Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- estott
- Date:
- 2018-03-01
- Revision:
- 3:569b35e2a602
- Parent:
- 2:4e88faab6988
- Child:
- 4:1cb32cb438ee
File content as of revision 3:569b35e2a602:
#include "mbed.h"
//Photointerrupter input pins
#define I1pin D2
#define I2pin D11
#define I3pin D12
//Incremental encoder input pins
#define CHA D7
#define CHB D8
//Motor Drive output pins //Mask in output byte
#define L1Lpin D4 //0x01
#define L1Hpin D5 //0x02
#define L2Lpin D3 //0x04
#define L2Hpin D6 //0x08
#define L3Lpin D9 //0x10
#define L3Hpin D10 //0x20
//Mapping from sequential drive states to motor phase outputs
/*
State L1 L2 L3
0 H - L
1 - H L
2 L H -
3 L - H
4 - L H
5 H L -
6 - - -
7 - - -
*/
//Drive state to output table
const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};
//Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};
//const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed
//Phase lead to make motor spin
const int8_t lead = 2; //2 for forwards, -2 for backwards
//Status LED
DigitalOut led1(LED1);
//Photointerrupter inputs
DigitalIn I1(I1pin);
DigitalIn I2(I2pin);
DigitalIn I3(I3pin);
//Motor Drive outputs
DigitalOut L1L(L1Lpin);
DigitalOut L1H(L1Hpin);
DigitalOut L2L(L2Lpin);
DigitalOut L2H(L2Hpin);
DigitalOut L3L(L3Lpin);
DigitalOut L3H(L3Hpin);
//Set a given drive state
void motorOut(int8_t driveState){
//Lookup the output byte from the drive state.
int8_t driveOut = driveTable[driveState & 0x07];
//Turn off first
if (~driveOut & 0x01) L1L = 0;
if (~driveOut & 0x02) L1H = 1;
if (~driveOut & 0x04) L2L = 0;
if (~driveOut & 0x08) L2H = 1;
if (~driveOut & 0x10) L3L = 0;
if (~driveOut & 0x20) L3H = 1;
//Then turn on
if (driveOut & 0x01) L1L = 1;
if (driveOut & 0x02) L1H = 0;
if (driveOut & 0x04) L2L = 1;
if (driveOut & 0x08) L2H = 0;
if (driveOut & 0x10) L3L = 1;
if (driveOut & 0x20) L3H = 0;
}
//Convert photointerrupter inputs to a rotor state
inline int8_t readRotorState(){
return stateMap[I1 + 2*I2 + 4*I3];
}
//Basic synchronisation routine
int8_t motorHome() {
//Put the motor in drive state 0 and wait for it to stabilise
motorOut(0);
wait(2.0);
//Get the rotor state
return readRotorState();
}
//Main
int main() {
int8_t orState = 0; //Rotot offset at motor state 0
int8_t intState = 0;
int8_t intStateOld = 0;
//Initialise the serial port
Serial pc(SERIAL_TX, SERIAL_RX);
pc.printf("Hello\n\r");
//Run the motor synchronisation
orState = motorHome();
pc.printf("Rotor origin: %x\n\r",orState);
//orState is subtracted from future rotor state inputs to align rotor and motor states
//Poll the rotor state and set the motor outputs accordingly to spin the motor
while (1) {
intState = readRotorState();
if (intState != intStateOld) {
intStateOld = intState;
motorOut((intState-orState+lead+6)%6); //+6 to make sure the remainder is positive
}
}
}