for address 0 register. Any maskbit that is 1 will always be a match } #endif #endif