Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/TARGET_STM/TARGET_STM32F4/serial_api.c
- Committer:
- <>
- Date:
- 2016-10-28
- Revision:
- 149:156823d33999
File content as of revision 149:156823d33999:
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2015, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "mbed_assert.h"
#include "serial_api.h"
#if DEVICE_SERIAL
#include "cmsis.h"
#include "pinmap.h"
#include <string.h>
#include "PeripheralPins.h"
#include "mbed_error.h"
#define UART_NUM (8)
static uint32_t serial_irq_ids[UART_NUM] = {0};
static UART_HandleTypeDef uart_handlers[UART_NUM];
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
#if DEVICE_SERIAL_ASYNCH
#define SERIAL_S(obj) (&((obj)->serial))
#else
#define SERIAL_S(obj) (obj)
#endif
static void init_uart(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
huart->Instance = (USART_TypeDef *)(obj_s->uart);
huart->Init.BaudRate = obj_s->baudrate;
huart->Init.WordLength = obj_s->databits;
huart->Init.StopBits = obj_s->stopbits;
huart->Init.Parity = obj_s->parity;
#if DEVICE_SERIAL_FC
huart->Init.HwFlowCtl = obj_s->hw_flow_ctl;
#else
huart->Init.HwFlowCtl = UART_HWCONTROL_NONE;
#endif
huart->Init.OverSampling = UART_OVERSAMPLING_16;
huart->TxXferCount = 0;
huart->TxXferSize = 0;
huart->RxXferCount = 0;
huart->RxXferSize = 0;
if (obj_s->pin_rx == NC) {
huart->Init.Mode = UART_MODE_TX;
} else if (obj_s->pin_tx == NC) {
huart->Init.Mode = UART_MODE_RX;
} else {
huart->Init.Mode = UART_MODE_TX_RX;
}
if (HAL_UART_Init(huart) != HAL_OK) {
error("Cannot initialize UART\n");
}
}
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
struct serial_s *obj_s = SERIAL_S(obj);
// Determine the UART to use (UART_1, UART_2, ...)
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
// Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
obj_s->uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT(obj_s->uart != (UARTName)NC);
// Enable USART clock
switch (obj_s->uart) {
case UART_1:
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_ENABLE();
obj_s->index = 0;
break;
case UART_2:
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_ENABLE();
obj_s->index = 1;
break;
#if defined(USART3_BASE)
case UART_3:
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_ENABLE();
obj_s->index = 2;
break;
#endif
#if defined(UART4_BASE)
case UART_4:
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_ENABLE();
obj_s->index = 3;
break;
#endif
#if defined(UART5_BASE)
case UART_5:
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_ENABLE();
obj_s->index = 4;
break;
#endif
#if defined(USART6_BASE)
case UART_6:
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_ENABLE();
obj_s->index = 5;
break;
#endif
#if defined(UART7_BASE)
case UART_7:
__HAL_RCC_UART7_FORCE_RESET();
__HAL_RCC_UART7_RELEASE_RESET();
__HAL_RCC_UART7_CLK_ENABLE();
obj_s->index = 6;
break;
#endif
#if defined(UART8_BASE)
case UART_8:
__HAL_RCC_UART8_FORCE_RESET();
__HAL_RCC_UART8_RELEASE_RESET();
__HAL_RCC_UART8_CLK_ENABLE();
obj_s->index = 7;
break;
#endif
}
// Configure the UART pins
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
if (tx != NC) {
pin_mode(tx, PullUp);
}
if (rx != NC) {
pin_mode(rx, PullUp);
}
// Configure UART
obj_s->baudrate = 9600;
obj_s->databits = UART_WORDLENGTH_8B;
obj_s->stopbits = UART_STOPBITS_1;
obj_s->parity = UART_PARITY_NONE;
#if DEVICE_SERIAL_FC
obj_s->hw_flow_ctl = UART_HWCONTROL_NONE;
#endif
obj_s->pin_tx = tx;
obj_s->pin_rx = rx;
init_uart(obj);
// For stdio management
if (obj_s->uart == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
// Reset UART and disable clock
switch (obj_s->index) {
case 0:
__USART1_FORCE_RESET();
__USART1_RELEASE_RESET();
__USART1_CLK_DISABLE();
break;
case 1:
__USART2_FORCE_RESET();
__USART2_RELEASE_RESET();
__USART2_CLK_DISABLE();
break;
#if defined(USART3_BASE)
case 2:
__USART3_FORCE_RESET();
__USART3_RELEASE_RESET();
__USART3_CLK_DISABLE();
break;
#endif
#if defined(UART4_BASE)
case 3:
__UART4_FORCE_RESET();
__UART4_RELEASE_RESET();
__UART4_CLK_DISABLE();
break;
#endif
#if defined(UART5_BASE)
case 4:
__UART5_FORCE_RESET();
__UART5_RELEASE_RESET();
__UART5_CLK_DISABLE();
break;
#endif
#if defined(USART6_BASE)
case 5:
__USART6_FORCE_RESET();
__USART6_RELEASE_RESET();
__USART6_CLK_DISABLE();
break;
#endif
#if defined(UART7_BASE)
case 6:
__UART7_FORCE_RESET();
__UART7_RELEASE_RESET();
__UART7_CLK_DISABLE();
break;
#endif
#if defined(UART8_BASE)
case 7:
__UART8_FORCE_RESET();
__UART8_RELEASE_RESET();
__UART8_CLK_DISABLE();
break;
#endif
}
// Configure GPIOs
pin_function(obj_s->pin_tx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
pin_function(obj_s->pin_rx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
serial_irq_ids[obj_s->index] = 0;
}
void serial_baud(serial_t *obj, int baudrate)
{
struct serial_s *obj_s = SERIAL_S(obj);
obj_s->baudrate = baudrate;
init_uart(obj);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
struct serial_s *obj_s = SERIAL_S(obj);
if (data_bits == 9) {
obj_s->databits = UART_WORDLENGTH_9B;
} else {
obj_s->databits = UART_WORDLENGTH_8B;
}
switch (parity) {
case ParityOdd:
obj_s->parity = UART_PARITY_ODD;
break;
case ParityEven:
obj_s->parity = UART_PARITY_EVEN;
break;
default: // ParityNone
case ParityForced0: // unsupported!
case ParityForced1: // unsupported!
obj_s->parity = UART_PARITY_NONE;
break;
}
if (stop_bits == 2) {
obj_s->stopbits = UART_STOPBITS_2;
} else {
obj_s->stopbits = UART_STOPBITS_1;
}
init_uart(obj);
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static void uart_irq(int id)
{
UART_HandleTypeDef * huart = &uart_handlers[id];
if (serial_irq_ids[id] != 0) {
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET) {
irq_handler(serial_irq_ids[id], TxIrq);
__HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
}
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) {
if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE) != RESET) {
irq_handler(serial_irq_ids[id], RxIrq);
__HAL_UART_CLEAR_FLAG(huart, UART_FLAG_RXNE);
}
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
volatile uint32_t tmpval = huart->Instance->DR; // Clear ORE flag
}
}
}
}
static void uart1_irq(void)
{
uart_irq(0);
}
static void uart2_irq(void)
{
uart_irq(1);
}
#if defined(USART3_BASE)
static void uart3_irq(void)
{
uart_irq(2);
}
#endif
#if defined(UART4_BASE)
static void uart4_irq(void)
{
uart_irq(3);
}
#endif
#if defined(UART5_BASE)
static void uart5_irq(void)
{
uart_irq(4);
}
#endif
#if defined(USART6_BASE)
static void uart6_irq(void)
{
uart_irq(5);
}
#endif
#if defined(UART7_BASE)
static void uart7_irq(void)
{
uart_irq(6);
}
#endif
#if defined(UART8_BASE)
static void uart8_irq(void)
{
uart_irq(7);
}
#endif
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
struct serial_s *obj_s = SERIAL_S(obj);
irq_handler = handler;
serial_irq_ids[obj_s->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
switch (obj_s->index) {
case 0:
irq_n = USART1_IRQn;
vector = (uint32_t)&uart1_irq;
break;
case 1:
irq_n = USART2_IRQn;
vector = (uint32_t)&uart2_irq;
break;
#if defined(USART3_BASE)
case 2:
irq_n = USART3_IRQn;
vector = (uint32_t)&uart3_irq;
break;
#endif
#if defined(UART4_BASE)
case 3:
irq_n = UART4_IRQn;
vector = (uint32_t)&uart4_irq;
break;
#endif
#if defined(UART5_BASE)
case 4:
irq_n = UART5_IRQn;
vector = (uint32_t)&uart5_irq;
break;
#endif
#if defined(USART6_BASE)
case 5:
irq_n = USART6_IRQn;
vector = (uint32_t)&uart6_irq;
break;
#endif
#if defined(UART7_BASE)
case 6:
irq_n = UART7_IRQn;
vector = (uint32_t)&uart7_irq;
break;
#endif
#if defined(UART8_BASE)
case 7:
irq_n = UART8_IRQn;
vector = (uint32_t)&uart8_irq;
break;
#endif
}
if (enable) {
if (irq == RxIrq) {
__HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
} else { // TxIrq
__HAL_UART_ENABLE_IT(huart, UART_IT_TC);
}
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else { // disable
int all_disabled = 0;
if (irq == RxIrq) {
__HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
// Check if TxIrq is disabled too
if ((huart->Instance->CR1 & USART_CR1_TXEIE) == 0) {
all_disabled = 1;
}
} else { // TxIrq
__HAL_UART_DISABLE_IT(huart, UART_IT_TC);
// Check if RxIrq is disabled too
if ((huart->Instance->CR1 & USART_CR1_RXNEIE) == 0) {
all_disabled = 1;
}
}
if (all_disabled) {
NVIC_DisableIRQ(irq_n);
}
}
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
while (!serial_readable(obj));
return (int)(huart->Instance->DR & 0x1FF);
}
void serial_putc(serial_t *obj, int c)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
while (!serial_writable(obj));
huart->Instance->DR = (uint32_t)(c & 0x1FF);
}
int serial_readable(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
// Check if data is received
return (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) ? 1 : 0;
}
int serial_writable(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
// Check if data is transmitted
return (__HAL_UART_GET_FLAG(huart, UART_FLAG_TXE) != RESET) ? 1 : 0;
}
void serial_clear(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
huart->TxXferCount = 0;
huart->RxXferCount = 0;
}
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
HAL_LIN_SendBreak(huart);
}
void serial_break_clear(serial_t *obj)
{
(void)obj;
}
#if DEVICE_SERIAL_ASYNCH
/******************************************************************************
* LOCAL HELPER FUNCTIONS
******************************************************************************/
/**
* Configure the TX buffer for an asynchronous write serial transaction
*
* @param obj The serial object.
* @param tx The buffer for sending.
* @param tx_length The number of words to transmit.
*/
static void serial_tx_buffer_set(serial_t *obj, void *tx, int tx_length, uint8_t width)
{
(void)width;
// Exit if a transmit is already on-going
if (serial_tx_active(obj)) {
return;
}
obj->tx_buff.buffer = tx;
obj->tx_buff.length = tx_length;
obj->tx_buff.pos = 0;
}
/**
* Configure the RX buffer for an asynchronous write serial transaction
*
* @param obj The serial object.
* @param tx The buffer for sending.
* @param tx_length The number of words to transmit.
*/
static void serial_rx_buffer_set(serial_t *obj, void *rx, int rx_length, uint8_t width)
{
(void)width;
// Exit if a reception is already on-going
if (serial_rx_active(obj)) {
return;
}
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx_length;
obj->rx_buff.pos = 0;
}
/**
* Configure events
*
* @param obj The serial object
* @param event The logical OR of the events to configure
* @param enable Set to non-zero to enable events, or zero to disable them
*/
static void serial_enable_event(serial_t *obj, int event, uint8_t enable)
{
struct serial_s *obj_s = SERIAL_S(obj);
// Shouldn't have to enable interrupt here, just need to keep track of the requested events.
if (enable) {
obj_s->events |= event;
} else {
obj_s->events &= ~event;
}
}
/**
* Get index of serial object TX IRQ, relating it to the physical peripheral.
*
* @param obj pointer to serial object
* @return internal NVIC TX IRQ index of U(S)ART peripheral
*/
static IRQn_Type serial_get_irq_n(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
IRQn_Type irq_n;
switch (obj_s->index) {
#if defined(USART1_BASE)
case 0:
irq_n = USART1_IRQn;
break;
#endif
#if defined(USART2_BASE)
case 1:
irq_n = USART2_IRQn;
break;
#endif
#if defined(USART3_BASE)
case 2:
irq_n = USART3_IRQn;
break;
#endif
#if defined(UART4_BASE)
case 3:
irq_n = UART4_IRQn;
break;
#endif
#if defined(USART5_BASE)
case 4:
irq_n = UART5_IRQn;
break;
#endif
#if defined(USART6_BASE)
case 5:
irq_n = USART6_IRQn;
break;
#endif
#if defined(UART7_BASE)
case 6:
irq_n = UART7_IRQn;
break;
#endif
#if defined(UART8_BASE)
case 7:
irq_n = UART8_IRQn;
break;
#endif
default:
irq_n = (IRQn_Type)0;
}
return irq_n;
}
/******************************************************************************
* MBED API FUNCTIONS
******************************************************************************/
/**
* Begin asynchronous TX transfer. The used buffer is specified in the serial
* object, tx_buff
*
* @param obj The serial object
* @param tx The buffer for sending
* @param tx_length The number of words to transmit
* @param tx_width The bit width of buffer word
* @param handler The serial handler
* @param event The logical OR of events to be registered
* @param hint A suggestion for how to use DMA with this transfer
* @return Returns number of data transfered, or 0 otherwise
*/
int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
// TODO: DMA usage is currently ignored
(void) hint;
// Check buffer is ok
MBED_ASSERT(tx != (void*)0);
MBED_ASSERT(tx_width == 8); // support only 8b width
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef * huart = &uart_handlers[obj_s->index];
if (tx_length == 0) {
return 0;
}
// Set up buffer
serial_tx_buffer_set(obj, (void *)tx, tx_length, tx_width);
// Set up events
serial_enable_event(obj, SERIAL_EVENT_TX_ALL, 0); // Clear all events
serial_enable_event(obj, event, 1); // Set only the wanted events
// Enable interrupt
IRQn_Type irq_n = serial_get_irq_n(obj);
NVIC_ClearPendingIRQ(irq_n);
NVIC_DisableIRQ(irq_n);
NVIC_SetPriority(irq_n, 1);
NVIC_SetVector(irq_n, (uint32_t)handler);
NVIC_EnableIRQ(irq_n);
// the following function will enable UART_IT_TXE and error interrupts
if (HAL_UART_Transmit_IT(huart, (uint8_t*)tx, tx_length) != HAL_OK) {
return 0;
}
return tx_length;
}
/**
* Begin asynchronous RX transfer (enable interrupt for data collecting)
* The used buffer is specified in the serial object, rx_buff
*
* @param obj The serial object
* @param rx The buffer for sending
* @param rx_length The number of words to transmit
* @param rx_width The bit width of buffer word
* @param handler The serial handler
* @param event The logical OR of events to be registered
* @param handler The serial handler
* @param char_match A character in range 0-254 to be matched
* @param hint A suggestion for how to use DMA with this transfer
*/
void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint)
{
// TODO: DMA usage is currently ignored
(void) hint;
/* Sanity check arguments */
MBED_ASSERT(obj);
MBED_ASSERT(rx != (void*)0);
MBED_ASSERT(rx_width == 8); // support only 8b width
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
serial_enable_event(obj, SERIAL_EVENT_RX_ALL, 0);
serial_enable_event(obj, event, 1);
// set CharMatch
obj->char_match = char_match;
serial_rx_buffer_set(obj, rx, rx_length, rx_width);
IRQn_Type irq_n = serial_get_irq_n(obj);
NVIC_ClearPendingIRQ(irq_n);
NVIC_DisableIRQ(irq_n);
NVIC_SetPriority(irq_n, 0);
NVIC_SetVector(irq_n, (uint32_t)handler);
NVIC_EnableIRQ(irq_n);
// following HAL function will enable the RXNE interrupt + error interrupts
HAL_UART_Receive_IT(huart, (uint8_t*)rx, rx_length);
}
/**
* Attempts to determine if the serial peripheral is already in use for TX
*
* @param obj The serial object
* @return Non-zero if the TX transaction is ongoing, 0 otherwise
*/
uint8_t serial_tx_active(serial_t *obj)
{
MBED_ASSERT(obj);
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
return ((HAL_UART_GetState(huart) == HAL_UART_STATE_BUSY_TX) ? 1 : 0);
}
/**
* Attempts to determine if the serial peripheral is already in use for RX
*
* @param obj The serial object
* @return Non-zero if the RX transaction is ongoing, 0 otherwise
*/
uint8_t serial_rx_active(serial_t *obj)
{
MBED_ASSERT(obj);
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
return ((HAL_UART_GetState(huart) == HAL_UART_STATE_BUSY_RX) ? 1 : 0);
}
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) {
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
__HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
}
}
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) {
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) {
volatile uint32_t tmpval = huart->Instance->DR; // Clear PE flag
} else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) {
volatile uint32_t tmpval = huart->Instance->DR; // Clear FE flag
} else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_NE) != RESET) {
volatile uint32_t tmpval = huart->Instance->DR; // Clear NE flag
} else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
volatile uint32_t tmpval = huart->Instance->DR; // Clear ORE flag
}
}
/**
* The asynchronous TX and RX handler.
*
* @param obj The serial object
* @return Returns event flags if a TX/RX transfer termination condition was met or 0 otherwise
*/
int serial_irq_handler_asynch(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
volatile int return_event = 0;
uint8_t *buf = (uint8_t*)(obj->rx_buff.buffer);
uint8_t i = 0;
// TX PART:
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET) {
// Return event SERIAL_EVENT_TX_COMPLETE if requested
if ((obj_s->events & SERIAL_EVENT_TX_COMPLETE ) != 0) {
return_event |= (SERIAL_EVENT_TX_COMPLETE & obj_s->events);
}
}
}
// Handle error events
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) {
if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
return_event |= (SERIAL_EVENT_RX_PARITY_ERROR & obj_s->events);
}
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) {
if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
return_event |= (SERIAL_EVENT_RX_FRAMING_ERROR & obj_s->events);
}
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
return_event |= (SERIAL_EVENT_RX_OVERRUN_ERROR & obj_s->events);
}
}
HAL_UART_IRQHandler(huart);
// Abort if an error occurs
if (return_event & SERIAL_EVENT_RX_PARITY_ERROR ||
return_event & SERIAL_EVENT_RX_FRAMING_ERROR ||
return_event & SERIAL_EVENT_RX_OVERRUN_ERROR) {
return return_event;
}
//RX PART
if (huart->RxXferSize != 0) {
obj->rx_buff.pos = huart->RxXferSize - huart->RxXferCount;
}
if ((huart->RxXferCount == 0) && (obj->rx_buff.pos >= (obj->rx_buff.length - 1))) {
return_event |= (SERIAL_EVENT_RX_COMPLETE & obj_s->events);
}
// Check if char_match is present
if (obj_s->events & SERIAL_EVENT_RX_CHARACTER_MATCH) {
if (buf != NULL) {
for (i = 0; i < obj->rx_buff.pos; i++) {
if (buf[i] == obj->char_match) {
obj->rx_buff.pos = i;
return_event |= (SERIAL_EVENT_RX_CHARACTER_MATCH & obj_s->events);
serial_rx_abort_asynch(obj);
break;
}
}
}
}
return return_event;
}
/**
* Abort the ongoing TX transaction. It disables the enabled interupt for TX and
* flush TX hardware buffer if TX FIFO is used
*
* @param obj The serial object
*/
void serial_tx_abort_asynch(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
__HAL_UART_DISABLE_IT(huart, UART_IT_TC);
__HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
// clear flags
__HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
// reset states
huart->TxXferCount = 0;
// update handle state
if(huart->gState == HAL_UART_STATE_BUSY_TX_RX) {
huart->gState = HAL_UART_STATE_BUSY_RX;
} else {
huart->gState = HAL_UART_STATE_READY;
}
}
/**
* Abort the ongoing RX transaction It disables the enabled interrupt for RX and
* flush RX hardware buffer if RX FIFO is used
*
* @param obj The serial object
*/
void serial_rx_abort_asynch(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
// disable interrupts
__HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
__HAL_UART_DISABLE_IT(huart, UART_IT_PE);
__HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
// clear flags
__HAL_UART_CLEAR_FLAG(huart, UART_FLAG_RXNE);
volatile uint32_t tmpval = huart->Instance->DR; // Clear errors flag
// reset states
huart->RxXferCount = 0;
// update handle state
if(huart->RxState == HAL_UART_STATE_BUSY_TX_RX) {
huart->RxState = HAL_UART_STATE_BUSY_TX;
} else {
huart->RxState = HAL_UART_STATE_READY;
}
}
#endif
#if DEVICE_SERIAL_FC
/**
* Set HW Control Flow
* @param obj The serial object
* @param type The Control Flow type (FlowControlNone, FlowControlRTS, FlowControlCTS, FlowControlRTSCTS)
* @param rxflow Pin for the rxflow
* @param txflow Pin for the txflow
*/
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
struct serial_s *obj_s = SERIAL_S(obj);
// Determine the UART to use (UART_1, UART_2, ...)
UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
// Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
obj_s->uart = (UARTName)pinmap_merge(uart_cts, uart_rts);
MBED_ASSERT(obj_s->uart != (UARTName)NC);
if(type == FlowControlNone) {
// Disable hardware flow control
obj_s->hw_flow_ctl = UART_HWCONTROL_NONE;
}
if (type == FlowControlRTS) {
// Enable RTS
MBED_ASSERT(uart_rts != (UARTName)NC);
obj_s->hw_flow_ctl = UART_HWCONTROL_RTS;
obj_s->pin_rts = rxflow;
// Enable the pin for RTS function
pinmap_pinout(rxflow, PinMap_UART_RTS);
}
if (type == FlowControlCTS) {
// Enable CTS
MBED_ASSERT(uart_cts != (UARTName)NC);
obj_s->hw_flow_ctl = UART_HWCONTROL_CTS;
obj_s->pin_cts = txflow;
// Enable the pin for CTS function
pinmap_pinout(txflow, PinMap_UART_CTS);
}
if (type == FlowControlRTSCTS) {
// Enable CTS & RTS
MBED_ASSERT(uart_rts != (UARTName)NC);
MBED_ASSERT(uart_cts != (UARTName)NC);
obj_s->hw_flow_ctl = UART_HWCONTROL_RTS_CTS;
obj_s->pin_rts = rxflow;
obj_s->pin_cts = txflow;
// Enable the pin for CTS function
pinmap_pinout(txflow, PinMap_UART_CTS);
// Enable the pin for RTS function
pinmap_pinout(rxflow, PinMap_UART_RTS);
}
init_uart(obj);
}
#endif
#endif
