test
chan_fs/diskio.c
- Committer:
- emh203
- Date:
- 2010-02-21
- Revision:
- 0:c1253c12d4bc
File content as of revision 0:c1253c12d4bc:
/*-----------------------------------------------------------------------*/ /* Low level disk I/O module skeleton for FatFs (C)ChaN, 2007 */ /*-----------------------------------------------------------------------*/ /* This is a stub disk I/O module that acts as front end of the existing */ /* disk I/O modules and attach it to FatFs module with common interface. */ /*-----------------------------------------------------------------------*/ #include "diskio.h" #include "mbed.h" //****************************************************************************************************************** // MBED SPI/CS Select functions.... Modify for your layout. //************************************************************************************** SPI _spi(p5, p6, p7); // mosi, miso, sclk DigitalOut _cs(p8); //****************************************************************************************************************** // Low Level Sector Access Function Prototypes('C' Castrated versions of Simon Ford's C++ MBED SDFileSystem class //****************************************************************************************************************** int _cmd(int cmd, int arg); int _read(BYTE *buffer, int length); int _write(BYTE *buffer, int length); int ext_bits(BYTE *data, int msb, int lsb); int _sd_sectors(); int _sectors; #define SD_COMMAND_TIMEOUT 5000 //****************************************************************************************************************** // Sector Access functions for CHAN FatFs //****************************************************************************************************************** DRESULT disk_ioctl ( BYTE drv, /* Physical drive nmuber (0..) */ BYTE ctrl, /* Control code */ void *buff /* Buffer to send/receive control data */ ) { DRESULT res; switch(ctrl) { case CTRL_SYNC: res = RES_OK; break; case GET_SECTOR_SIZE: res = RES_OK; *(WORD *)buff = 512; break; case GET_SECTOR_COUNT: res = RES_OK; *(DWORD *)buff = (WORD)_sd_sectors(); break; case GET_BLOCK_SIZE: res = RES_OK; *(DWORD *)buff = 1; break; default: res = RES_OK; break; } return res; } DSTATUS disk_initialize(BYTE Drive) { _spi.frequency(100000); // Set to 100kHz for initialisation // Initialise the card by clocking it a bit (cs = 1) for(int i=0; i<16; i++) { _spi.write(0xFF); } // send CMD0, should return with all zeros except IDLE STATE set (bit 0) if(_cmd(0, 0) != 0x01) { fprintf(stderr, "Not in idle state\n"); return STA_NOINIT; } // ACMD41 to give host capacity support (repeat until not busy) // ACMD41 is application specific command, so we send APP_CMD (CMD55) beforehand for(int i=0;; i++) { _cmd(55, 0); int response = _cmd(41, 0); if(response == 0) { break; } else if(i > SD_COMMAND_TIMEOUT) { fprintf(stderr, "Timeout waiting for card\n"); return STA_NOINIT; } } _sectors = _sd_sectors(); // Set block length to 512 (CMD16) if(_cmd(16, 512) != 0) { fprintf(stderr, "Set block timeout\n"); return STA_NOINIT; } _spi.frequency(10000000); // Set to 10MHz for data transfer return 0; } DRESULT disk_write(BYTE Drive,const BYTE * Buffer, DWORD SectorNumber, BYTE SectorCount) { BYTE i; BYTE * MyBufOut = (BYTE *)Buffer; for(i=0;i<SectorCount;i++) { // set write address for single block (CMD24) if(_cmd(24, (SectorNumber + i) * 512 ) != 0) { return RES_ERROR; } // send the data block _write(MyBufOut, 512); MyBufOut+=512; } return RES_OK; } DRESULT disk_read(BYTE Drive, BYTE * Buffer,DWORD SectorNumber, BYTE SectorCount) { BYTE i; for(i=0;i<SectorCount;i++) { // set read address for single block (CMD17) if(_cmd(17, (SectorNumber+i) * 512) != 0) { return RES_ERROR; } // receive the data _read(Buffer, 512); Buffer+=512; } return RES_OK; } DWORD get_fattime(void) { time_t CurrentTimeStamp; tm *CurrentLocalTime; DWORD FATFSTimeCode; CurrentTimeStamp = time(NULL); CurrentLocalTime = localtime(&CurrentTimeStamp); //Map the tm struct time into the FatFs time code FATFSTimeCode = ((CurrentLocalTime->tm_year-80)<<25) | ((CurrentLocalTime->tm_mon+1)<<21) | ((CurrentLocalTime->tm_mday)<<16) | ((CurrentLocalTime->tm_hour)<<11) | ((CurrentLocalTime->tm_min)<<5) | ((CurrentLocalTime->tm_sec)); return FATFSTimeCode; } DSTATUS disk_status(BYTE Drive) { return 0; } //************************************************************************************** // Low Level Sector Access Functions (Castrated versions of Simon Fords C++ MBED class //************************************************************************************** int _cmd(int cmd, int arg) { _cs = 0; // send a command _spi.write(0x40 | cmd); _spi.write(arg >> 24); _spi.write(arg >> 16); _spi.write(arg >> 8); _spi.write(arg >> 0); _spi.write(0x95); // wait for the repsonse (response[7] == 0) for(int i=0; i<SD_COMMAND_TIMEOUT; i++) { int response = _spi.write(0xFF); if(!(response & 0x80)) { _cs = 1; return response; } } _cs = 1; return -1; // timeout } int _read(BYTE *buffer, int length) { _cs = 0; // read until start byte (0xFF) while(_spi.write(0xFF) != 0xFE); // read data for(int i=0; i<length; i++) { buffer[i] = _spi.write(0xFF); } _spi.write(0xFF); // checksum _spi.write(0xFF); _cs = 1; return 0; } int _write(BYTE *buffer, int length) { _cs = 0; // indicate start of block _spi.write(0xFE); // write the data for(int i=0; i<length; i++) { _spi.write(buffer[i]); } // write the checksum _spi.write(0xFF); _spi.write(0xFF); // check the repsonse token if((_spi.write(0xFF) & 0x1F) != 0x05) { _cs = 1; return 1; } // wait for write to finish while(_spi.write(0xFF) == 0); _cs = 1; return 0; } int ext_bits(BYTE *data, int msb, int lsb) { int bits = 0; int size = 1 + msb - lsb; for(int i=0; i<size; i++) { int position = lsb + i; int byte = 15 - (position >> 3); int bit = position & 0x7; int value = (data[byte] >> bit) & 1; bits |= value << i; } return bits; } int _sd_sectors() { // CMD9, Response R2 (R1 byte + 16-byte block read) if(_cmd(9, 0) != 0) { fprintf(stderr, "Didn't get a response from the disk\n"); return 0; } BYTE csd[16]; if(_read(csd, 16) != 0) { fprintf(stderr, "Couldn't read csd response from disk\n"); return 0; } // csd_structure : csd[127:126] // c_size : csd[73:62] // c_size_mult : csd[49:47] // read_bl_len : csd[83:80] int csd_structure = ext_bits(csd, 127, 126); int c_size = ext_bits(csd, 73, 62); int c_size_mult = ext_bits(csd, 49, 47); int read_bl_len = ext_bits(csd, 83, 80); if(csd_structure != 0) { fprintf(stderr, "This disk tastes funny! I only know about type 0 CSD structures"); return 0; } int blocks = (c_size + 1) * (1 << (c_size_mult + 2)); int block_size = 1 << read_bl_len; if(block_size != 512) { fprintf(stderr, "This disk tastes funny! I only like 512 byte blocks (%d)\r\n",block_size); return 0; } return blocks; }