This library provides a way to easily handle arbitrary large integers.
This library provides the following operations :
- addition, substraction, multiplication, division and modulo
- bits operators (AND, OR, XOR, left and right shifts)
- boolean operators
- modular exponentiation (using montgomery algorithm)
- modular inverse
Example
In this example, we use a 1024 bits long RSA key to encrypt and decrypt a message. We first encrypt the value 0x41 (65 in decimal) and then decrypt it. At the end, m should be equal to 0x41. The encryption is fast (0, 4 second) while the decryption is really slow. This code will take between 30 seconds and 2 minutes to execute depending on the compiler and optimization flags.
main.cpp
#include "mbed.h" #include "BigInt.h" #include <stdlib.h> #include <stdio.h> uint8_t modbits[] = { 0xd9, 0x4d, 0x88, 0x9e, 0x88, 0x85, 0x3d, 0xd8, 0x97, 0x69, 0xa1, 0x80, 0x15, 0xa0, 0xa2, 0xe6, 0xbf, 0x82, 0xbf, 0x35, 0x6f, 0xe1, 0x4f, 0x25, 0x1f, 0xb4, 0xf5, 0xe2, 0xdf, 0x0d, 0x9f, 0x9a, 0x94, 0xa6, 0x8a, 0x30, 0xc4, 0x28, 0xb3, 0x9e, 0x33, 0x62, 0xfb, 0x37, 0x79, 0xa4, 0x97, 0xec, 0xea, 0xea, 0x37, 0x10, 0x0f, 0x26, 0x4d, 0x7f, 0xb9, 0xfb, 0x1a, 0x97, 0xfb, 0xf6, 0x21, 0x13, 0x3d, 0xe5, 0x5f, 0xdc, 0xb9, 0xb1, 0xad, 0x0d, 0x7a, 0x31, 0xb3, 0x79, 0x21, 0x6d, 0x79, 0x25, 0x2f, 0x5c, 0x52, 0x7b, 0x9b, 0xc6, 0x3d, 0x83, 0xd4, 0xec, 0xf4, 0xd1, 0xd4, 0x5c, 0xbf, 0x84, 0x3e, 0x84, 0x74, 0xba, 0xbc, 0x65, 0x5e, 0x9b, 0xb6, 0x79, 0x9c, 0xba, 0x77, 0xa4, 0x7e, 0xaf, 0xa8, 0x38, 0x29, 0x64, 0x74, 0xaf, 0xc2, 0x4b, 0xeb, 0x9c, 0x82, 0x5b, 0x73, 0xeb, 0xf5, 0x49 }; uint8_t dbits[] = { 0x04, 0x7b, 0x9c, 0xfd, 0xe8, 0x43, 0x17, 0x6b, 0x88, 0x74, 0x1d, 0x68, 0xcf, 0x09, 0x69, 0x52, 0xe9, 0x50, 0x81, 0x31, 0x51, 0x05, 0x8c, 0xe4, 0x6f, 0x2b, 0x04, 0x87, 0x91, 0xa2, 0x6e, 0x50, 0x7a, 0x10, 0x95, 0x79, 0x3c, 0x12, 0xba, 0xe1, 0xe0, 0x9d, 0x82, 0x21, 0x3a, 0xd9, 0x32, 0x69, 0x28, 0xcf, 0x7c, 0x23, 0x50, 0xac, 0xb1, 0x9c, 0x98, 0xf1, 0x9d, 0x32, 0xd5, 0x77, 0xd6, 0x66, 0xcd, 0x7b, 0xb8, 0xb2, 0xb5, 0xba, 0x62, 0x9d, 0x25, 0xcc, 0xf7, 0x2a, 0x5c, 0xeb, 0x8a, 0x8d, 0xa0, 0x38, 0x90, 0x6c, 0x84, 0xdc, 0xdb, 0x1f, 0xe6, 0x77, 0xdf, 0xfb, 0x2c, 0x02, 0x9f, 0xd8, 0x92, 0x63, 0x18, 0xee, 0xde, 0x1b, 0x58, 0x27, 0x2a, 0xf2, 0x2b, 0xda, 0x5c, 0x52, 0x32, 0xbe, 0x06, 0x68, 0x39, 0x39, 0x8e, 0x42, 0xf5, 0x35, 0x2d, 0xf5, 0x88, 0x48, 0xad, 0xad, 0x11, 0xa1 }; int main() { BigInt e = 65537, mod, d; mod.importData(modbits, sizeof(modbits)); d.importData(dbits, sizeof(dbits)); BigInt c = modPow(0x41,e,mod); c.print(); BigInt m = modPow(c,d,mod); m.print(); printf("done\n"); return 0; }
BigInt.cpp
- Committer:
- feb11
- Date:
- 2014-03-08
- Revision:
- 19:412b822df7bf
- Parent:
- 18:4549ca354fdb
- Child:
- 20:d747159d77c4
File content as of revision 19:412b822df7bf:
#include "BigInt.h" #include <string.h> #include <stdio.h> #include <stdlib.h> #include <iostream> #include <climits> #include <cassert> #include <algorithm> static uint32_t BITS[] = { 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000, 0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000 }; static uint32_t num(const uint32_t a) { return a/4 + (a%4 ? 1:0); } BigInt::BigInt(): size(0), bits(0) { } BigInt::BigInt(const uint32_t a) { if(a >> 24) size = 4; else if(a >> 16) size = 3; else if(a >> 8) size = 2; else size = 1; bits = new uint32_t[1]; bits[0] = a; } BigInt::BigInt(const BigInt &a): size(a.size) { uint32_t l = num(size); bits = new uint32_t[l]; for(int i = 0; i < l; ++i) bits[i] = a.bits[i]; } BigInt::~BigInt() { if(size) { delete[] bits; } } BigInt& BigInt::operator=(const BigInt& a) { size = a.size; uint32_t l = num(size); if(bits) delete[] bits; bits = new uint32_t[l]; for(int i = 0; i < l; ++i) bits[i] = a.bits[i]; return *this; } void BigInt::importData(uint8_t *data, uint32_t length) { size = length; size_t l = size/4; if(size % 4 != 0) l++; if(bits) delete[] bits; bits = new uint32_t[l]; memset(bits, 0, sizeof(uint32_t)*l); for(int i = length-1; i >=0; --i) bits[i/4] |= data[i] << ((i%4)*8); trim(); } void BigInt::exportData(uint8_t *data, uint32_t length) { assert(isValid() && data != 0); if(length < size) return; uint32_t offset = length-size; memset(data, 0, offset); for(int i = size-1; i >= 0; --i) data[offset+size-1-i] = bits[i/4] >> ((i%4)*8); } BigInt operator+(const BigInt &a, const BigInt& b) { assert(a.isValid() && b.isValid()); BigInt result; result.size = a.size > b.size ? a.size : b.size; size_t l = result.size/4; if(result.size % 4 != 0) l++; result.bits = new uint32_t[l]; memset(result.bits, 0, sizeof(uint32_t)*l); uint32_t al = num(a.size); uint32_t bl = num(b.size); uint32_t carry = 0; for(int i = 0; i < l; ++i) { uint32_t tmpA = 0, tmpB = 0; if(i < al) tmpA = a.bits[i]; if(i < bl) tmpB = b.bits[i]; result.bits[i] = tmpA + tmpB + carry; carry = result.bits[i] < std::max(tmpA, tmpB); } if(carry) { result.size++; if(result.size > l*4) { l++; result.bits = (uint32_t*)realloc(result.bits, l * sizeof(uint32_t)); result.bits[l-1] = 0x00000001; } else { result.bits[l-1] += 1 << (8 *((result.size-1)%4)); } } return result; } BigInt& BigInt::operator+=(const BigInt &b) { return (*this = (*this) + b); } BigInt& BigInt::operator++() { return (*this += 1); } BigInt BigInt::operator++(int) { BigInt t = *this; *this += 1; return t; } // a - b, if b >= a, returns 0 // No negative number allowed BigInt operator-(const BigInt &a, const BigInt& b) { assert(a.isValid() && b.isValid()); BigInt result; if(b >= a) { return result = 0; } else { result.size = a.size; uint32_t l = num(a.size); result.bits = new uint32_t[l]; memset(result.bits, 0, sizeof(uint32_t)*l); uint32_t bl = num(b.size); uint8_t borrow = 0; for(uint32_t i = 0; i < l; ++i) { uint32_t tmpA = a.bits[i], tmpB = 0; if(i < bl) tmpB = b.bits[i]; if(borrow) { if(tmpA == 0) tmpA = ULONG_MAX; else --tmpA; if(tmpA < tmpB) result.bits[i] = tmpA + 1 + (ULONG_MAX - tmpB); else result.bits[i] = tmpA - tmpB; if(a.bits[i] != 0 && tmpA > tmpB) borrow = 0; } else { if(tmpA < tmpB) result.bits[i] = tmpA + 1 + (ULONG_MAX - tmpB); else result.bits[i] = tmpA - tmpB; borrow = tmpA < tmpB; } } result.trim(); return result; } } BigInt& BigInt::operator-=(const BigInt &b) { return (*this = (*this) - b); } BigInt& BigInt::operator--() { return (*this -= 1); } BigInt BigInt::operator--(int) { BigInt t = *this; *this -= 1; return t; } BigInt operator*(const BigInt &a, const BigInt& b) { assert(a.isValid() && b.isValid()); // if a == 0 or b == 0 then result = 0 if(!a || !b) return 0; // if a == 1, then result = b if(a == 1) return b; // if b == 1, then result = a if(b == 1) return a; BigInt result; result.size = a.size + b.size; result.bits = new uint32_t[num(result.size)]; memset(result.bits, 0, sizeof(uint32_t)*num(result.size)); for(int i = 0; i < num(a.size); ++i) { uint64_t carry = 0; for(int j = 0; j < num(b.size); ++j) { uint64_t tmp = (uint64_t)a.bits[i] * (uint64_t)b.bits[j] + carry; uint32_t t = result.bits[i+j]; result.bits[i+j] += tmp; carry = tmp >> 32; if(t > result.bits[i+j]) ++carry; } if(carry != 0) result.bits[i+num(b.size)] += carry; } result.trim(); return result; } BigInt& BigInt::operator*=(const BigInt &b) { return (*this = (*this) * b); } BigInt operator/(const BigInt &a, const BigInt &b) { assert(a.isValid() && b.isValid() && b != 0); if(b == 1) return a; if(a < b) return 0; if(a == b) return 1; BigInt u = a; int m = a.numBits() - b.numBits(); BigInt q; q.size = m/8 + ((m%8 != 0) ? 1 : 0); q.bits = new uint32_t[num(q.size)]; memset(q.bits, 0, num(q.size)*sizeof(uint32_t)); BigInt tmp = b; tmp <<= m; for(int j = m; j >= 0; --j) { if(tmp <= u) { u -= tmp; q.bits[j/32] |= BITS[j%32]; } tmp >>= 1; } q.trim(); return q; } BigInt& BigInt::operator/=(const BigInt &b) { return (*this = (*this) / b); } BigInt operator>>(const BigInt &a, const uint32_t m) { assert(a.isValid()); if(m == 0) return a; if(m/8 >= a.size) return 0; BigInt result; result.size = a.size - m/8; result.bits = new uint32_t[num(result.size)]; uint8_t s = m%32; for(uint32_t i = 0; i < num(result.size); ++i) { if(m/32+i+1 < num(a.size)) result.bits[i] = (a.bits[m/32+i+1] << (32-s)) | (a.bits[m/32+i] >> s); else result.bits[i] = (a.bits[m/32+i] >> s); } result.trim(); return result; } BigInt& BigInt::operator>>=(const uint32_t m) { return *this = *this >> m; } BigInt operator<<(const BigInt &a, const uint32_t m) { assert(a.isValid()); BigInt result; if(m == 0) return result = a; result.size = m/8 + a.size; uint32_t h = a.bits[num(a.size)-1]; if((m%32)%8 != 0) ++result.size; uint32_t l = num(result.size); result.bits = new uint32_t[l]; memset(result.bits, 0, sizeof(uint32_t)*l); uint32_t s = m % 32; for(uint32_t i = 0; i < num(a.size); ++i) { if(i == 0) result.bits[m/32+i] = a.bits[i] << s; else result.bits[m/32+i] = (a.bits[i] << s) | (a.bits[i-1] >> (32-s)); } if(a.bits[num(a.size)-1] && s != 0) result.bits[m/32+num(result.size)-1] |= a.bits[num(a.size)-1] >> (32-s); result.trim(); return result; } BigInt& BigInt::operator<<=(const uint32_t m) { return (*this = *this << m); } BigInt operator%(const BigInt &a, const BigInt &b) { assert(a.isValid() && b.isValid() && b > 0); return a - (a/b)*b; } BigInt& BigInt::operator%=(const BigInt &a) { return (*this = *this % a); } bool operator==(const BigInt &a, const BigInt &b) { assert(a.isValid() && b.isValid()); if(a.size != b.size) return false; uint32_t l = num(a.size); for(int i = 0; i < l; ++i) if(a.bits[i] != b.bits[i]) return false; return true; } bool operator!=(const BigInt &a, const BigInt &b) { return ! (a==b); } bool operator<(const BigInt &a, const BigInt &b) { assert(a.isValid() && b.isValid()); if(a.size < b.size) return true; if(a.size > b.size) return false; uint32_t l = num(a.size); for(int i = l-1; i >= 0; --i) { if(a.bits[i] < b.bits[i]) return true; else if(a.bits[i] > b.bits[i]) return false; } return false; } bool operator<=(const BigInt &a, const BigInt &b) { return !(a > b); } bool operator>(const BigInt &a, const BigInt &b) { assert(a.isValid() && b.isValid()); if(a.size > b.size) return true; if(a.size < b.size) return false; uint32_t l = num(a.size); for(int i = l-1; i >= 0; --i) { if(a.bits[i] > b.bits[i]) return true; else if(a.bits[i] < b.bits[i]) return false; } return false; } bool operator>=(const BigInt &a, const BigInt &b) { return !(a < b); } bool operator!(const BigInt &a) { assert(a.isValid()); if(a.size != 1) return false; return a.bits[0] == 0; } BigInt operator&(const BigInt &a, const BigInt &b) { assert(a.isValid() && b.isValid()); BigInt result; result.size = a.size < b.size ? a.size : b.size; uint32_t l = num(result.size); result.bits = new uint32_t[l]; memset(result.bits, 0, l); for(uint32_t i = 0; i < l; ++i) result.bits[i] = a.bits[i] & b.bits[i]; result.trim(); return result; } BigInt& BigInt::operator&=(const BigInt &a) { return (*this = *this & a); } BigInt operator|(const BigInt &a, const BigInt &b) { assert(a.isValid() && b.isValid()); BigInt result; uint32_t na = num(a.size); uint32_t nb = num(b.size); uint32_t l = std::max(na,nb); result.size = std::max(a.size, b.size); result.bits = new uint32_t[l]; memset(result.bits, 0, l); for(uint32_t i = 0; i < l; ++i) { if(i < na && i < nb) result.bits[i] = a.bits[i] | b.bits[i]; else if(i < na) result.bits[i] = a.bits[i]; else result.bits[i] = b.bits[i]; } return result; } BigInt& BigInt::operator|=(const BigInt &a) { return (*this = *this | a); } BigInt operator^(const BigInt &a, const BigInt &b) { assert(a.isValid() && b.isValid()); BigInt result; uint32_t na = num(a.size); uint32_t nb = num(b.size); uint32_t l = std::max(na,nb); result.size = std::max(a.size, b.size); result.bits = new uint32_t[l]; memset(result.bits, 0, l); for(uint32_t i = 0; i < l; ++i) { if(i < na && i < nb) result.bits[i] = a.bits[i] ^ b.bits[i]; else if(i < na) result.bits[i] = a.bits[i]; else result.bits[i] = b.bits[i]; } result.trim(); return result; } BigInt& BigInt::operator^=(const BigInt &a) { return (*this = *this ^ a); } // Perform one step : (a * b) / r mod m BigInt montgomeryStep(const BigInt &a, const BigInt &b, const BigInt &m, uint32_t r) { BigInt result = 0; uint32_t j = 0; while(r > 0) { if(a.bits[j/32] & BITS[j%32]) result += b; if(result.bits[0] & 0x01) result += m; ++j; --r; result >>= 1; } if(result >= m) return result - m; return result; } // Implementation using Montgomery algorithm BigInt modPow(const BigInt &a, const BigInt &expn, const BigInt &modulus) { assert(a.isValid() && expn.isValid() && modulus.isValid() && modulus != 0); if(expn == 0) return 1; if(modulus == 1) return 0; if(a == 1) return 1; uint32_t r = 8*modulus.size; // convert a in montgomery world BigInt montA = (a << r) % modulus; BigInt tmp; if(expn.bits[0] & 0x01) tmp = montA; uint32_t n = expn.numBits(); uint32_t j = 1; while(j < n) { montA = montgomeryStep(montA, montA, modulus, r); if(expn.bits[j/32] & BITS[j%32]) { if(tmp.isValid()) tmp = montgomeryStep(tmp, montA, modulus, r); else tmp = montA; } ++j; } // convert a to normal world return montgomeryStep(tmp, 1, modulus, r); } bool BigInt::isValid() const { return size != 0 && bits != 0; } void BigInt::print() const { assert(isValid()); printf("size: %d bytes\n", size); uint32_t n = num(size); for(int i = n-1; i >= 0; --i) { printf("%08x ", bits[i]); } printf("\n"); } void BigInt::trim() { uint8_t *tmp = (uint8_t*)bits; uint32_t newSize = size; while(tmp[newSize-1] == 0 && newSize > 0) newSize--; if(newSize == 0) newSize = 1; if(num(newSize) < num(size)) { bits = (uint32_t*)realloc(bits, sizeof(uint32_t)*num(newSize)); } size = newSize; } uint32_t BigInt::numBits() const { assert(isValid()); uint32_t n = (size-1)*8; uint8_t a = bits[num(size)-1] >> ((size-1)%4)*8; uint8_t tmp2 = 8; while(!(a & 0x80)) { a <<= 1; --tmp2; } n += tmp2; return n; }