Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
sx1276/arduino-mbed.cpp
- Committer:
- Helmut Tschemernjak
- Date:
- 2017-07-11
- Revision:
- 65:b2d98328fcba
- Parent:
- sx1276/sx1276-arduino-hal.cpp@ 61:08b50780eb91
- Child:
- 66:fbb2da34bd9a
File content as of revision 65:b2d98328fcba:
/*
* The file is Licensed under the Apache License, Version 2.0
* (c) 2017 Helmut Tschemernjak
* 30826 Garbsen (Hannover) Germany
*/
#ifdef ARDUINO
using namespace std;
#include "arduino-mbed.h"
static void pinInt00(void);
static void pinInt01(void);
static void pinInt02(void);
static void pinInt03(void);
static void pinInt04(void);
static void pinInt05(void);
static void pinInt06(void);
static void pinInt07(void);
static void pinInt08(void);
static void pinInt09(void);
static void pinInt10(void);
static void pinInt11(void);
static void pinInt12(void);
static void pinInt13(void);
static void pinInt14(void);
static void pinInt15(void);
static void pinInt16(void);
static void pinInt17(void);
static void pinInt18(void);
static void pinInt19(void);
static void pinInt20(void);
static void pinInt21(void);
static void pinInt22(void);
static void pinInt23(void);
static void pinInt24(void);
static void pinInt25(void);
static void pinInt26(void);
static void pinInt27(void);
static void pinInt28(void);
static void pinInt29(void);
static void pinInt30(void);
static void pinInt31(void);
static void pinInt32(void);
static void pinInt33(void);
static void pinInt34(void);
static void pinInt35(void);
static void pinInt36(void);
static void pinInt37(void);
static void pinInt38(void);
static void pinInt39(void);
static void pinInt40(void);
static void pinInt41(void);
static void pinInt42(void);
static void pinInt43(void);
static void pinInt44(void);
static void pinInt45(void);
static void pinInt46(void);
static void pinInt47(void);
#define MAX_MCU_PINS 48
class InterruptIn;
struct intPtrTable {
void (*func)(void);
InterruptIn *context;
} intPtrTable[MAX_MCU_PINS] = {
{ pinInt00, NULL },
{ pinInt01, NULL },
{ pinInt02, NULL },
{ pinInt03, NULL },
{ pinInt04, NULL },
{ pinInt05, NULL },
{ pinInt06, NULL },
{ pinInt07, NULL },
{ pinInt08, NULL },
{ pinInt09, NULL },
{ pinInt10, NULL },
{ pinInt11, NULL },
{ pinInt12, NULL },
{ pinInt13, NULL },
{ pinInt14, NULL },
{ pinInt15, NULL },
{ pinInt16, NULL },
{ pinInt17, NULL },
{ pinInt18, NULL },
{ pinInt19, NULL },
{ pinInt20, NULL },
{ pinInt21, NULL },
{ pinInt22, NULL },
{ pinInt23, NULL },
{ pinInt24, NULL },
{ pinInt25, NULL },
{ pinInt26, NULL },
{ pinInt27, NULL },
{ pinInt28, NULL },
{ pinInt29, NULL },
{ pinInt30, NULL },
{ pinInt31, NULL },
{ pinInt32, NULL },
{ pinInt33, NULL },
{ pinInt34, NULL },
{ pinInt35, NULL },
{ pinInt36, NULL },
{ pinInt37, NULL },
{ pinInt38, NULL },
{ pinInt39, NULL },
{ pinInt40, NULL },
{ pinInt41, NULL },
{ pinInt42, NULL },
{ pinInt43, NULL },
{ pinInt44, NULL },
{ pinInt45, NULL },
{ pinInt46, NULL },
{ pinInt47, NULL }
}; // our max MCUs pins
static void pinInt00(void) { InterruptIn::_irq_handler(intPtrTable[0].context); }
static void pinInt01(void) { InterruptIn::_irq_handler(intPtrTable[1].context); }
static void pinInt02(void) { InterruptIn::_irq_handler(intPtrTable[2].context); }
static void pinInt03(void) { InterruptIn::_irq_handler(intPtrTable[3].context); }
static void pinInt04(void) { InterruptIn::_irq_handler(intPtrTable[4].context); }
static void pinInt05(void) { InterruptIn::_irq_handler(intPtrTable[5].context); }
static void pinInt06(void) { InterruptIn::_irq_handler(intPtrTable[6].context); }
static void pinInt07(void) { InterruptIn::_irq_handler(intPtrTable[7].context); }
static void pinInt08(void) { InterruptIn::_irq_handler(intPtrTable[8].context); }
static void pinInt09(void) { InterruptIn::_irq_handler(intPtrTable[9].context); }
static void pinInt10(void) { InterruptIn::_irq_handler(intPtrTable[10].context); }
static void pinInt11(void) { InterruptIn::_irq_handler(intPtrTable[11].context); }
static void pinInt12(void) { InterruptIn::_irq_handler(intPtrTable[12].context); }
static void pinInt13(void) { InterruptIn::_irq_handler(intPtrTable[13].context); }
static void pinInt14(void) { InterruptIn::_irq_handler(intPtrTable[14].context); }
static void pinInt15(void) { InterruptIn::_irq_handler(intPtrTable[15].context); }
static void pinInt16(void) { InterruptIn::_irq_handler(intPtrTable[16].context); }
static void pinInt17(void) { InterruptIn::_irq_handler(intPtrTable[17].context); }
static void pinInt18(void) { InterruptIn::_irq_handler(intPtrTable[18].context); }
static void pinInt19(void) { InterruptIn::_irq_handler(intPtrTable[19].context); }
static void pinInt20(void) { InterruptIn::_irq_handler(intPtrTable[20].context); }
static void pinInt21(void) { InterruptIn::_irq_handler(intPtrTable[21].context); }
static void pinInt22(void) { InterruptIn::_irq_handler(intPtrTable[22].context); }
static void pinInt23(void) { InterruptIn::_irq_handler(intPtrTable[23].context); }
static void pinInt24(void) { InterruptIn::_irq_handler(intPtrTable[24].context); }
static void pinInt25(void) { InterruptIn::_irq_handler(intPtrTable[25].context); }
static void pinInt26(void) { InterruptIn::_irq_handler(intPtrTable[26].context); }
static void pinInt27(void) { InterruptIn::_irq_handler(intPtrTable[27].context); }
static void pinInt28(void) { InterruptIn::_irq_handler(intPtrTable[28].context); }
static void pinInt29(void) { InterruptIn::_irq_handler(intPtrTable[29].context); }
static void pinInt30(void) { InterruptIn::_irq_handler(intPtrTable[30].context); }
static void pinInt31(void) { InterruptIn::_irq_handler(intPtrTable[31].context); }
static void pinInt32(void) { InterruptIn::_irq_handler(intPtrTable[32].context); }
static void pinInt33(void) { InterruptIn::_irq_handler(intPtrTable[33].context); }
static void pinInt34(void) { InterruptIn::_irq_handler(intPtrTable[34].context); }
static void pinInt35(void) { InterruptIn::_irq_handler(intPtrTable[35].context); }
static void pinInt36(void) { InterruptIn::_irq_handler(intPtrTable[36].context); }
static void pinInt37(void) { InterruptIn::_irq_handler(intPtrTable[37].context); }
static void pinInt38(void) { InterruptIn::_irq_handler(intPtrTable[38].context); }
static void pinInt39(void) { InterruptIn::_irq_handler(intPtrTable[39].context); }
static void pinInt40(void) { InterruptIn::_irq_handler(intPtrTable[40].context); }
static void pinInt41(void) { InterruptIn::_irq_handler(intPtrTable[41].context); }
static void pinInt42(void) { InterruptIn::_irq_handler(intPtrTable[42].context); }
static void pinInt43(void) { InterruptIn::_irq_handler(intPtrTable[43].context); }
static void pinInt44(void) { InterruptIn::_irq_handler(intPtrTable[44].context); }
static void pinInt45(void) { InterruptIn::_irq_handler(intPtrTable[45].context); }
static void pinInt46(void) { InterruptIn::_irq_handler(intPtrTable[46].context); }
static void pinInt47(void) { InterruptIn::_irq_handler(intPtrTable[47].context); }
void
InterruptIn::rise(Callback<void()> func) {
if (_gpioPin >= MAX_MCU_PINS-1)
return;
if (func) {
_func = func;
intPtrTable[_gpioPin].context = this;
attachInterrupt(digitalPinToInterrupt(_gpioPin), intPtrTable[_gpioPin].func, RISING);
} else {
_func = InterruptIn::donothing;
intPtrTable[_gpioPin].context = NULL;
detachInterrupt(_gpioPin);
}
};
void
InterruptIn::fall(Callback<void()> func) {
if (func) {
_func = func;
intPtrTable[_gpioPin].context = this;
attachInterrupt(digitalPinToInterrupt(_gpioPin), intPtrTable[_gpioPin].func, FALLING);
} else {
_func = InterruptIn::donothing;
intPtrTable[_gpioPin].context = NULL;
detachInterrupt(_gpioPin);
}
}
#define MAX_TIMEOUTS 10
class Timeout;
struct TimeoutVector {
Timeout *timer;
volatile uint32_t timeout; // us
} TimeOuts[MAX_TIMEOUTS];
#if defined(__SAMD21G18A__) || defined(__SAMD21J18A__)
/*
* __SAMD21J18A__ is the SamD21 Explained Board
* __SAMD21G18A__ is Genuino Zero-Board (compatible with the LoRa board)
*/
/*
* see tcc.h included from
* Arduino15/packages/arduino/tools/CMSIS-Atmel/1.1.0/CMSIS/
* Device/ATMEL/samd21/include/component/tcc.h
*/
static const struct TCC_CONFIG {
Tcc *tcc_ptr;
IRQn_Type tcc_irq;
uint8_t nbits;
} TCC_CONFIG[] {
{ TCC0, TCC0_IRQn, 24 },
{ TCC1, TCC1_IRQn, 24 },
{ TCC2, TCC2_IRQn, 16 },
};
#define USE_TCC 0 // TCC0, TTC1, TTC2 are working using the Arduino D21
static bool initTimerDone = false;
static void initTimer() {
Tcc *TC = TCC_CONFIG[USE_TCC].tcc_ptr;
// Enable clock for TC, see gclk.h
if (TC == TCC0 || TC == TCC1) {
REG_GCLK_CLKCTRL = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID_TCC0_TCC1);
} else if (TC == TCC2) {
REG_GCLK_CLKCTRL = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID_TCC2_TC3_Val);
}
while (GCLK->STATUS.bit.SYNCBUSY == 1); // wait for sync
TC->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TC
while (TC->SYNCBUSY.bit.ENABLE == 1); // wait for sync
TC->CTRLA.reg |= (TCC_CTRLA_PRESCALER_DIV1024 | TCC_CTRLA_RUNSTDBY); // Set perscaler
TC->WAVE.reg |= TCC_WAVE_WAVEGEN_NFRQ; // Set wave form configuration
while (TC->SYNCBUSY.bit.WAVE == 1); // wait for sync
TC->PER.bit.PER = 0xFFFFFF; // set counter top to max 24 bit
while (TC->SYNCBUSY.bit.PER == 1); // wait for sync
// the compare counter TC->CC[0].reg will be set in the startTimer
// after the timeout calculation is known.
// Interrupts
TC->INTENSET.reg = 0; // disable all interrupts
TC->INTENSET.bit.OVF = 1; // enable overfollow
TC->INTENSET.bit.MC0 = 1; // enable compare match to CC0
NVIC_EnableIRQ( TCC_CONFIG[USE_TCC].tcc_irq); // Enable InterruptVector
initTimerDone = true;
}
static void stopTimer(void)
{
Tcc *TC = TCC_CONFIG[USE_TCC].tcc_ptr;
TC->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TC
while (TC->SYNCBUSY.bit.ENABLE == 1); // wait for sync
}
static void startTimer(uint32_t delay_us)
{
Tcc *TC = TCC_CONFIG[USE_TCC].tcc_ptr;
if (!initTimerDone)
initTimer(); // initial setup with stopped timer
stopTimer(); // avoid timer interrupts while calculating
/*
* every 21333 ns equals one tick (1/(48000000/1024))
* COUNT*DIVIDER*SECS until interrupt
* 48 Mhz = (65536*1024)/1.398636s
*/
long long nclocks = delay_us * 1000; // ns;
nclocks = nclocks / 21333;
int nCounts = nclocks;
int bits = TCC_CONFIG[USE_TCC].nbits;
int maxCounts = (uint32_t)(1<<bits)-1;
if (nCounts > maxCounts) // if count exceeds timer capacity
nCounts = maxCounts; // set the largest posible count.
if (nCounts == 0)
nCounts = 1;
TC->CC[0].bit.CC = nCounts;
while (TC->SYNCBUSY.bit.CC0 == 1); // wait for sync
TC->CTRLA.reg |= TCC_CTRLA_ENABLE ; // Enable TC
while (TC->SYNCBUSY.bit.ENABLE == 1); // wait for sync
#if 1
Serial.print(millis(), DEC);
Serial.print(" startTimer: nCounts=");
Serial.println(nCounts, DEC);
#endif
}
#if USE_TCC == 0
void TCC0_Handler()
#elif USE_TCC == 1
void TCC1_Handler()
#elif USE_TCC == 2
void TCC2_Handler()
#endif
{
static uint32_t last_usecs = 0;
Tcc *TC = TCC_CONFIG[USE_TCC].tcc_ptr;
uint32_t usecs = micros();
uint32_t u_offset = 0;
if (last_usecs && last_usecs < usecs) {
/*
* Problem is that the micros sometimes gives smaller values
* compared to previuos micros. As a workaround we all 1ms.
*/
u_offset = 1000;
}
last_usecs = usecs;
/*
* Overflow means the max timer exeeded, we need restart the timer
* Interrupts and
*/
if (TC->INTFLAG.bit.OVF == 1) { // A overflow caused the interrupt
Serial.print("OVF\r\n");
TC->INTFLAG.bit.OVF = 1; // writing a one clears the flag ovf flag
}
if (TC->INTFLAG.bit.MC0 == 1) { // A compare to cc0 caused the interrupt
//Serial.print("MC0\r\n");
TC->INTFLAG.bit.MC0 = 1; // writing a one clears the MCO (match capture) flag
}
TC->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TC
while (TC->SYNCBUSY.bit.ENABLE == 1); // wait for sync
for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
struct TimeoutVector *tvp = &TimeOuts[i];
if (tvp->timer && tvp->timeout && usecs + u_offset >= tvp->timeout) {
Timeout *saveTimer = tvp->timer;
tvp->timer = NULL;
tvp->timeout = 0;
Timeout::_irq_handler(saveTimer);
}
}
/*
* we need to restart the timer for remaining interrupts
* we provide the interrupt entry time in usecs which means
* we don't count the irq_hander duration or debug prints
*/
Timeout::restart(usecs);
}
#endif // D21 TCC Timer
void
Timeout::insert(void)
{
noInterrupts();
for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
struct TimeoutVector *tvp = &TimeOuts[i];
if (tvp->timer == NULL) {
tvp->timeout = _timeout;
tvp->timer = this;
break;
}
}
interrupts();
}
void
Timeout::remove(void)
{
noInterrupts();
for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
struct TimeoutVector *tvp = &TimeOuts[i];
if (tvp->timer == this) {
tvp->timer = NULL;
tvp->timeout = 0;
break;
}
}
interrupts();
}
void
Timeout::restart(uint32_t usecs)
{
uint32_t timeout = ~0;
/*
* find the lowest timeout value which is our the next timeout
* zero means stop the timer.
*/
noInterrupts();
for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
struct TimeoutVector *tvp = &TimeOuts[i];
if (tvp->timer && tvp->timeout > 0) {
if (tvp->timeout < timeout) {
timeout = tvp->timeout;
}
}
}
interrupts();
if (timeout == (uint32_t)~0) {
stopTimer();
return;
}
if (!usecs)
usecs = micros();
if (timeout > usecs) {
startTimer(timeout - usecs);
return;
} else {
startTimer(1); // just one usec to trigger interrrupt
}
}
#endif // ARDUINO