This library provides a way to easily handle arbitrary large integers.

This library provides the following operations :

  • addition, substraction, multiplication, division and modulo
  • bits operators (AND, OR, XOR, left and right shifts)
  • boolean operators
  • modular exponentiation (using montgomery algorithm)
  • modular inverse

Example

In this example, we use a 1024 bits long RSA key to encrypt and decrypt a message. We first encrypt the value 0x41 (65 in decimal) and then decrypt it. At the end, m should be equal to 0x41. The encryption is fast (0, 4 second) while the decryption is really slow. This code will take between 30 seconds and 2 minutes to execute depending on the compiler and optimization flags.

main.cpp

#include "mbed.h"
#include "BigInt.h"
#include <stdlib.h>
#include <stdio.h>

uint8_t modbits[] = {
0xd9, 0x4d, 0x88, 0x9e, 0x88, 0x85, 0x3d, 0xd8, 0x97, 0x69, 0xa1, 0x80, 0x15, 0xa0, 0xa2, 0xe6,
0xbf, 0x82, 0xbf, 0x35, 0x6f, 0xe1, 0x4f, 0x25, 0x1f, 0xb4, 0xf5, 0xe2, 0xdf, 0x0d, 0x9f, 0x9a,
0x94, 0xa6, 0x8a, 0x30, 0xc4, 0x28, 0xb3, 0x9e, 0x33, 0x62, 0xfb, 0x37, 0x79, 0xa4, 0x97, 0xec,
0xea, 0xea, 0x37, 0x10, 0x0f, 0x26, 0x4d, 0x7f, 0xb9, 0xfb, 0x1a, 0x97, 0xfb, 0xf6, 0x21, 0x13,
0x3d, 0xe5, 0x5f, 0xdc, 0xb9, 0xb1, 0xad, 0x0d, 0x7a, 0x31, 0xb3, 0x79, 0x21, 0x6d, 0x79, 0x25,
0x2f, 0x5c, 0x52, 0x7b, 0x9b, 0xc6, 0x3d, 0x83, 0xd4, 0xec, 0xf4, 0xd1, 0xd4, 0x5c, 0xbf, 0x84,
0x3e, 0x84, 0x74, 0xba, 0xbc, 0x65, 0x5e, 0x9b, 0xb6, 0x79, 0x9c, 0xba, 0x77, 0xa4, 0x7e, 0xaf,
0xa8, 0x38, 0x29, 0x64, 0x74, 0xaf, 0xc2, 0x4b, 0xeb, 0x9c, 0x82, 0x5b, 0x73, 0xeb, 0xf5, 0x49
};

uint8_t dbits[] = {
0x04, 0x7b, 0x9c, 0xfd, 0xe8, 0x43, 0x17, 0x6b, 0x88, 0x74, 0x1d, 0x68, 0xcf, 0x09, 0x69, 0x52,
0xe9, 0x50, 0x81, 0x31, 0x51, 0x05, 0x8c, 0xe4, 0x6f, 0x2b, 0x04, 0x87, 0x91, 0xa2, 0x6e, 0x50,
0x7a, 0x10, 0x95, 0x79, 0x3c, 0x12, 0xba, 0xe1, 0xe0, 0x9d, 0x82, 0x21, 0x3a, 0xd9, 0x32, 0x69,
0x28, 0xcf, 0x7c, 0x23, 0x50, 0xac, 0xb1, 0x9c, 0x98, 0xf1, 0x9d, 0x32, 0xd5, 0x77, 0xd6, 0x66,
0xcd, 0x7b, 0xb8, 0xb2, 0xb5, 0xba, 0x62, 0x9d, 0x25, 0xcc, 0xf7, 0x2a, 0x5c, 0xeb, 0x8a, 0x8d,
0xa0, 0x38, 0x90, 0x6c, 0x84, 0xdc, 0xdb, 0x1f, 0xe6, 0x77, 0xdf, 0xfb, 0x2c, 0x02, 0x9f, 0xd8,
0x92, 0x63, 0x18, 0xee, 0xde, 0x1b, 0x58, 0x27, 0x2a, 0xf2, 0x2b, 0xda, 0x5c, 0x52, 0x32, 0xbe,
0x06, 0x68, 0x39, 0x39, 0x8e, 0x42, 0xf5, 0x35, 0x2d, 0xf5, 0x88, 0x48, 0xad, 0xad, 0x11, 0xa1
};

int main() 
{
    BigInt e = 65537, mod, d;
    mod.importData(modbits, sizeof(modbits));
    d.importData(dbits, sizeof(dbits));

    BigInt c = modPow(0x41,e,mod);
    c.print();
    BigInt m = modPow(c,d,mod);
    m.print();
    printf("done\n");
    
    return 0;
}

Revision:
26:94e26bcd229d
Parent:
24:a3453a18388c
--- a/BigInt.h	Sun Apr 13 07:35:47 2014 +0000
+++ b/BigInt.h	Sun May 11 10:33:20 2014 +0000
@@ -3,18 +3,21 @@
 
 #include <stdint.h>
 
+#define POS (true)
+#define NEG (false)
+    
 class BigInt
 {
     public :
     
         BigInt();
-        BigInt(const uint32_t a);
+        BigInt(int32_t a);
         BigInt(const BigInt &a);
         BigInt& operator=(const BigInt& a);
         virtual ~BigInt();
         
-        void importData(uint8_t *data, uint32_t length);
-        void exportData(uint8_t *data, uint32_t length);
+        void importData(uint8_t *data, uint32_t length, bool sign = POS);
+        void exportData(uint8_t *data, uint32_t length, bool &sign);
         
         // Arithmetic operations
         friend BigInt operator+(const BigInt &a, const BigInt &b);
@@ -23,10 +26,11 @@
         BigInt operator++(int);
         
         friend BigInt operator-(const BigInt &a, const BigInt &b);
+        friend BigInt operator-(const BigInt &a);
         BigInt& operator-=(const BigInt &b);
         BigInt& operator--();
         BigInt operator--(int);
-        
+
         friend BigInt operator*(const BigInt &a, const BigInt &b);
         BigInt& operator*=(const BigInt &b);
 
@@ -60,24 +64,39 @@
         
         // modular exponentiation
         friend BigInt modPow(const BigInt &a, const BigInt &expn, const BigInt &modulus);
-
+        
+        // invert modular
+        friend BigInt invMod(const BigInt &a, const BigInt &modulus);
+        
+        // miscellaneous
         bool isValid() const;
+        uint32_t numBits() const;    
         
         // debug
         void print() const;
 
     private :
     
+        friend BigInt add(const BigInt &a, const BigInt &b);
+        friend BigInt sub(const BigInt &a, const BigInt &b);
+        friend BigInt mul(const BigInt &a, const BigInt &b);
+        friend BigInt div(const BigInt &a, const BigInt &b);
+        
+        friend bool equals(const BigInt &a, const BigInt &b);
+        friend bool lesser(const BigInt &a, const BigInt &b);
+        friend bool greater(const BigInt &a, const BigInt &b);
+
         // fast operations
-        void add(const BigInt &b);
-        void shr();
+        void fastAdd(const BigInt &b);
+        void fastShr();
         
         void trim();  
-        uint32_t numBits() const;    
+        void checkZero();
      
         friend BigInt montgomeryStep(const BigInt &a, const BigInt &b, const BigInt &m, uint32_t r);
         friend BigInt montgomeryStep2(const BigInt &a, const BigInt &m, uint32_t r);
-
+        
+        bool sign;
         uint32_t size;  // smaller number of bytes needed to represent integer
         uint32_t *bits;
 };