This is an example application demonstrating building an EtherCAT system using Esmacat
Dependencies: EsmacatShield X_NUCLEO_IHM01A1
Basic Information of Esmacat
Information about Esmacat and EASE is provided in the link below. https://os.mbed.com/users/esmacat/code/EASE_Example/wiki/Homepage
Information about the hardware needs and setup is provided in the link below. https://os.mbed.com/users/esmacat/code/EASE_Example/wiki/Hardware-Setup
Information about the structure of the system and it's software is provided in the link below. https://os.mbed.com/users/esmacat/code/EASE_Example/wiki/Software
About this example
This is an example application to demonstrate the ease with which a system, which communicates over EtherCAT, can be build. It measures the RPM of a motor using a proximity sensor.
Following lists the hardware required
- 2 x Mbed boards with Arduino UNO form factor (NUCLEO-F103RB)
- 2 x EASE boards
- 1 x proximity sensor shield (X_NUCLEO_6180XA1)
- 1 x Motor shield (X-NUCLEO-IHM01A1)
- 1 x stepper motor
- 1 x Ethernet POE injector with a 24VDC power supply
- 2 x Ethernet cables
- Keyboard, mouse, and monitor
- PC with Linux/Windows OS installed
- DC power supply for motor
Click here to know more about this Example
main.cpp
- Committer:
- Davidroid
- Date:
- 2017-07-03
- Revision:
- 38:ca71d404823c
- Parent:
- 35:2b44ed4ec7a0
- Child:
- 39:1270497828ca
File content as of revision 38:ca71d404823c:
/** ****************************************************************************** * @file main.cpp * @author Davide Aliprandi, STMicroelectronics * @version V1.0.0 * @date October 14th, 2015 * @brief mbed test application for the STMicroelectronics X-NUCLEO-IHM01A1 * Motor Control Expansion Board: control of 1 motor. ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ /* mbed specific header files. */ #include "mbed.h" #include "rtos.h" /* Helper header files. */ #include "DevSPI.h" /* Component specific header files. */ #include "L6474.h" /* Definitions ---------------------------------------------------------------*/ /* Number of steps. */ #define STEPS_1 (400 * 8) /* 1 revolution given a 400 steps motor configured at 1/8 microstep mode. */ /* Delay in milliseconds. */ #define DELAY_1 1000 #define DELAY_2 2000 #define DELAY_3 6000 #define DELAY_4 8000 /* Speed in pps (Pulses Per Second). In Full Step mode: 1 pps = 1 step/s). In 1/N Step Mode: N pps = 1 step/s). */ #define SPEED_1 2400 #define SPEED_2 1200 /* Variables -----------------------------------------------------------------*/ /* Initialization parameters. */ L6474_init_t init = { 160, /* Acceleration rate in pps^2. Range: (0..+inf). */ 160, /* Deceleration rate in pps^2. Range: (0..+inf). */ 1600, /* Maximum speed in pps. Range: (30..10000]. */ 800, /* Minimum speed in pps. Range: [30..10000). */ 250, /* Torque regulation current in mA. Range: 31.25mA to 4000mA. */ L6474_OCD_TH_750mA, /* Overcurrent threshold (OCD_TH register). */ L6474_CONFIG_OC_SD_ENABLE, /* Overcurrent shutwdown (OC_SD field of CONFIG register). */ L6474_CONFIG_EN_TQREG_TVAL_USED, /* Torque regulation method (EN_TQREG field of CONFIG register). */ L6474_STEP_SEL_1_8, /* Step selection (STEP_SEL field of STEP_MODE register). */ L6474_SYNC_SEL_1_2, /* Sync selection (SYNC_SEL field of STEP_MODE register). */ L6474_FAST_STEP_12us, /* Fall time value (T_FAST field of T_FAST register). Range: 2us to 32us. */ L6474_TOFF_FAST_8us, /* Maximum fast decay time (T_OFF field of T_FAST register). Range: 2us to 32us. */ 3, /* Minimum ON time in us (TON_MIN register). Range: 0.5us to 64us. */ 21, /* Minimum OFF time in us (TOFF_MIN register). Range: 0.5us to 64us. */ L6474_CONFIG_TOFF_044us, /* Target Swicthing Period (field TOFF of CONFIG register). */ L6474_CONFIG_SR_320V_us, /* Slew rate (POW_SR field of CONFIG register). */ L6474_CONFIG_INT_16MHZ, /* Clock setting (OSC_CLK_SEL field of CONFIG register). */ L6474_ALARM_EN_OVERCURRENT | L6474_ALARM_EN_THERMAL_SHUTDOWN | L6474_ALARM_EN_THERMAL_WARNING | L6474_ALARM_EN_UNDERVOLTAGE | L6474_ALARM_EN_SW_TURN_ON | L6474_ALARM_EN_WRONG_NPERF_CMD /* Alarm (ALARM_EN register). */ }; /* Motor Control Component. */ L6474 *motor; /* Functions -----------------------------------------------------------------*/ /** * @brief This is an example of user handler for the flag interrupt. * @param None * @retval None * @note If needed, implement it, and then attach and enable it: * + motor->attach_flag_irq(&flag_irq_handler); * + motor->enable_flag_irq(); * To disable it: * + motor->disble_flag_irq(); */ void flag_irq_handler(void) { /* Set ISR flag. */ motor->isr_flag = TRUE; /* Get the value of the status register. */ unsigned int status = motor->get_status(); /* Check NOTPERF_CMD flag: if set, the command received by SPI can't be performed. */ /* This often occures when a command is sent to the L6474 while it is not in HiZ state. */ if ((status & L6474_STATUS_NOTPERF_CMD) == L6474_STATUS_NOTPERF_CMD) { printf(" WARNING: \"FLAG\" interrupt triggered. Non-performable command detected when updating L6474's registers while not in HiZ state.\r\n"); } /* Reset ISR flag. */ motor->isr_flag = FALSE; } /* Main ----------------------------------------------------------------------*/ int main() { /*----- Initialization. -----*/ /* Initializing SPI bus. */ DevSPI dev_spi(D11, D12, D13); /* Initializing Motor Control Component. */ motor = new L6474(D2, D8, D7, D9, D10, dev_spi); if (motor->init(&init) != COMPONENT_OK) { exit(EXIT_FAILURE); } /* Attaching and enabling interrupt handlers. */ motor->attach_flag_irq(&flag_irq_handler); motor->enable_flag_irq(); /* Printing to the console. */ printf("Motor Control Application Example for 1 Motor\r\n\n"); /*----- Moving. -----*/ /* Printing to the console. */ printf("--> Moving forward %d steps.\r\n", STEPS_1); /* Moving N steps in the forward direction. */ motor->move(StepperMotor::FWD, STEPS_1); /* Waiting while the motor is active. */ motor->wait_while_active(); /* Getting current position. */ int position = motor->get_position(); /* Printing to the console. */ printf(" Position: %d.\r\n", position); /* Waiting. */ wait_ms(DELAY_1); /*----- Changing the motor setting. -----*/ /* Printing to the console. */ printf("--> Setting Torque Regulation Current to 500[mA].\r\n"); /* Increasing the torque regulation current to 500[mA]. */ motor->set_parameter(L6474_TVAL, 500); /* Printing to the console. */ printf("--> Doubling the microsteps.\r\n"); /* Doubling the microsteps. */ if (!motor->set_step_mode((StepperMotor::step_mode_t) STEP_MODE_1_16)) { printf(" Step Mode not allowed.\r\n"); } /* Waiting. */ wait_ms(DELAY_1); /* Printing to the console. */ printf("--> Setting Home.\r\n"); /* Setting the current position to be the home position. */ motor->set_home(); /* Getting current position. */ position = motor->get_position(); /* Printing to the console. */ printf(" Position: %d.\r\n", position); /* Waiting. */ wait_ms(DELAY_2); /*----- Moving. -----*/ /* Printing to the console. */ printf("--> Moving backward %d steps.\r\n", STEPS_1); /* Moving N steps in the backward direction. */ motor->move(StepperMotor::BWD, STEPS_1); /* Waiting while the motor is active. */ motor->wait_while_active(); /* Getting current position. */ position = motor->get_position(); /* Printing to the console. */ printf(" Position: %d.\r\n", position); /* Waiting. */ wait_ms(DELAY_1); /*----- Going to a specified position. -----*/ /* Printing to the console. */ printf("--> Going to position %d.\r\n", STEPS_1); /* Requesting to go to a specified position. */ motor->go_to(STEPS_1); /* Waiting while the motor is active. */ motor->wait_while_active(); /* Getting current position. */ position = motor->get_position(); /* Printing to the console. */ printf(" Position: %d.\r\n", position); /* Waiting. */ wait_ms(DELAY_2); /*----- Going Home. -----*/ /* Printing to the console. */ printf("--> Going Home.\r\n"); /* Requesting to go to home. */ motor->go_home(); /* Waiting while the motor is active. */ motor->wait_while_active(); /* Getting current position. */ position = motor->get_position(); /* Printing to the console. */ printf(" Position: %d.\r\n", position); /* Waiting. */ wait_ms(DELAY_2); /*----- Running. -----*/ /* Printing to the console. */ printf("--> Running backward for %d seconds.\r\n", DELAY_3 / 1000); /* Requesting to run backward. */ motor->run(StepperMotor::BWD); /* Waiting. */ wait_ms(DELAY_3); /* Getting current speed. */ int speed = motor->get_speed(); /* Printing to the console. */ printf(" Speed: %d.\r\n", speed); /*----- Increasing the speed while running. -----*/ /* Printing to the console. */ printf("--> Increasing the speed while running again for %d seconds.\r\n", DELAY_3 / 1000); /* Increasing the speed. */ motor->set_max_speed(SPEED_1); /* Waiting. */ wait_ms(DELAY_3); /* Getting current speed. */ speed = motor->get_speed(); /* Printing to the console. */ printf(" Speed: %d.\r\n", speed); /*----- Decreasing the speed while running. -----*/ /* Printing to the console. */ printf("--> Decreasing the speed while running again for %d seconds.\r\n", DELAY_4 / 1000); /* Decreasing the speed. */ motor->set_max_speed(SPEED_2); /* Waiting. */ wait_ms(DELAY_4); /* Getting current speed. */ speed = motor->get_speed(); /* Printing to the console. */ printf(" Speed: %d.\r\n", speed); /*----- Hard Stop. -----*/ /* Printing to the console. */ printf("--> Hard Stop.\r\n"); /* Requesting to immediatly stop. */ motor->hard_stop(); /* Waiting while the motor is active. */ motor->wait_while_active(); /* Waiting. */ wait_ms(DELAY_2); /*----- Infinite Loop. -----*/ /* Printing to the console. */ printf("--> Infinite Loop...\r\n"); /* Setting the current position to be the home position. */ motor->set_home(); /* Infinite Loop. */ while (true) { /* Requesting to go to a specified position. */ motor->go_to(STEPS_1 >> 1); /* Waiting while the motor is active. */ motor->wait_while_active(); /* Requesting to go to a specified position. */ motor->go_to(- (STEPS_1 >> 1)); /* Waiting while the motor is active. */ motor->wait_while_active(); } }