Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
sx1276/arduino-mbed.cpp
- Committer:
- Helmut Tschemernjak
- Date:
- 2017-07-16
- Revision:
- 67:d3afd803f40d
- Parent:
- 66:fbb2da34bd9a
- Child:
- 69:d440a5b04708
File content as of revision 67:d3afd803f40d:
/*
* The file is Licensed under the Apache License, Version 2.0
* (c) 2017 Helmut Tschemernjak
* 30826 Garbsen (Hannover) Germany
*/
#ifdef ARDUINO
using namespace std;
#include "arduino-mbed.h"
static void pinInt00(void);
static void pinInt01(void);
static void pinInt02(void);
static void pinInt03(void);
static void pinInt04(void);
static void pinInt05(void);
static void pinInt06(void);
static void pinInt07(void);
static void pinInt08(void);
static void pinInt09(void);
static void pinInt10(void);
static void pinInt11(void);
static void pinInt12(void);
static void pinInt13(void);
static void pinInt14(void);
static void pinInt15(void);
static void pinInt16(void);
static void pinInt17(void);
static void pinInt18(void);
static void pinInt19(void);
static void pinInt20(void);
static void pinInt21(void);
static void pinInt22(void);
static void pinInt23(void);
static void pinInt24(void);
static void pinInt25(void);
static void pinInt26(void);
static void pinInt27(void);
static void pinInt28(void);
static void pinInt29(void);
static void pinInt30(void);
static void pinInt31(void);
static void pinInt32(void);
static void pinInt33(void);
static void pinInt34(void);
static void pinInt35(void);
static void pinInt36(void);
static void pinInt37(void);
static void pinInt38(void);
static void pinInt39(void);
static void pinInt40(void);
static void pinInt41(void);
static void pinInt42(void);
static void pinInt43(void);
static void pinInt44(void);
static void pinInt45(void);
static void pinInt46(void);
static void pinInt47(void);
#define MAX_MCU_PINS 48
class InterruptIn;
struct intPtrTable {
void (*func)(void);
InterruptIn *context;
} intPtrTable[MAX_MCU_PINS] = {
{ pinInt00, NULL },
{ pinInt01, NULL },
{ pinInt02, NULL },
{ pinInt03, NULL },
{ pinInt04, NULL },
{ pinInt05, NULL },
{ pinInt06, NULL },
{ pinInt07, NULL },
{ pinInt08, NULL },
{ pinInt09, NULL },
{ pinInt10, NULL },
{ pinInt11, NULL },
{ pinInt12, NULL },
{ pinInt13, NULL },
{ pinInt14, NULL },
{ pinInt15, NULL },
{ pinInt16, NULL },
{ pinInt17, NULL },
{ pinInt18, NULL },
{ pinInt19, NULL },
{ pinInt20, NULL },
{ pinInt21, NULL },
{ pinInt22, NULL },
{ pinInt23, NULL },
{ pinInt24, NULL },
{ pinInt25, NULL },
{ pinInt26, NULL },
{ pinInt27, NULL },
{ pinInt28, NULL },
{ pinInt29, NULL },
{ pinInt30, NULL },
{ pinInt31, NULL },
{ pinInt32, NULL },
{ pinInt33, NULL },
{ pinInt34, NULL },
{ pinInt35, NULL },
{ pinInt36, NULL },
{ pinInt37, NULL },
{ pinInt38, NULL },
{ pinInt39, NULL },
{ pinInt40, NULL },
{ pinInt41, NULL },
{ pinInt42, NULL },
{ pinInt43, NULL },
{ pinInt44, NULL },
{ pinInt45, NULL },
{ pinInt46, NULL },
{ pinInt47, NULL }
}; // our max MCUs pins
static void pinInt00(void) { InterruptIn::_irq_handler(intPtrTable[0].context); }
static void pinInt01(void) { InterruptIn::_irq_handler(intPtrTable[1].context); }
static void pinInt02(void) { InterruptIn::_irq_handler(intPtrTable[2].context); }
static void pinInt03(void) { InterruptIn::_irq_handler(intPtrTable[3].context); }
static void pinInt04(void) { InterruptIn::_irq_handler(intPtrTable[4].context); }
static void pinInt05(void) { InterruptIn::_irq_handler(intPtrTable[5].context); }
static void pinInt06(void) { InterruptIn::_irq_handler(intPtrTable[6].context); }
static void pinInt07(void) { InterruptIn::_irq_handler(intPtrTable[7].context); }
static void pinInt08(void) { InterruptIn::_irq_handler(intPtrTable[8].context); }
static void pinInt09(void) { InterruptIn::_irq_handler(intPtrTable[9].context); }
static void pinInt10(void) { InterruptIn::_irq_handler(intPtrTable[10].context); }
static void pinInt11(void) { InterruptIn::_irq_handler(intPtrTable[11].context); }
static void pinInt12(void) { InterruptIn::_irq_handler(intPtrTable[12].context); }
static void pinInt13(void) { InterruptIn::_irq_handler(intPtrTable[13].context); }
static void pinInt14(void) { InterruptIn::_irq_handler(intPtrTable[14].context); }
static void pinInt15(void) { InterruptIn::_irq_handler(intPtrTable[15].context); }
static void pinInt16(void) { InterruptIn::_irq_handler(intPtrTable[16].context); }
static void pinInt17(void) { InterruptIn::_irq_handler(intPtrTable[17].context); }
static void pinInt18(void) { InterruptIn::_irq_handler(intPtrTable[18].context); }
static void pinInt19(void) { InterruptIn::_irq_handler(intPtrTable[19].context); }
static void pinInt20(void) { InterruptIn::_irq_handler(intPtrTable[20].context); }
static void pinInt21(void) { InterruptIn::_irq_handler(intPtrTable[21].context); }
static void pinInt22(void) { InterruptIn::_irq_handler(intPtrTable[22].context); }
static void pinInt23(void) { InterruptIn::_irq_handler(intPtrTable[23].context); }
static void pinInt24(void) { InterruptIn::_irq_handler(intPtrTable[24].context); }
static void pinInt25(void) { InterruptIn::_irq_handler(intPtrTable[25].context); }
static void pinInt26(void) { InterruptIn::_irq_handler(intPtrTable[26].context); }
static void pinInt27(void) { InterruptIn::_irq_handler(intPtrTable[27].context); }
static void pinInt28(void) { InterruptIn::_irq_handler(intPtrTable[28].context); }
static void pinInt29(void) { InterruptIn::_irq_handler(intPtrTable[29].context); }
static void pinInt30(void) { InterruptIn::_irq_handler(intPtrTable[30].context); }
static void pinInt31(void) { InterruptIn::_irq_handler(intPtrTable[31].context); }
static void pinInt32(void) { InterruptIn::_irq_handler(intPtrTable[32].context); }
static void pinInt33(void) { InterruptIn::_irq_handler(intPtrTable[33].context); }
static void pinInt34(void) { InterruptIn::_irq_handler(intPtrTable[34].context); }
static void pinInt35(void) { InterruptIn::_irq_handler(intPtrTable[35].context); }
static void pinInt36(void) { InterruptIn::_irq_handler(intPtrTable[36].context); }
static void pinInt37(void) { InterruptIn::_irq_handler(intPtrTable[37].context); }
static void pinInt38(void) { InterruptIn::_irq_handler(intPtrTable[38].context); }
static void pinInt39(void) { InterruptIn::_irq_handler(intPtrTable[39].context); }
static void pinInt40(void) { InterruptIn::_irq_handler(intPtrTable[40].context); }
static void pinInt41(void) { InterruptIn::_irq_handler(intPtrTable[41].context); }
static void pinInt42(void) { InterruptIn::_irq_handler(intPtrTable[42].context); }
static void pinInt43(void) { InterruptIn::_irq_handler(intPtrTable[43].context); }
static void pinInt44(void) { InterruptIn::_irq_handler(intPtrTable[44].context); }
static void pinInt45(void) { InterruptIn::_irq_handler(intPtrTable[45].context); }
static void pinInt46(void) { InterruptIn::_irq_handler(intPtrTable[46].context); }
static void pinInt47(void) { InterruptIn::_irq_handler(intPtrTable[47].context); }
void
InterruptIn::rise(Callback<void()> func) {
if (_gpioPin >= MAX_MCU_PINS-1)
return;
if (func) {
_func = func;
intPtrTable[_gpioPin].context = this;
attachInterrupt(digitalPinToInterrupt(_gpioPin), intPtrTable[_gpioPin].func, RISING);
} else {
_func = InterruptIn::donothing;
intPtrTable[_gpioPin].context = NULL;
detachInterrupt(_gpioPin);
}
};
void
InterruptIn::fall(Callback<void()> func) {
if (func) {
_func = func;
intPtrTable[_gpioPin].context = this;
attachInterrupt(digitalPinToInterrupt(_gpioPin), intPtrTable[_gpioPin].func, FALLING);
} else {
_func = InterruptIn::donothing;
intPtrTable[_gpioPin].context = NULL;
detachInterrupt(_gpioPin);
}
}
#define MAX_TIMEOUTS 10
class Timeout;
struct TimeoutVector {
Timeout *timer;
} TimeOuts[MAX_TIMEOUTS];
#if defined(__SAMD21G18A__) || defined(__SAMD21J18A__)
/*
* __SAMD21J18A__ is the SamD21 Explained Board
* __SAMD21G18A__ is Genuino Zero-Board (compatible with the LoRa board)
*/
/*
* see tcc.h is automatically included from:
* Arduino15/packages/arduino/tools/CMSIS-Atmel/1.1.0/CMSIS/
* Device/ATMEL/samd21/include/component/tcc.h
* See also tcc.c (ASF/mbed, e.g. Tcc_get_count_value)
*/
static void initTimer(Tcc *t);
static uint32_t getTimerCount(Tcc *t);
/*
* The Atmel D21 has three TCC timer, other models have more.
*/
static const struct TCC_config {
Tcc *tcc_ptr;
IRQn_Type tcc_irq;
uint8_t nbits;
} TCC_data[] {
{ TCC0, TCC0_IRQn, 24 },
{ TCC1, TCC1_IRQn, 24 },
{ TCC2, TCC2_IRQn, 16 },
{ NULL, (IRQn_Type)NULL, 0 }
};
/*
* We preferably use the TCC timers because it supports 24-bit counters
* versus TC Timer which supports only 8 or 16 bit counters
* TCC0/1/2 timer work on the D21 using Arduino.
*/
#define USE_TCC_TIMEOUT 0 // 0=TCC0, 1=TTC1, 2=TTC2 (see TCC_data)
#define USE_TCC_TICKER 1
/*
* every 21333 ns equals one tick (1/(48000000/1024)) // prescaler 1024, 48 MHz
* every 61035 ns equals one tick (1/(32768/2)) // prescaler 2, 32 kHz
* COUNT*DIVIDER*SECS until interrupt
* CPU 48 MHz = (65536*1024)/1.398636s
* RTC 32 kHz = (65536*2)/4.0s
*/
#define NS_PER_CLOCK_CPU 21333 // ns secs per clock
#define NS_PER_CLOCK_RTC 61035 // ns secs per clock
#define NS_PER_CLOCK NS_PER_CLOCK_RTC
/* ----------------- TICKER TIMER CODE ----------------------*/
/*
* The global ns_counter contains the time in ns from the last time
* the counter has been wrapped. It cannot be used directly because the
* current counter has to be added fore using it. Use instead
* ns_getTicker(), us_ ns_getTicker(), ms_getTicker()
*/
uint64_t ticker_ns;
static bool initTickerDone = false;
uint32_t ms_getTicker(void)
{
uint32_t us = us_getTicker();
us /= 1000; // to ms
return us;
}
uint32_t us_getTicker(void)
{
long long ns = ns_getTicker();
ns /= (long long)1000; // to us
uint32_t us = ns & 0xffffffff;
return us;
}
uint64_t ns_getTicker(void)
{
Tcc *t = TCC_data[USE_TCC_TICKER].tcc_ptr;
if (!initTickerDone) {
initTimer(t);
initTickerDone = true;
// set counter top to max 16 bit for testing
// t->PER.bit.PER = 0xffff;
// while (t->SYNCBUSY.bit.PER == 1); // wait for sync
t->CTRLA.reg |= TCC_CTRLA_ENABLE ; // Enable TC
while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync
}
/*
* if we are called from the interrupt level, the counter contains
* somehow wrong data, therfore we needs to read it twice.
* Another option was to add a little wait (loop 500x)
* in the TCC_TIMEOUT interrupt handler.
*/
if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk) // check if we are in the interrupt
getTimerCount(t);
uint64_t counter_us = (uint64_t)NS_PER_CLOCK * (uint64_t)getTimerCount(t);
uint64_t ns = ticker_ns + counter_us;
return ns;
}
#if USE_TCC_TICKER == 0
void TCC0_Handler()
#elif USE_TCC_TICKER == 1
void TCC1_Handler()
#elif USE_TCC_TICKER == 2
void TCC2_Handler()
#endif
{
Tcc *t = TCC_data[USE_TCC_TICKER].tcc_ptr;
/*
* Overflow means the timer top exeeded
*/
if (t->INTFLAG.bit.OVF == 1) { // A overflow caused the interrupt
t->INTFLAG.bit.OVF = 1; // writing a one clears the flag ovf flag
// Serial.println("T_OVF");
/*
* reading the count once is needed, otherwise
* it will not wrap correct.
*/
getTimerCount(t);
int bits = TCC_data[USE_TCC_TICKER].nbits;
int maxCounts = (uint32_t)(1<<bits);
ticker_ns += (uint64_t)NS_PER_CLOCK * (uint64_t)maxCounts;
}
if (t->INTFLAG.bit.MC0 == 1) { // A compare to cc0 caused the interrupt
t->INTFLAG.bit.MC0 = 1; // writing a one clears the MCO (match capture) flag
// Serial.println("T_MC0");
}
}
/* ----------------- SUPPORT CODE FOR TCC TIMERS----------------------*/
static bool initTimerDone = false;
static void initTimer(Tcc *t)
{
/*
* enable clock for TCC, see gclk.h
* GCLK_CLKCTRL_GEN_GCLK0 for 48 Mhz CPU
* GCLK_CLKCTRL_GEN_GCLK1 for 32k extern crystal XOSC32K (ifdef CRYSTALLESS)
* GCLK_CLKCTRL_GEN_GCLK1 for 32k internal OSC32K
* see Arduino: arduino/hardware/samd/1.6.15/cores/arduino/startup.c
* Use TCC_CTRLA_PRESCALER_DIV1024 for for 48 Mhz clock
* Use TCC_CTRLA_PRESCALER_DIV2 for 32k clock
*/
if (t == TCC0 || t == TCC1) {
REG_GCLK_CLKCTRL = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK1 | GCLK_CLKCTRL_ID_TCC0_TCC1);
} else if (t == TCC2) {
REG_GCLK_CLKCTRL = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK1 | GCLK_CLKCTRL_ID_TCC2_TC3_Val);
}
while (GCLK->STATUS.bit.SYNCBUSY == 1); // wait for sync
t->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TCC
while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync
t->CTRLA.reg |= (TCC_CTRLA_PRESCALER_DIV2 | TCC_CTRLA_RUNSTDBY); // Set perscaler
t->WAVE.reg |= TCC_WAVE_WAVEGEN_NFRQ; // Set wave form configuration
while (t->SYNCBUSY.bit.WAVE == 1); // wait for sync
t->PER.bit.PER = 0xffffff; // set counter top to max 24 bit
while (t->SYNCBUSY.bit.PER == 1); // wait for sync
// the compare counter TC->CC[0].reg will be set in the startTimer
// after the timeout calculation is known.
// Interrupts
t->INTENSET.reg = 0; // disable all interrupts
t->INTENSET.bit.OVF = 1; // enable overfollow
t->INTENSET.bit.MC0 = 1; // enable compare match to CC0
const struct TCC_config *cp = &TCC_data[0];
while (cp->tcc_ptr) {
if (cp->tcc_ptr == t) {
NVIC_EnableIRQ(cp->tcc_irq); // Enable InterruptVector
break;
}
cp++;
}
}
#if 0
// Atmel ASF Code
static uint32_t getTimerCount(Tcc *t)
{
uint32_t last_cmd;
/* Wait last command done */
do {
while (t->SYNCBUSY.bit.CTRLB); /* Wait for sync */
last_cmd = t->CTRLBSET.reg & TCC_CTRLBSET_CMD_Msk;
if (TCC_CTRLBSET_CMD_NONE == last_cmd) {
/* Issue read command and break */
t->CTRLBSET.bit.CMD = TCC_CTRLBSET_CMD_READSYNC_Val;
break;
} else if (TCC_CTRLBSET_CMD_READSYNC == last_cmd) {
/* Command have been issued */
break;
}
} while (1);
while (t->SYNCBUSY.bit.COUNT); /* Wait for sync */
return t->COUNT.reg;
}
#endif
static uint32_t getTimerCount(Tcc *t)
{
noInterrupts();
while (t->SYNCBUSY.bit.CTRLB); /* Wait for sync */
t->CTRLBSET.bit.CMD = TCC_CTRLBSET_CMD_READSYNC_Val; /* Issue read command and break */
while (t->SYNCBUSY.bit.COUNT); /* Wait for sync */
uint32_t count = t->COUNT.reg;
interrupts();
return count;
}
static void stopTimer(Tcc *t)
{
t->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TC
while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync
}
/* ----------------- TIMEOUT TIMER CODE ----------------------*/
static void startTimer(Tcc *t, uint64_t delay_ns)
{
if (!initTimerDone) {
initTimer(t); // initial setup with stopped timer
initTimerDone = true;
}
stopTimer(t); // avoid timer interrupts while calculating
/*
* every 21333 ns equals one tick (1/(48000000/1024))
* COUNT*DIVIDER*SECS until interrupt
* 48 Mhz = (65536*1024)/1.398636s
*/
uint64_t nclocks = (uint64_t)delay_ns;
nclocks /= (uint64_t)NS_PER_CLOCK;
int nCounts = nclocks;
int bits = TCC_data[USE_TCC_TIMEOUT].nbits;
int maxCounts = (uint32_t)(1<<bits)-1;
if (nCounts > maxCounts) // if count exceeds timer capacity
nCounts = maxCounts; // set the largest posible count.
if (nCounts <= 0)
nCounts = 1;
t->CC[0].bit.CC = nCounts;
while (t->SYNCBUSY.bit.CC0 == 1); // wait for sync
t->CTRLA.reg |= TCC_CTRLA_ENABLE ; // Enable TC
while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync
#if 0
Serial.print(ms_getTicker(), DEC);
Serial.print(" startTimer: nCounts=");
Serial.println(nCounts, DEC);
#endif
}
#if USE_TCC_TIMEOUT == 0
void TCC0_Handler()
#elif USE_TCC_TIMEOUT == 1
void TCC1_Handler()
#elif USE_TCC_TIMEOUT == 2
void TCC2_Handler()
#endif
{
Tcc *t = TCC_data[USE_TCC_TIMEOUT].tcc_ptr;
uint64_t nsecs = ns_getTicker();
/*
* Overflow means the max timer exeeded, we need restart the timer
* Interrupts and
*/
if (t->INTFLAG.bit.OVF == 1) { // A overflow caused the interrupt
t->INTFLAG.bit.OVF = 1; // writing a one clears the flag ovf flag
}
if (t->INTFLAG.bit.MC0 == 1) { // A compare to cc0 caused the interrupt
//Serial.print("MC0\r\n");
t->INTFLAG.bit.MC0 = 1; // writing a one clears the MCO (match capture) flag
}
t->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TC
while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync
for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
struct TimeoutVector *tvp = &TimeOuts[i];
if (tvp->timer && nsecs >= tvp->timer->_timeout) {
Timeout *saveTimer = tvp->timer;
tvp->timer = NULL;
Timeout::_irq_handler(saveTimer);
}
}
/*
* we need to restart the timer for remaining interrupts
* Another reason is that we stopped this counter, in case there are
* remaining counts, we need to re-schedule the counter.
*/
Timeout::restart();
}
#endif // D21 TCC Timer
void
Timeout::insert(void)
{
noInterrupts();
for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
struct TimeoutVector *tvp = &TimeOuts[i];
if (tvp->timer == NULL) {
tvp->timer = this;
break;
}
}
interrupts();
}
void
Timeout::remove(void)
{
noInterrupts();
for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
struct TimeoutVector *tvp = &TimeOuts[i];
if (tvp->timer == this) {
tvp->timer = NULL;
break;
}
}
interrupts();
}
void
Timeout::restart()
{
Tcc *t = TCC_data[USE_TCC_TIMEOUT].tcc_ptr;
uint64_t timeout = ~0;
/*
* find the lowest timeout value which is our the next timeout
* zero means stop the timer.
*/
noInterrupts();
for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
struct TimeoutVector *tvp = &TimeOuts[i];
if (tvp->timer) {
if (tvp->timer->_timeout < timeout) {
timeout = tvp->timer->_timeout;
}
}
}
interrupts();
if (timeout == (uint64_t)~0) {
stopTimer(t);
return;
}
uint64_t nsecs = ns_getTicker();
if (timeout > nsecs) {
startTimer(t, (uint64_t)timeout - (uint64_t)nsecs);
return;
} else {
startTimer(t, (uint64_t)1); // just one nsec to trigger interrrupt
}
}
/* ----------------- D21 sleep() and deepsleep() code ----------------------*/
void sleep(void)
{
#if 1 // (SAMD20 || SAMD21)
/* Errata: Make sure that the Flash does not power all the way down
* when in sleep mode. */
NVMCTRL->CTRLB.bit.SLEEPPRM = NVMCTRL_CTRLB_SLEEPPRM_DISABLED_Val;
#endif
SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk; // clear deep sleep
PM->SLEEP.reg = 2; // SYSTEM_SLEEPMODE_IDLE_2 IDLE 2 sleep mode.
__DSB(); // ensures the completion of memory accesses
__WFI(); // wait for interrupt
}
void deepsleep(void)
{
#if 1 // (SAMD20 || SAMD21)
/* Errata: Make sure that the Flash does not power all the way down
* when in sleep mode. */
NVMCTRL->CTRLB.bit.SLEEPPRM = NVMCTRL_CTRLB_SLEEPPRM_DISABLED_Val;
#endif
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; // standby mode
__DSB(); // ensures the completion of memory accesses
__WFI(); // wait for interrupt
}
#endif // ARDUINO