filtering the signal needs tweaking but timing works,
Fork of SigInterpreter by
Diff: PID.cpp
- Revision:
- 1:665ee7703fbe
- Parent:
- 0:6e12a3e5af19
- Child:
- 2:ad96602f71c0
--- a/PID.cpp Thu Sep 02 16:48:10 2010 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,324 +0,0 @@ -/** - * @author Aaron Berk - * - * @section LICENSE - * - * Copyright (c) 2010 ARM Limited - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in - * all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN - * THE SOFTWARE. - * - * @section DESCRIPTION - * - * A PID controller is a widely used feedback controller commonly found in - * industry. - * - * This library is a port of Brett Beauregard's Arduino PID library: - * - * http://www.arduino.cc/playground/Code/PIDLibrary - * - * The wikipedia article on PID controllers is a good place to start on - * understanding how they work: - * - * http://en.wikipedia.org/wiki/PID_controller - * - * For a clear and elegant explanation of how to implement and tune a - * controller, the controlguru website by Douglas J. Cooper (who also happened - * to be Brett's controls professor) is an excellent reference: - * - * http://www.controlguru.com/ - */ - -/** - * Includes - */ -#include "PID.h" - -PID::PID(float Kc, float tauI, float tauD, float interval) { - - usingFeedForward = false; - inAuto = false; - - //Default the limits to the full range of I/O: 3.3V - //Make sure to set these to more appropriate limits for - //your application. - setInputLimits(0.0, 3.3); - setOutputLimits(0.0, 3.3); - - tSample_ = interval; - - setTunings(Kc, tauI, tauD); - - setPoint_ = 0.0; - processVariable_ = 0.0; - prevProcessVariable_ = 0.0; - controllerOutput_ = 0.0; - prevControllerOutput_ = 0.0; - - accError_ = 0.0; - bias_ = 0.0; - - realOutput_ = 0.0; - -} - -void PID::setInputLimits(float inMin, float inMax) { - - //Make sure we haven't been given impossible values. - if (inMin >= inMax) { - return; - } - - //Rescale the working variables to reflect the changes. - prevProcessVariable_ *= (inMax - inMin) / inSpan_; - accError_ *= (inMax - inMin) / inSpan_; - - //Make sure the working variables are within the new limits. - if (prevProcessVariable_ > 1) { - prevProcessVariable_ = 1; - } else if (prevProcessVariable_ < 0) { - prevProcessVariable_ = 0; - } - - inMin_ = inMin; - inMax_ = inMax; - inSpan_ = inMax - inMin; - -} - -void PID::setOutputLimits(float outMin, float outMax) { - - //Make sure we haven't been given impossible values. - if (outMin >= outMax) { - return; - } - - //Rescale the working variables to reflect the changes. - prevControllerOutput_ *= (outMax - outMin) / outSpan_; - - //Make sure the working variables are within the new limits. - if (prevControllerOutput_ > 1) { - prevControllerOutput_ = 1; - } else if (prevControllerOutput_ < 0) { - prevControllerOutput_ = 0; - } - - outMin_ = outMin; - outMax_ = outMax; - outSpan_ = outMax - outMin; - -} - -void PID::setTunings(float Kc, float tauI, float tauD) { - - //Verify that the tunings make sense. - if (Kc == 0.0 || tauI < 0.0 || tauD < 0.0) { - return; - } - - //Store raw values to hand back to user on request. - pParam_ = Kc; - iParam_ = tauI; - dParam_ = tauD; - - float tempTauR; - - if (tauI == 0.0) { - tempTauR = 0.0; - } else { - tempTauR = (1.0 / tauI) * tSample_; - } - - //For "bumpless transfer" we need to rescale the accumulated error. - if (inAuto) { - if (tempTauR == 0.0) { - accError_ = 0.0; - } else { - accError_ *= (Kc_ * tauR_) / (Kc * tempTauR); - } - } - - Kc_ = Kc; - tauR_ = tempTauR; - tauD_ = tauD / tSample_; - -} - -void PID::reset(void) { - - float scaledBias = 0.0; - - if (usingFeedForward) { - scaledBias = (bias_ - outMin_) / outSpan_; - } else { - scaledBias = (realOutput_ - outMin_) / outSpan_; - } - - prevControllerOutput_ = scaledBias; - prevProcessVariable_ = (processVariable_ - inMin_) / inSpan_; - - //Clear any error in the integral. - accError_ = 0; - -} - -void PID::setMode(int mode) { - - //We were in manual, and we just got set to auto. - //Reset the controller internals. - if (mode != 0 && !inAuto) { - reset(); - } - - inAuto = (mode != 0); - -} - -void PID::setInterval(float interval) { - - if (interval > 0) { - //Convert the time-based tunings to reflect this change. - tauR_ *= (interval / tSample_); - accError_ *= (tSample_ / interval); - tauD_ *= (interval / tSample_); - tSample_ = interval; - } - -} - -void PID::setSetPoint(float sp) { - - setPoint_ = sp; - -} - -void PID::setProcessValue(float pv) { - - processVariable_ = pv; - -} - -void PID::setBias(float bias){ - - bias_ = bias; - usingFeedForward = 1; - -} - -float PID::compute() { - - //Pull in the input and setpoint, and scale them into percent span. - float scaledPV = (processVariable_ - inMin_) / inSpan_; - - if (scaledPV > 1.0) { - scaledPV = 1.0; - } else if (scaledPV < 0.0) { - scaledPV = 0.0; - } - - float scaledSP = (setPoint_ - inMin_) / inSpan_; - if (scaledSP > 1.0) { - scaledSP = 1; - } else if (scaledSP < 0.0) { - scaledSP = 0; - } - - float error = scaledSP - scaledPV; - - //Check and see if the output is pegged at a limit and only - //integrate if it is not. This is to prevent reset-windup. - if (!(prevControllerOutput_ >= 1 && error > 0) && !(prevControllerOutput_ <= 0 && error < 0)) { - accError_ += error; - } - - //Compute the current slope of the input signal. - float dMeas = (scaledPV - prevProcessVariable_) / tSample_; - - float scaledBias = 0.0; - - if (usingFeedForward) { - scaledBias = (bias_ - outMin_) / outSpan_; - } - - //Perform the PID calculation. - controllerOutput_ = scaledBias + Kc_ * (error + (tauR_ * accError_) - (tauD_ * dMeas)); - - //Make sure the computed output is within output constraints. - if (controllerOutput_ < 0.0) { - controllerOutput_ = 0.0; - } else if (controllerOutput_ > 1.0) { - controllerOutput_ = 1.0; - } - - //Remember this output for the windup check next time. - prevControllerOutput_ = controllerOutput_; - //Remember the input for the derivative calculation next time. - prevProcessVariable_ = scaledPV; - - //Scale the output from percent span back out to a real world number. - return ((controllerOutput_ * outSpan_) + outMin_); - -} - -float PID::getInMin() { - - return inMin_; - -} - -float PID::getInMax() { - - return inMax_; - -} - -float PID::getOutMin() { - - return outMin_; - -} - -float PID::getOutMax() { - - return outMax_; - -} - -float PID::getInterval() { - - return tSample_; - -} - -float PID::getPParam() { - - return pParam_; - -} - -float PID::getIParam() { - - return iParam_; - -} - -float PID::getDParam() { - - return dParam_; - -}