-data logging revision

Dependencies:   FastPWM

ControllerLoop.cpp

Committer:
ernstpre
Date:
2021-08-24
Revision:
2:92c25cb669f4
Parent:
1:25a2b47ca291

File content as of revision 2:92c25cb669f4:

#include "ControllerLoop.h"
using namespace std;

// contructor for controller loop
ControllerLoop::ControllerLoop(float Ts) : thread(osPriorityHigh,4096), dout1(PB_9)
{
    this->Ts = Ts;
    diff1.reset(0.0f,0);
    diff2.reset(0.0f,0);
    is_initialized = false;
    ti.reset();
    ti.start();
    data.laser_on = false;
}

// decontructor for controller loop
ControllerLoop::~ControllerLoop() {}

// ----------------------------------------------------------------------------
// this is the main loop called every Ts with high priority
void ControllerLoop::loop(void)
{
    float w01=2*3.1415927 * 2;
    float xy[2];
    float exc = 0;
    PID_Cntrl v_cntrl_1(0.0153f, 3.06,0,0,Ts,-0.8,0.8);
    PID_Cntrl v_cntrl_2(0.0153f, 3.06,0,0,Ts,-0.8,0.8);

    bool stop_rec = false;
    int k=0;
    float Logg[2000][4]; //float datal[2000][6];
    //int vel1 = 5;
    //int vel2 =10;
    printf("Starting Controller \r\n");
    while(1) {
        ThisThread::flags_wait_any(threadFlag);
        // THE LOOP ------------------------------------------------------------
        short c1 = counter1 - index1.positionAtIndexPulse - mk.inc_offset[0]- mk.inc_additional_offset[0];            // get counts from Encoder
        short c2 = counter2 - index2.positionAtIndexPulse - mk.inc_offset[1]- mk.inc_additional_offset[1];            // get counts from Encoder
        data.sens_phi[0] = uw2pi1(2.0f*3.1415927f/4000.0f*(float)c1);
        data.sens_Vphi[0] = diff1(c1);                 // motor velocity
        data.sens_phi[1] = uw2pi2(2.0f*3.1415927f/4000.0f*(float)c2);
        data.sens_Vphi[1] = diff2(c2);                 // motor velocity
        // -------------------------------------------------------------
        // at very beginning: move system slowly to find the zero pulse
        // set "if(0)" if you like to ommit at beginning
        if(!is_initialized) {
            find_index();
            if(index1.positionAtIndexPulse != 0 && index2.positionAtIndexPulse != 0)
                is_initialized=true;
        } else {
            if(k==0)
            {
                printf("Starting else loop \r\n");
            }
            //    float Kp = 0.005;
            //    data.i_des[0] = 0.1f + Kp*(exc+50.0f - data.sens_Vphi[0]);
            // ------------------------ do the control first

            // calculate desired currents here, you can do "anything" here,
            // if you like to refer to values e.g. from the gui or from the trafo,
            // please use data.xxx values, they are calculated 30 lines below
            //float e1 = 50 - data.sens_Vphi[0];
            //float e2 = 50 - data.sens_Vphi[1];
            //float v_des1 = exc;
            //float v_des2 = 0;
            float phi1_des = 0.3f*sinf(2.0f* 3.14159f*2.0f*ti.read());
            float phi2_des = 0.3f*cosf(2.0f* 3.14159f*2.0f*ti.read());
            float Kv = 123;
            float v_des1 = Kv*(phi1_des - data.sens_phi[0]);
            float v_des2 = Kv*(phi2_des - data.sens_phi[1]);
            data.i_des[0] = v_cntrl_1(v_des1 - data.sens_Vphi[0]);
            data.i_des[1] = v_cntrl_2(v_des2 - data.sens_Vphi[1]);

            //data.i_des[1] =0.0;

            // ------------------------ write outputs
            i_des1.write(i2u(data.i_des[0]));
            i_des2.write(i2u(data.i_des[1]));
            // GPA: if you want to use the GPA, uncomment and improve following line:
            //exc = myGPA(data.i_des[0],data.sens_Vphi[0]);
            exc = myGPA(v_des1, data.sens_phi[0]);
            //

            /*if(k%10000==0) {
                printf("yes \n");
                //printf("c1: %d c2: %d i2: %f\r\n",counts1,counts2,i2);
                //printf("p1: %f p2: %f pd1: %f pd2: %f id1: %f id2: %f\r\n",data.sens_phi[0],data.sens_phi[1],phi1_des,phi2_des,data.i_des[0],data.i_des[1]);
            }*/

            if(k==200 && !stop_rec) 
            {
                stop_rec = true;
                k=0;

                for(int k1=0; k1<2000; k1++) 
                {
                    for(int k2=0; k2<4; k2++) 
                    {
                        //printf("k1 = %d k2 = %d \r\n", k1, k2);
                        printf("%3.4f ",Logg[k1][k2]);
                    }
                printf("\r\n");
                }
            }

            if(k<2000 && !stop_rec)
            {
                Logg[k][0]=data.sens_phi[0];
                Logg[k][1]=data.sens_phi[1];
                Logg[k][2]=data.i_des[0];
                Logg[k][3]=data.i_des[1];
            }
            k++;
            //

            // now do trafos etc

            if(mk.external_control) { // get desired values from external source (GUI)
                if(mk.trafo_is_on)  // use desired xy values from xternal source and transform
                    // otherwise external source delivers phi1, phi2 values directly
                {
                    bool dum = mk.X2P(data.cntrl_xy_des,data.cntrl_phi_des);
                }
            } else {    // this is called, when desired values are calculated here internally (e.g. pathplanner)
                if(mk.trafo_is_on) {
                    data.cntrl_xy_des[0] = 30.0f*cosf(w01*glob_ti.read());      // make a circle in xy-co-ordinates
                    data.cntrl_xy_des[1] = 30.0f*sinf(w01*glob_ti.read());
                    bool dum = mk.X2P(data.cntrl_xy_des,data.cntrl_phi_des);
                } else {
                    data.cntrl_phi_des[0] = .250f*cosf(w01*glob_ti.read());     // make some harmonic movements directly on phi1/phi2
                    data.cntrl_phi_des[1] = .250f*sinf(w01*glob_ti.read());
                }
            }
            bool dum = mk.P2X(data.sens_phi,data.est_xy);       // calculate actual xy-values, uncomment this if there are timing issues
            //current_path->get_x_v(glob_ti.read(),&phi_des,&v_des);
        }       // else(..)
        laser_on = data.laser_on;
        i_enable = big_button;
    }// endof the main loop
}

void ControllerLoop::sendSignal()
{
    thread.flags_set(threadFlag);
}
void ControllerLoop::start_loop(void)
{
    thread.start(callback(this, &ControllerLoop::loop));
    ticker.attach(callback(this, &ControllerLoop::sendSignal), Ts);
}

float ControllerLoop::pos_cntrl(float d_phi)
{

    // write position controller here
    return 0.0;
}

void ControllerLoop::init_controllers(void)
{
    // set values for your velocity and position controller here!


}
// find_index: move axis slowly to detect the zero-pulse
void ControllerLoop::find_index(void)
{
    // use a simple P-controller to get system spinning, add a constant current to overcome friction
    float Kp = 0.005;
    float i1 = 0.2f + Kp*(50.0f - data.sens_Vphi[0]);
    float i2 = 0.2f + Kp*(50.0f - data.sens_Vphi[1]) ;
    i_des1.write(i2u(i1));
    i_des2.write(i2u(i2));
}