mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
targets/TARGET_Maxim/TARGET_MAX32625/mxc/spis.c
- Committer:
- <>
- Date:
- 2016-11-08
- Revision:
- 150:02e0a0aed4ec
File content as of revision 150:02e0a0aed4ec:
/******************************************************************************* * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. * * $Date: 2016-08-03 16:00:49 -0500 (Wed, 03 Aug 2016) $ * $Revision: 23914 $ * ******************************************************************************/ /** * @file spis.c * @brief SPI Slave driver source. */ /***** Includes *****/ #include <stddef.h> #include <string.h> #include "mxc_config.h" #include "mxc_assert.h" #include "mxc_lock.h" #include "spis.h" /***** Definitions *****/ #define SPIS_FIFO_BUFFER 6 /***** Globals *****/ static spis_req_t *states[MXC_CFG_SPIS_INSTANCES]; /***** Functions *****/ static uint32_t SPIS_TransHandler(mxc_spis_regs_t *spis, spis_req_t *req, int spis_num); /******************************************************************************/ int SPIS_Init(mxc_spis_regs_t *spis, uint8_t mode, const sys_cfg_spis_t *sys_cfg) { int err, spis_num; spis_num = MXC_SPIS_GET_IDX(spis); MXC_ASSERT(spis_num >= 0); // Set system level configurations if ((err = SYS_SPIS_Init(sys_cfg)) != E_NO_ERROR) { return err; } // Initialize state pointers states[spis_num] = NULL; // Drain the FIFOs, enable SPIS spis->gen_ctrl = 0; spis->gen_ctrl = (MXC_F_SPIS_GEN_CTRL_SPI_SLAVE_EN | MXC_F_SPIS_GEN_CTRL_TX_FIFO_EN | MXC_F_SPIS_GEN_CTRL_RX_FIFO_EN); // Set the TX FIFO almost empty level spis->fifo_ctrl = ((spis->fifo_ctrl & ~MXC_F_SPIS_FIFO_CTRL_TX_FIFO_AE_LVL) | ((MXC_CFG_SPIS_FIFO_DEPTH - SPIS_FIFO_BUFFER) << MXC_F_SPIS_FIFO_CTRL_TX_FIFO_AE_LVL_POS)); return E_NO_ERROR; } /******************************************************************************/ int SPIS_Shutdown(mxc_spis_regs_t *spis) { int spis_num, err; spis_req_t *temp_req; // Disable and clear interrupts spis->inten = 0; spis->intfl = spis->intfl; // Disable SPIS and FIFOS spis->gen_ctrl &= ~(MXC_F_SPIS_GEN_CTRL_SPI_SLAVE_EN | MXC_F_SPIS_GEN_CTRL_TX_FIFO_EN | MXC_F_SPIS_GEN_CTRL_RX_FIFO_EN); // Call all of the pending callbacks for this SPIS spis_num = MXC_SPIS_GET_IDX(spis); if(states[spis_num] != NULL) { // Save the request temp_req = states[spis_num]; // Unlock this SPIS mxc_free_lock((uint32_t*)&states[spis_num]); // Callback if not NULL if(temp_req->callback != NULL) { temp_req->callback(temp_req, E_SHUTDOWN); } } // Clear system level configurations if ((err = SYS_SPIS_Shutdown(spis)) != E_NO_ERROR) { return err; } return E_NO_ERROR; } /******************************************************************************/ int SPIS_Trans(mxc_spis_regs_t *spis, spis_req_t *req) { int spis_num; // Make sure the SPIS has been initialized if((spis->gen_ctrl & MXC_F_SPIS_GEN_CTRL_SPI_SLAVE_EN) == 0) return E_UNINITIALIZED; // Check the input parameters if(req == NULL) return E_NULL_PTR; if((req->rx_data == NULL) && (req->tx_data == NULL)) return E_NULL_PTR; if(!(req->len > 0)) { return E_NO_ERROR; } // Attempt to register this write request spis_num = MXC_SPIS_GET_IDX(spis); if(mxc_get_lock((uint32_t*)&states[spis_num], (uint32_t)req) != E_NO_ERROR) { return E_BUSY; } //force deass to a 1 or 0 req->deass = !!req->deass; // Clear the number of bytes counter req->read_num = 0; req->write_num = 0; req->callback = NULL; // Start the transaction, keep calling the handler until complete spis->intfl = (MXC_F_SPIS_INTFL_SS_DEASSERTED | MXC_F_SPIS_INTFL_TX_UNDERFLOW); while(SPIS_TransHandler(spis, req, spis_num) & (MXC_F_SPIS_INTEN_RX_FIFO_AF | MXC_F_SPIS_INTEN_TX_FIFO_AE)) { if((req->tx_data != NULL) && (spis->intfl & MXC_F_SPIS_INTFL_TX_UNDERFLOW)) { return E_UNDERFLOW; } if((req->rx_data != NULL) && (spis->intfl & MXC_F_SPIS_INTFL_RX_LOST_DATA)) { return E_OVERFLOW; } if((req->deass) && (spis->intfl & MXC_F_SPIS_INTFL_SS_DEASSERTED)) { if(((req->rx_data != NULL) && ((req->read_num + SPIS_NumReadAvail(spis)) < req->len)) || ((req->tx_data != NULL) && (req->write_num < req->len))) { return E_COMM_ERR; } } } if(req->tx_data == NULL) { return req->read_num; } return req->write_num; } /******************************************************************************/ int SPIS_TransAsync(mxc_spis_regs_t *spis, spis_req_t *req) { int spis_num; // Make sure the SPIS has been initialized if((spis->gen_ctrl & MXC_F_SPIS_GEN_CTRL_SPI_SLAVE_EN) == 0) return E_UNINITIALIZED; // Check the input parameters if(req == NULL) return E_NULL_PTR; if((req->rx_data == NULL) && (req->tx_data == NULL)) return E_NULL_PTR; if(!(req->len > 0)) { return E_NO_ERROR; } // Attempt to register this write request spis_num = MXC_SPIS_GET_IDX(spis); if(mxc_get_lock((uint32_t*)&states[spis_num], (uint32_t)req) != E_NO_ERROR) { return E_BUSY; } //force deass to a 1 or 0 req->deass = !!req->deass; // Clear the number of bytes counter req->read_num = 0; req->write_num = 0; // Start the transaction, enable the interrupts spis->intfl = MXC_F_SPIS_INTFL_SS_DEASSERTED; spis->inten = SPIS_TransHandler(spis, req, spis_num); if(spis->intfl & MXC_F_SPIS_INTFL_SS_DEASSERTED) { return E_COMM_ERR; } return E_NO_ERROR; } /******************************************************************************/ int SPIS_AbortAsync(spis_req_t *req) { int spis_num; // Check the input parameters if(req == NULL) { return E_BAD_PARAM; } // Find the request, set to NULL for(spis_num = 0; spis_num < MXC_CFG_SPIS_INSTANCES; spis_num++) { if(req == states[spis_num]) { // Disable interrupts, clear the flags MXC_SPIS_GET_SPIS(spis_num)->inten = 0; MXC_SPIS_GET_SPIS(spis_num)->intfl = MXC_SPIS_GET_SPIS(spis_num)->intfl; // Unlock this SPIS mxc_free_lock((uint32_t*)&states[spis_num]); // Callback if not NULL if(req->callback != NULL) { req->callback(req, E_ABORT); } return E_NO_ERROR; } } return E_BAD_PARAM; } /******************************************************************************/ void SPIS_Handler(mxc_spis_regs_t *spis) { int spis_num; uint32_t flags; spis_req_t *req; // Clear the interrupt flags spis->inten = 0; flags = spis->intfl; spis->intfl = flags; spis_num = MXC_SPIS_GET_IDX(spis); req = states[spis_num]; // Check for errors if((flags & MXC_F_SPIS_INTFL_TX_UNDERFLOW) && (req->tx_data != NULL)) { // Unlock this SPIS mxc_free_lock((uint32_t*)&states[spis_num]); // Callback if not NULL if(req->callback != NULL) { req->callback(req, E_UNDERFLOW); } return; } if((flags & MXC_F_SPIS_INTFL_RX_LOST_DATA) && (req->rx_data != NULL)) { // Unlock this SPIS mxc_free_lock((uint32_t*)&states[spis_num]); // Callback if not NULL if(req->callback != NULL) { req->callback(req, E_OVERFLOW); } return; } // Check for deassert if((flags & MXC_F_SPIS_INTFL_SS_DEASSERTED) && (req != NULL) && (req->deass)) { if(((req->rx_data != NULL) && ((req->read_num + SPIS_NumReadAvail(spis)) < req->len)) || ((req->tx_data != NULL) && (req->write_num < req->len))) { // Unlock this SPIS mxc_free_lock((uint32_t*)&states[spis_num]); // Callback if not NULL if(req->callback != NULL) { req->callback(states[spis_num], E_COMM_ERR); } return; } } // Figure out if this SPIS has an active request if(flags && (req != NULL)) { spis->inten = SPIS_TransHandler(spis, req, spis_num); } } /******************************************************************************/ int SPIS_Busy(mxc_spis_regs_t *spis) { // Check to see if there are any ongoing transactions if(states[MXC_SPIS_GET_IDX(spis)] == NULL) { return E_NO_ERROR; } return E_BUSY; } /******************************************************************************/ int SPIS_PrepForSleep(mxc_spis_regs_t *spis) { if(SPIS_Busy(spis) != E_NO_ERROR) { return E_BUSY; } // Disable interrupts spis->inten = 0; return E_NO_ERROR; } /******************************************************************************/ static uint32_t SPIS_TransHandler(mxc_spis_regs_t *spis, spis_req_t *req, int spis_num) { uint8_t read, write; uint32_t inten; unsigned remain, avail, temp_len; mxc_spis_fifo_regs_t *fifo; inten = 0; // Get the FIFOS for this UART fifo = MXC_SPIS_GET_SPIS_FIFO(spis_num); // Figure out if we're reading if(req->rx_data != NULL) { read = 1; } else { read = 0; } // Figure out if we're writing if(req->tx_data != NULL) { write = 1; } else { write = 0; } // Put data into the FIFO if we are writing if(write) { avail = SPIS_NumWriteAvail(spis); remain = req->len - req->write_num; if(remain > avail) { temp_len = avail; } else { temp_len = remain; } memcpy((void*)fifo->tx_32, &(req->tx_data[req->write_num]), temp_len); spis->intfl = MXC_F_SPIS_INTFL_TX_FIFO_AE; req->write_num += temp_len; remain = req->len - req->write_num; // Set the TX interrupts if(remain) { inten |= (MXC_F_SPIS_INTEN_TX_FIFO_AE | MXC_F_SPIS_INTFL_TX_UNDERFLOW); } } // Read from the FIFO if we are reading if(read) { avail = SPIS_NumReadAvail(MXC_SPIS); remain = req->len - req->read_num; if(remain > avail) { temp_len = avail; } else { temp_len = remain; } memcpy((void*)&req->rx_data[req->read_num], (void*)&(fifo->rx_8[0]), temp_len); spis->intfl = MXC_F_SPIS_INTFL_RX_FIFO_AF; req->read_num += temp_len; remain = req->len - req->read_num; // Set the RX interrupts if(remain) { // Adjust the almost full threshold if (remain > (MXC_CFG_SPIS_FIFO_DEPTH - SPIS_FIFO_BUFFER)) { spis->fifo_ctrl = ((spis->fifo_ctrl & ~MXC_F_SPIS_FIFO_CTRL_RX_FIFO_AF_LVL) | ((MXC_CFG_SPIS_FIFO_DEPTH - SPIS_FIFO_BUFFER) << MXC_F_SPIS_FIFO_CTRL_RX_FIFO_AF_LVL_POS)); } else { spis->fifo_ctrl = ((spis->fifo_ctrl & ~MXC_F_SPIS_FIFO_CTRL_RX_FIFO_AF_LVL) | ((remain-1) << MXC_F_SPIS_FIFO_CTRL_RX_FIFO_AF_LVL_POS)); } inten |= (MXC_F_SPIS_INTEN_RX_FIFO_AF | MXC_F_SPIS_INTFL_RX_LOST_DATA); } } // Check to see if we've finished reading and writing if(((read && (req->read_num == req->len)) || !read) && ((req->write_num == req->len) || !write)) { // Unlock this SPIS mxc_free_lock((uint32_t*)&states[spis_num]); // Callback if not NULL if(req->callback != NULL) { req->callback(req, E_NO_ERROR); } return 0; } // Enable deassert interrupt if(req->deass) { inten |= MXC_F_SPIS_INTEN_SS_DEASSERTED; } return inten; }