Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: Arduino-mbed-APIs/arduino-mbed.cpp
- Revision:
- 71:7067e67902a8
- Parent:
- 70:1d496aae2819
- Child:
- 75:7330dd86cdea
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Arduino-mbed-APIs/arduino-mbed.cpp Sun Jul 23 16:09:55 2017 +0200
@@ -0,0 +1,667 @@
+/*
+ * The file is Licensed under the Apache License, Version 2.0
+ * (c) 2017 Helmut Tschemernjak
+ * 30826 Garbsen (Hannover) Germany
+ */
+
+#ifdef ARDUINO
+
+using namespace std;
+
+#include "arduino-mbed.h"
+
+
+static void pinInt00(void);
+static void pinInt01(void);
+static void pinInt02(void);
+static void pinInt03(void);
+static void pinInt04(void);
+static void pinInt05(void);
+static void pinInt06(void);
+static void pinInt07(void);
+static void pinInt08(void);
+static void pinInt09(void);
+static void pinInt10(void);
+static void pinInt11(void);
+static void pinInt12(void);
+static void pinInt13(void);
+static void pinInt14(void);
+static void pinInt15(void);
+static void pinInt16(void);
+static void pinInt17(void);
+static void pinInt18(void);
+static void pinInt19(void);
+static void pinInt20(void);
+static void pinInt21(void);
+static void pinInt22(void);
+static void pinInt23(void);
+static void pinInt24(void);
+static void pinInt25(void);
+static void pinInt26(void);
+static void pinInt27(void);
+static void pinInt28(void);
+static void pinInt29(void);
+static void pinInt30(void);
+static void pinInt31(void);
+static void pinInt32(void);
+static void pinInt33(void);
+static void pinInt34(void);
+static void pinInt35(void);
+static void pinInt36(void);
+static void pinInt37(void);
+static void pinInt38(void);
+static void pinInt39(void);
+static void pinInt40(void);
+static void pinInt41(void);
+static void pinInt42(void);
+static void pinInt43(void);
+static void pinInt44(void);
+static void pinInt45(void);
+static void pinInt46(void);
+static void pinInt47(void);
+
+
+
+#define MAX_MCU_PINS 48
+class InterruptIn;
+struct intPtrTable {
+ void (*func)(void);
+ InterruptIn *context;
+} intPtrTable[MAX_MCU_PINS] = {
+ { pinInt00, NULL },
+ { pinInt01, NULL },
+ { pinInt02, NULL },
+ { pinInt03, NULL },
+ { pinInt04, NULL },
+ { pinInt05, NULL },
+ { pinInt06, NULL },
+ { pinInt07, NULL },
+ { pinInt08, NULL },
+ { pinInt09, NULL },
+ { pinInt10, NULL },
+ { pinInt11, NULL },
+ { pinInt12, NULL },
+ { pinInt13, NULL },
+ { pinInt14, NULL },
+ { pinInt15, NULL },
+ { pinInt16, NULL },
+ { pinInt17, NULL },
+ { pinInt18, NULL },
+ { pinInt19, NULL },
+ { pinInt20, NULL },
+ { pinInt21, NULL },
+ { pinInt22, NULL },
+ { pinInt23, NULL },
+ { pinInt24, NULL },
+ { pinInt25, NULL },
+ { pinInt26, NULL },
+ { pinInt27, NULL },
+ { pinInt28, NULL },
+ { pinInt29, NULL },
+ { pinInt30, NULL },
+ { pinInt31, NULL },
+ { pinInt32, NULL },
+ { pinInt33, NULL },
+ { pinInt34, NULL },
+ { pinInt35, NULL },
+ { pinInt36, NULL },
+ { pinInt37, NULL },
+ { pinInt38, NULL },
+ { pinInt39, NULL },
+ { pinInt40, NULL },
+ { pinInt41, NULL },
+ { pinInt42, NULL },
+ { pinInt43, NULL },
+ { pinInt44, NULL },
+ { pinInt45, NULL },
+ { pinInt46, NULL },
+ { pinInt47, NULL }
+}; // our max MCUs pins
+
+
+
+static void pinInt00(void) { InterruptIn::_irq_handler(intPtrTable[0].context); }
+static void pinInt01(void) { InterruptIn::_irq_handler(intPtrTable[1].context); }
+static void pinInt02(void) { InterruptIn::_irq_handler(intPtrTable[2].context); }
+static void pinInt03(void) { InterruptIn::_irq_handler(intPtrTable[3].context); }
+static void pinInt04(void) { InterruptIn::_irq_handler(intPtrTable[4].context); }
+static void pinInt05(void) { InterruptIn::_irq_handler(intPtrTable[5].context); }
+static void pinInt06(void) { InterruptIn::_irq_handler(intPtrTable[6].context); }
+static void pinInt07(void) { InterruptIn::_irq_handler(intPtrTable[7].context); }
+static void pinInt08(void) { InterruptIn::_irq_handler(intPtrTable[8].context); }
+static void pinInt09(void) { InterruptIn::_irq_handler(intPtrTable[9].context); }
+static void pinInt10(void) { InterruptIn::_irq_handler(intPtrTable[10].context); }
+static void pinInt11(void) { InterruptIn::_irq_handler(intPtrTable[11].context); }
+static void pinInt12(void) { InterruptIn::_irq_handler(intPtrTable[12].context); }
+static void pinInt13(void) { InterruptIn::_irq_handler(intPtrTable[13].context); }
+static void pinInt14(void) { InterruptIn::_irq_handler(intPtrTable[14].context); }
+static void pinInt15(void) { InterruptIn::_irq_handler(intPtrTable[15].context); }
+static void pinInt16(void) { InterruptIn::_irq_handler(intPtrTable[16].context); }
+static void pinInt17(void) { InterruptIn::_irq_handler(intPtrTable[17].context); }
+static void pinInt18(void) { InterruptIn::_irq_handler(intPtrTable[18].context); }
+static void pinInt19(void) { InterruptIn::_irq_handler(intPtrTable[19].context); }
+static void pinInt20(void) { InterruptIn::_irq_handler(intPtrTable[20].context); }
+static void pinInt21(void) { InterruptIn::_irq_handler(intPtrTable[21].context); }
+static void pinInt22(void) { InterruptIn::_irq_handler(intPtrTable[22].context); }
+static void pinInt23(void) { InterruptIn::_irq_handler(intPtrTable[23].context); }
+static void pinInt24(void) { InterruptIn::_irq_handler(intPtrTable[24].context); }
+static void pinInt25(void) { InterruptIn::_irq_handler(intPtrTable[25].context); }
+static void pinInt26(void) { InterruptIn::_irq_handler(intPtrTable[26].context); }
+static void pinInt27(void) { InterruptIn::_irq_handler(intPtrTable[27].context); }
+static void pinInt28(void) { InterruptIn::_irq_handler(intPtrTable[28].context); }
+static void pinInt29(void) { InterruptIn::_irq_handler(intPtrTable[29].context); }
+static void pinInt30(void) { InterruptIn::_irq_handler(intPtrTable[30].context); }
+static void pinInt31(void) { InterruptIn::_irq_handler(intPtrTable[31].context); }
+static void pinInt32(void) { InterruptIn::_irq_handler(intPtrTable[32].context); }
+static void pinInt33(void) { InterruptIn::_irq_handler(intPtrTable[33].context); }
+static void pinInt34(void) { InterruptIn::_irq_handler(intPtrTable[34].context); }
+static void pinInt35(void) { InterruptIn::_irq_handler(intPtrTable[35].context); }
+static void pinInt36(void) { InterruptIn::_irq_handler(intPtrTable[36].context); }
+static void pinInt37(void) { InterruptIn::_irq_handler(intPtrTable[37].context); }
+static void pinInt38(void) { InterruptIn::_irq_handler(intPtrTable[38].context); }
+static void pinInt39(void) { InterruptIn::_irq_handler(intPtrTable[39].context); }
+static void pinInt40(void) { InterruptIn::_irq_handler(intPtrTable[40].context); }
+static void pinInt41(void) { InterruptIn::_irq_handler(intPtrTable[41].context); }
+static void pinInt42(void) { InterruptIn::_irq_handler(intPtrTable[42].context); }
+static void pinInt43(void) { InterruptIn::_irq_handler(intPtrTable[43].context); }
+static void pinInt44(void) { InterruptIn::_irq_handler(intPtrTable[44].context); }
+static void pinInt45(void) { InterruptIn::_irq_handler(intPtrTable[45].context); }
+static void pinInt46(void) { InterruptIn::_irq_handler(intPtrTable[46].context); }
+static void pinInt47(void) { InterruptIn::_irq_handler(intPtrTable[47].context); }
+
+
+
+
+void
+InterruptIn::rise(Callback<void()> func) {
+ if (_gpioPin >= MAX_MCU_PINS-1)
+ return;
+ if (func) {
+ _func = func;
+ intPtrTable[_gpioPin].context = this;
+ attachInterrupt(MYdigitalPinToInterrupt(_gpioPin), intPtrTable[_gpioPin].func, RISING);
+ } else {
+ _func = InterruptIn::donothing;
+ intPtrTable[_gpioPin].context = NULL;
+ detachInterrupt(_gpioPin);
+ }
+};
+
+void
+InterruptIn::fall(Callback<void()> func) {
+ if (func) {
+ _func = func;
+ intPtrTable[_gpioPin].context = this;
+ attachInterrupt(MYdigitalPinToInterrupt(_gpioPin), intPtrTable[_gpioPin].func, FALLING);
+ } else {
+ _func = InterruptIn::donothing;
+ intPtrTable[_gpioPin].context = NULL;
+ detachInterrupt(_gpioPin);
+ }
+}
+
+
+#define MAX_TIMEOUTS 10
+class Timeout;
+struct TimeoutVector {
+ Timeout *timer;
+} TimeOuts[MAX_TIMEOUTS];
+
+
+#if defined(__SAMD21G18A__) || defined(__SAMD21J18A__)
+/*
+ * __SAMD21J18A__ is the SamD21 Explained Board
+ * __SAMD21G18A__ is Genuino Zero-Board (compatible with the LoRa board)
+ */
+
+/*
+ * see tcc.h is automatically included from:
+ * Arduino15/packages/arduino/tools/CMSIS-Atmel/1.1.0/CMSIS/
+ * Device/ATMEL/samd21/include/component/tcc.h
+ * See also tcc.c (ASF/mbed, e.g. Tcc_get_count_value)
+ */
+static void initTimer(Tcc *t);
+static uint32_t getTimerCount(Tcc *t);
+
+/*
+ * The Atmel D21 has three TCC timer, other models have more.
+ */
+static const struct TCC_config {
+ Tcc *tcc_ptr;
+ IRQn_Type tcc_irq;
+ uint8_t nbits;
+} TCC_data[] {
+ { TCC0, TCC0_IRQn, 24 },
+ { TCC1, TCC1_IRQn, 24 },
+ { TCC2, TCC2_IRQn, 16 },
+ { NULL, (IRQn_Type)NULL, 0 }
+};
+
+/*
+ * We preferably use the TCC timers because it supports 24-bit counters
+ * versus TC Timer which supports only 8 or 16 bit counters
+ * TCC0/1/2 timer work on the D21 using Arduino.
+ */
+#define USE_TCC_TIMEOUT 0 // 0=TCC0, 1=TTC1, 2=TTC2 (see TCC_data)
+#define USE_TCC_TICKER 1
+
+
+/*
+ * every 21333 ns equals one tick (1/(48000000/1024)) // prescaler 1024, 48 MHz
+ * every 61035 ns equals one tick (1/(32768/2)) // prescaler 2, 32 kHz
+ * COUNT*DIVIDER*SECS until interrupt
+ * CPU 48 MHz = (65536*1024)/1.398636s
+ * RTC 32 kHz = (65536*2)/4.0s
+ */
+#define NS_PER_CLOCK_CPU 21333 // ns secs per clock
+#define NS_PER_CLOCK_RTC 61035 // ns secs per clock
+
+#define NS_PER_CLOCK NS_PER_CLOCK_RTC
+
+/* ----------------- TICKER TIMER CODE ----------------------*/
+
+/*
+ * The global ns_counter contains the time in ns from the last time
+ * the counter has been wrapped. It cannot be used directly because the
+ * current counter has to be added fore using it. Use instead
+ * ns_getTicker(), us_ ns_getTicker(), ms_getTicker()
+ */
+
+uint64_t ticker_ns;
+static bool initTickerDone = false;
+
+uint32_t s_getTicker(void)
+{
+ long long ns = ns_getTicker();
+ ns /= (long long)1000000000; // to secs
+
+ int secs = ns;
+ return secs;
+}
+
+
+uint32_t ms_getTicker(void)
+{
+ uint32_t us = us_getTicker();
+
+ us /= 1000; // to ms
+ return us;
+}
+
+uint32_t us_getTicker(void)
+{
+ long long ns = ns_getTicker();
+
+ ns /= (long long)1000; // to us
+ uint32_t us = ns & 0xffffffff;
+
+ return us;
+}
+
+
+uint64_t ns_getTicker(void)
+{
+ Tcc *t = TCC_data[USE_TCC_TICKER].tcc_ptr;
+ if (!initTickerDone) {
+ initTimer(t);
+ initTickerDone = true;
+
+ // set counter top to max 16 bit for testing
+ // t->PER.bit.PER = 0xffff;
+ // while (t->SYNCBUSY.bit.PER == 1); // wait for sync
+
+ t->CTRLA.reg |= TCC_CTRLA_ENABLE ; // Enable TC
+ while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync
+ }
+
+ /*
+ * if we are called from the interrupt level, the counter contains
+ * somehow wrong data, therfore we needs to read it twice.
+ * Another option was to add a little wait (loop 500x)
+ * in the TCC_TIMEOUT interrupt handler.
+ */
+ if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk) // check if we are in the interrupt
+ getTimerCount(t);
+
+ uint64_t counter_us = (uint64_t)NS_PER_CLOCK * (uint64_t)getTimerCount(t);
+ uint64_t ns = ticker_ns + counter_us;
+
+ return ns;
+}
+
+#if USE_TCC_TICKER == 0
+void TCC0_Handler()
+#elif USE_TCC_TICKER == 1
+void TCC1_Handler()
+#elif USE_TCC_TICKER == 2
+void TCC2_Handler()
+#endif
+{
+ Tcc *t = TCC_data[USE_TCC_TICKER].tcc_ptr;
+ /*
+ * Overflow means the timer top exeeded
+ */
+ if (t->INTFLAG.bit.OVF == 1) { // A overflow caused the interrupt
+ t->INTFLAG.bit.OVF = 1; // writing a one clears the flag ovf flag
+ // Serial.println("T_OVF");
+
+ /*
+ * reading the count once is needed, otherwise
+ * it will not wrap correct.
+ */
+ getTimerCount(t);
+
+ int bits = TCC_data[USE_TCC_TICKER].nbits;
+ int maxCounts = (uint32_t)(1<<bits);
+
+ ticker_ns += (uint64_t)NS_PER_CLOCK * (uint64_t)maxCounts;
+ }
+ if (t->INTFLAG.bit.MC0 == 1) { // A compare to cc0 caused the interrupt
+ t->INTFLAG.bit.MC0 = 1; // writing a one clears the MCO (match capture) flag
+ // Serial.println("T_MC0");
+ }
+}
+
+/* ----------------- SUPPORT CODE FOR TCC TIMERS----------------------*/
+
+static bool initTimerDone = false;
+
+static void initTimer(Tcc *t)
+{
+
+ /*
+ * enable clock for TCC, see gclk.h
+ * GCLK_CLKCTRL_GEN_GCLK0 for 48 Mhz CPU
+ * GCLK_CLKCTRL_GEN_GCLK1 for 32k extern crystal XOSC32K (ifdef CRYSTALLESS)
+ * GCLK_CLKCTRL_GEN_GCLK1 for 32k internal OSC32K
+ * see Arduino: arduino/hardware/samd/1.6.15/cores/arduino/startup.c
+ * Use TCC_CTRLA_PRESCALER_DIV1024 for for 48 Mhz clock
+ * Use TCC_CTRLA_PRESCALER_DIV2 for 32k clock
+ */
+ if (t == TCC0 || t == TCC1) {
+ REG_GCLK_CLKCTRL = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK1 | GCLK_CLKCTRL_ID_TCC0_TCC1);
+ } else if (t == TCC2) {
+ REG_GCLK_CLKCTRL = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK1 | GCLK_CLKCTRL_ID_TCC2_TC3_Val);
+ }
+ while (GCLK->STATUS.bit.SYNCBUSY == 1); // wait for sync
+
+ t->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TCC
+ while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync
+
+ t->CTRLA.reg |= (TCC_CTRLA_PRESCALER_DIV2 | TCC_CTRLA_RUNSTDBY); // Set perscaler
+
+ t->WAVE.reg |= TCC_WAVE_WAVEGEN_NFRQ; // Set wave form configuration
+ while (t->SYNCBUSY.bit.WAVE == 1); // wait for sync
+
+ t->PER.bit.PER = 0xffffff; // set counter top to max 24 bit
+ while (t->SYNCBUSY.bit.PER == 1); // wait for sync
+
+ // the compare counter TC->CC[0].reg will be set in the startTimer
+ // after the timeout calculation is known.
+
+ // Interrupts
+ t->INTENSET.reg = 0; // disable all interrupts
+ t->INTENSET.bit.OVF = 1; // enable overfollow
+ t->INTENSET.bit.MC0 = 1; // enable compare match to CC0
+
+ const struct TCC_config *cp = &TCC_data[0];
+ while (cp->tcc_ptr) {
+ if (cp->tcc_ptr == t) {
+ NVIC_EnableIRQ(cp->tcc_irq); // Enable InterruptVector
+ break;
+ }
+ cp++;
+ }
+}
+
+#if 0
+// Atmel ASF Code
+static uint32_t getTimerCount(Tcc *t)
+{
+ uint32_t last_cmd;
+ /* Wait last command done */
+ do {
+ while (t->SYNCBUSY.bit.CTRLB); /* Wait for sync */
+
+ last_cmd = t->CTRLBSET.reg & TCC_CTRLBSET_CMD_Msk;
+ if (TCC_CTRLBSET_CMD_NONE == last_cmd) {
+ /* Issue read command and break */
+ t->CTRLBSET.bit.CMD = TCC_CTRLBSET_CMD_READSYNC_Val;
+ break;
+ } else if (TCC_CTRLBSET_CMD_READSYNC == last_cmd) {
+ /* Command have been issued */
+ break;
+ }
+ } while (1);
+
+ while (t->SYNCBUSY.bit.COUNT); /* Wait for sync */
+
+ return t->COUNT.reg;
+}
+#endif
+
+
+static uint32_t getTimerCount(Tcc *t)
+{
+
+ noInterrupts();
+
+ while (t->SYNCBUSY.bit.CTRLB); /* Wait for sync */
+
+ t->CTRLBSET.bit.CMD = TCC_CTRLBSET_CMD_READSYNC_Val; /* Issue read command and break */
+
+ while (t->SYNCBUSY.bit.COUNT); /* Wait for sync */
+
+ uint32_t count = t->COUNT.reg;
+
+ interrupts();
+
+ return count;
+}
+
+
+static void stopTimer(Tcc *t)
+{
+ t->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TC
+ while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync
+}
+
+
+/* ----------------- TIMEOUT TIMER CODE ----------------------*/
+
+static void startTimer(Tcc *t, uint64_t delay_ns)
+{
+ if (!initTimerDone) {
+ initTimer(t); // initial setup with stopped timer
+ initTimerDone = true;
+ }
+
+ stopTimer(t); // avoid timer interrupts while calculating
+
+ /*
+ * every 21333 ns equals one tick (1/(48000000/1024))
+ * COUNT*DIVIDER*SECS until interrupt
+ * 48 Mhz = (65536*1024)/1.398636s
+ */
+ uint64_t nclocks = (uint64_t)delay_ns;
+ nclocks /= (uint64_t)NS_PER_CLOCK;
+ int nCounts = nclocks;
+
+ int bits = TCC_data[USE_TCC_TIMEOUT].nbits;
+ int maxCounts = (uint32_t)(1<<bits)-1;
+
+ if (nCounts > maxCounts) // if count exceeds timer capacity
+ nCounts = maxCounts; // set the largest posible count.
+ if (nCounts <= 0)
+ nCounts = 1;
+ t->CC[0].bit.CC = nCounts;
+ while (t->SYNCBUSY.bit.CC0 == 1); // wait for sync
+
+ t->CTRLA.reg |= TCC_CTRLA_ENABLE ; // Enable TC
+ while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync
+#if 0
+ Serial.print(ms_getTicker(), DEC);
+ Serial.print(" startTimer: nCounts=");
+ Serial.println(nCounts, DEC);
+#endif
+}
+
+
+#if USE_TCC_TIMEOUT == 0
+void TCC0_Handler()
+#elif USE_TCC_TIMEOUT == 1
+void TCC1_Handler()
+#elif USE_TCC_TIMEOUT == 2
+void TCC2_Handler()
+#endif
+{
+ Tcc *t = TCC_data[USE_TCC_TIMEOUT].tcc_ptr;
+ uint64_t nsecs = ns_getTicker();
+
+ /*
+ * Overflow means the max timer exeeded, we need restart the timer
+ * Interrupts and
+ */
+ if (t->INTFLAG.bit.OVF == 1) { // A overflow caused the interrupt
+ t->INTFLAG.bit.OVF = 1; // writing a one clears the flag ovf flag
+ }
+
+ if (t->INTFLAG.bit.MC0 == 1) { // A compare to cc0 caused the interrupt
+ //Serial.print("MC0\r\n");
+ t->INTFLAG.bit.MC0 = 1; // writing a one clears the MCO (match capture) flag
+ }
+
+ t->CTRLA.reg &= ~TCC_CTRLA_ENABLE; // Disable TC
+ while (t->SYNCBUSY.bit.ENABLE == 1); // wait for sync
+
+ for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
+ struct TimeoutVector *tvp = &TimeOuts[i];
+ if (tvp->timer && nsecs >= tvp->timer->_timeout) {
+ Timeout *saveTimer = tvp->timer;
+ tvp->timer = NULL;
+ Timeout::_irq_handler(saveTimer);
+ }
+ }
+ /*
+ * we need to restart the timer for remaining interrupts
+ * Another reason is that we stopped this counter, in case there are
+ * remaining counts, we need to re-schedule the counter.
+ */
+ Timeout::restart();
+}
+
+
+#endif // D21 TCC Timer
+
+void
+Timeout::insert(void)
+{
+ noInterrupts();
+ for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
+ struct TimeoutVector *tvp = &TimeOuts[i];
+ if (tvp->timer == NULL) {
+ tvp->timer = this;
+ break;
+ }
+ }
+ interrupts();
+}
+
+void
+Timeout::remove(void)
+{
+ noInterrupts();
+ for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
+ struct TimeoutVector *tvp = &TimeOuts[i];
+ if (tvp->timer == this) {
+ tvp->timer = NULL;
+ break;
+ }
+ }
+ interrupts();
+}
+
+
+void
+Timeout::restart()
+{
+ Tcc *t = TCC_data[USE_TCC_TIMEOUT].tcc_ptr;
+ uint64_t timeout = ~0;
+
+ /*
+ * find the lowest timeout value which is our the next timeout
+ * zero means stop the timer.
+ */
+ noInterrupts();
+ for (int i = 0; i < MAX_TIMEOUTS-1; i++) {
+ struct TimeoutVector *tvp = &TimeOuts[i];
+ if (tvp->timer) {
+ if (tvp->timer->_timeout < timeout) {
+ timeout = tvp->timer->_timeout;
+ }
+ }
+ }
+ interrupts();
+
+ if (timeout == (uint64_t)~0) {
+ stopTimer(t);
+ return;
+ }
+
+ uint64_t nsecs = ns_getTicker();
+
+ if (timeout > nsecs) {
+ startTimer(t, (uint64_t)timeout - (uint64_t)nsecs);
+ return;
+ } else {
+ startTimer(t, (uint64_t)1); // just one nsec to trigger interrrupt
+ }
+}
+
+/* ----------------- D21 sleep() and deepsleep() code ----------------------*/
+
+void sleep(void)
+{
+#if 1 // (SAMD20 || SAMD21)
+ /* Errata: Make sure that the Flash does not power all the way down
+ * when in sleep mode. */
+ NVMCTRL->CTRLB.bit.SLEEPPRM = NVMCTRL_CTRLB_SLEEPPRM_DISABLED_Val;
+#endif
+ uint32_t saved_ms = ms_getTicker();
+ SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk; // disbale SysTick
+
+ SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk; // clear deep sleep
+ PM->SLEEP.reg = 2; // SYSTEM_SLEEPMODE_IDLE_2 IDLE 2 sleep mode.
+
+ __DSB(); // ensures the completion of memory accesses
+ __WFI(); // wait for interrupt
+
+ int count = ms_getTicker() - saved_ms;
+ if (count > 0) { // update the Arduino Systicks
+ for (int i = 0; i < count; i++) {
+ SysTick_Handler();
+ }
+ }
+ SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk; // enable SysTick
+}
+
+void deepsleep(void)
+{
+#if 1 // (SAMD20 || SAMD21)
+ /* Errata: Make sure that the Flash does not power all the way down
+ * when in sleep mode. */
+ NVMCTRL->CTRLB.bit.SLEEPPRM = NVMCTRL_CTRLB_SLEEPPRM_DISABLED_Val;
+#endif
+
+ SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk; // disbale SysTick
+
+ SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; // standby mode
+
+ __DSB(); // ensures the completion of memory accesses
+ __WFI(); // wait for interrupt
+
+ SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk; // enable SysTick
+}
+
+
+#endif // ARDUINO