V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Committer:
emh203
Date:
Mon Jul 28 15:03:15 2014 +0000
Revision:
0:3d9c67d97d6f
1st working commit.   Had to remove arm_bitreversal2.s     arm_cfft_f32.c and arm_rfft_fast_f32.c.    The .s will not assemble.      For now I removed these functions so we could at least have a library for the other functions.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emh203 0:3d9c67d97d6f 1 /* ----------------------------------------------------------------------
emh203 0:3d9c67d97d6f 2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
emh203 0:3d9c67d97d6f 3 *
emh203 0:3d9c67d97d6f 4 * $Date: 12. March 2014
emh203 0:3d9c67d97d6f 5 * $Revision: V1.4.3
emh203 0:3d9c67d97d6f 6 *
emh203 0:3d9c67d97d6f 7 * Project: CMSIS DSP Library
emh203 0:3d9c67d97d6f 8 * Title: arm_lms_q15.c
emh203 0:3d9c67d97d6f 9 *
emh203 0:3d9c67d97d6f 10 * Description: Processing function for the Q15 LMS filter.
emh203 0:3d9c67d97d6f 11 *
emh203 0:3d9c67d97d6f 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emh203 0:3d9c67d97d6f 13 *
emh203 0:3d9c67d97d6f 14 * Redistribution and use in source and binary forms, with or without
emh203 0:3d9c67d97d6f 15 * modification, are permitted provided that the following conditions
emh203 0:3d9c67d97d6f 16 * are met:
emh203 0:3d9c67d97d6f 17 * - Redistributions of source code must retain the above copyright
emh203 0:3d9c67d97d6f 18 * notice, this list of conditions and the following disclaimer.
emh203 0:3d9c67d97d6f 19 * - Redistributions in binary form must reproduce the above copyright
emh203 0:3d9c67d97d6f 20 * notice, this list of conditions and the following disclaimer in
emh203 0:3d9c67d97d6f 21 * the documentation and/or other materials provided with the
emh203 0:3d9c67d97d6f 22 * distribution.
emh203 0:3d9c67d97d6f 23 * - Neither the name of ARM LIMITED nor the names of its contributors
emh203 0:3d9c67d97d6f 24 * may be used to endorse or promote products derived from this
emh203 0:3d9c67d97d6f 25 * software without specific prior written permission.
emh203 0:3d9c67d97d6f 26 *
emh203 0:3d9c67d97d6f 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
emh203 0:3d9c67d97d6f 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
emh203 0:3d9c67d97d6f 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
emh203 0:3d9c67d97d6f 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
emh203 0:3d9c67d97d6f 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
emh203 0:3d9c67d97d6f 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
emh203 0:3d9c67d97d6f 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
emh203 0:3d9c67d97d6f 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
emh203 0:3d9c67d97d6f 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
emh203 0:3d9c67d97d6f 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
emh203 0:3d9c67d97d6f 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
emh203 0:3d9c67d97d6f 38 * POSSIBILITY OF SUCH DAMAGE.
emh203 0:3d9c67d97d6f 39 * -------------------------------------------------------------------- */
emh203 0:3d9c67d97d6f 40
emh203 0:3d9c67d97d6f 41 #include "arm_math.h"
emh203 0:3d9c67d97d6f 42 /**
emh203 0:3d9c67d97d6f 43 * @ingroup groupFilters
emh203 0:3d9c67d97d6f 44 */
emh203 0:3d9c67d97d6f 45
emh203 0:3d9c67d97d6f 46 /**
emh203 0:3d9c67d97d6f 47 * @addtogroup LMS
emh203 0:3d9c67d97d6f 48 * @{
emh203 0:3d9c67d97d6f 49 */
emh203 0:3d9c67d97d6f 50
emh203 0:3d9c67d97d6f 51 /**
emh203 0:3d9c67d97d6f 52 * @brief Processing function for Q15 LMS filter.
emh203 0:3d9c67d97d6f 53 * @param[in] *S points to an instance of the Q15 LMS filter structure.
emh203 0:3d9c67d97d6f 54 * @param[in] *pSrc points to the block of input data.
emh203 0:3d9c67d97d6f 55 * @param[in] *pRef points to the block of reference data.
emh203 0:3d9c67d97d6f 56 * @param[out] *pOut points to the block of output data.
emh203 0:3d9c67d97d6f 57 * @param[out] *pErr points to the block of error data.
emh203 0:3d9c67d97d6f 58 * @param[in] blockSize number of samples to process.
emh203 0:3d9c67d97d6f 59 * @return none.
emh203 0:3d9c67d97d6f 60 *
emh203 0:3d9c67d97d6f 61 * \par Scaling and Overflow Behavior:
emh203 0:3d9c67d97d6f 62 * The function is implemented using a 64-bit internal accumulator.
emh203 0:3d9c67d97d6f 63 * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
emh203 0:3d9c67d97d6f 64 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
emh203 0:3d9c67d97d6f 65 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
emh203 0:3d9c67d97d6f 66 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
emh203 0:3d9c67d97d6f 67 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
emh203 0:3d9c67d97d6f 68 *
emh203 0:3d9c67d97d6f 69 * \par
emh203 0:3d9c67d97d6f 70 * In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted.
emh203 0:3d9c67d97d6f 71 *
emh203 0:3d9c67d97d6f 72 */
emh203 0:3d9c67d97d6f 73
emh203 0:3d9c67d97d6f 74 void arm_lms_q15(
emh203 0:3d9c67d97d6f 75 const arm_lms_instance_q15 * S,
emh203 0:3d9c67d97d6f 76 q15_t * pSrc,
emh203 0:3d9c67d97d6f 77 q15_t * pRef,
emh203 0:3d9c67d97d6f 78 q15_t * pOut,
emh203 0:3d9c67d97d6f 79 q15_t * pErr,
emh203 0:3d9c67d97d6f 80 uint32_t blockSize)
emh203 0:3d9c67d97d6f 81 {
emh203 0:3d9c67d97d6f 82 q15_t *pState = S->pState; /* State pointer */
emh203 0:3d9c67d97d6f 83 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
emh203 0:3d9c67d97d6f 84 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
emh203 0:3d9c67d97d6f 85 q15_t *pStateCurnt; /* Points to the current sample of the state */
emh203 0:3d9c67d97d6f 86 q15_t mu = S->mu; /* Adaptive factor */
emh203 0:3d9c67d97d6f 87 q15_t *px; /* Temporary pointer for state */
emh203 0:3d9c67d97d6f 88 q15_t *pb; /* Temporary pointer for coefficient buffer */
emh203 0:3d9c67d97d6f 89 uint32_t tapCnt, blkCnt; /* Loop counters */
emh203 0:3d9c67d97d6f 90 q63_t acc; /* Accumulator */
emh203 0:3d9c67d97d6f 91 q15_t e = 0; /* error of data sample */
emh203 0:3d9c67d97d6f 92 q15_t alpha; /* Intermediate constant for taps update */
emh203 0:3d9c67d97d6f 93 q31_t coef; /* Teporary variable for coefficient */
emh203 0:3d9c67d97d6f 94 q31_t acc_l, acc_h;
emh203 0:3d9c67d97d6f 95 int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
emh203 0:3d9c67d97d6f 96 int32_t uShift = (32 - lShift);
emh203 0:3d9c67d97d6f 97
emh203 0:3d9c67d97d6f 98
emh203 0:3d9c67d97d6f 99 #ifndef ARM_MATH_CM0_FAMILY
emh203 0:3d9c67d97d6f 100
emh203 0:3d9c67d97d6f 101 /* Run the below code for Cortex-M4 and Cortex-M3 */
emh203 0:3d9c67d97d6f 102
emh203 0:3d9c67d97d6f 103
emh203 0:3d9c67d97d6f 104 /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
emh203 0:3d9c67d97d6f 105 /* pStateCurnt points to the location where the new input data should be written */
emh203 0:3d9c67d97d6f 106 pStateCurnt = &(S->pState[(numTaps - 1u)]);
emh203 0:3d9c67d97d6f 107
emh203 0:3d9c67d97d6f 108 /* Initializing blkCnt with blockSize */
emh203 0:3d9c67d97d6f 109 blkCnt = blockSize;
emh203 0:3d9c67d97d6f 110
emh203 0:3d9c67d97d6f 111 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 112 {
emh203 0:3d9c67d97d6f 113 /* Copy the new input sample into the state buffer */
emh203 0:3d9c67d97d6f 114 *pStateCurnt++ = *pSrc++;
emh203 0:3d9c67d97d6f 115
emh203 0:3d9c67d97d6f 116 /* Initialize state pointer */
emh203 0:3d9c67d97d6f 117 px = pState;
emh203 0:3d9c67d97d6f 118
emh203 0:3d9c67d97d6f 119 /* Initialize coefficient pointer */
emh203 0:3d9c67d97d6f 120 pb = pCoeffs;
emh203 0:3d9c67d97d6f 121
emh203 0:3d9c67d97d6f 122 /* Set the accumulator to zero */
emh203 0:3d9c67d97d6f 123 acc = 0;
emh203 0:3d9c67d97d6f 124
emh203 0:3d9c67d97d6f 125 /* Loop unrolling. Process 4 taps at a time. */
emh203 0:3d9c67d97d6f 126 tapCnt = numTaps >> 2u;
emh203 0:3d9c67d97d6f 127
emh203 0:3d9c67d97d6f 128 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 129 {
emh203 0:3d9c67d97d6f 130 /* acc += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
emh203 0:3d9c67d97d6f 131 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 132 #ifndef UNALIGNED_SUPPORT_DISABLE
emh203 0:3d9c67d97d6f 133
emh203 0:3d9c67d97d6f 134 acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
emh203 0:3d9c67d97d6f 135 acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
emh203 0:3d9c67d97d6f 136
emh203 0:3d9c67d97d6f 137 #else
emh203 0:3d9c67d97d6f 138
emh203 0:3d9c67d97d6f 139 acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
emh203 0:3d9c67d97d6f 140 acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
emh203 0:3d9c67d97d6f 141 acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
emh203 0:3d9c67d97d6f 142 acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
emh203 0:3d9c67d97d6f 143
emh203 0:3d9c67d97d6f 144
emh203 0:3d9c67d97d6f 145 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
emh203 0:3d9c67d97d6f 146
emh203 0:3d9c67d97d6f 147 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 148 tapCnt--;
emh203 0:3d9c67d97d6f 149 }
emh203 0:3d9c67d97d6f 150
emh203 0:3d9c67d97d6f 151 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
emh203 0:3d9c67d97d6f 152 tapCnt = numTaps % 0x4u;
emh203 0:3d9c67d97d6f 153
emh203 0:3d9c67d97d6f 154 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 155 {
emh203 0:3d9c67d97d6f 156 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 157 acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
emh203 0:3d9c67d97d6f 158
emh203 0:3d9c67d97d6f 159 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 160 tapCnt--;
emh203 0:3d9c67d97d6f 161 }
emh203 0:3d9c67d97d6f 162
emh203 0:3d9c67d97d6f 163 /* Calc lower part of acc */
emh203 0:3d9c67d97d6f 164 acc_l = acc & 0xffffffff;
emh203 0:3d9c67d97d6f 165
emh203 0:3d9c67d97d6f 166 /* Calc upper part of acc */
emh203 0:3d9c67d97d6f 167 acc_h = (acc >> 32) & 0xffffffff;
emh203 0:3d9c67d97d6f 168
emh203 0:3d9c67d97d6f 169 /* Apply shift for lower part of acc and upper part of acc */
emh203 0:3d9c67d97d6f 170 acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
emh203 0:3d9c67d97d6f 171
emh203 0:3d9c67d97d6f 172 /* Converting the result to 1.15 format and saturate the output */
emh203 0:3d9c67d97d6f 173 acc = __SSAT(acc, 16);
emh203 0:3d9c67d97d6f 174
emh203 0:3d9c67d97d6f 175 /* Store the result from accumulator into the destination buffer. */
emh203 0:3d9c67d97d6f 176 *pOut++ = (q15_t) acc;
emh203 0:3d9c67d97d6f 177
emh203 0:3d9c67d97d6f 178 /* Compute and store error */
emh203 0:3d9c67d97d6f 179 e = *pRef++ - (q15_t) acc;
emh203 0:3d9c67d97d6f 180
emh203 0:3d9c67d97d6f 181 *pErr++ = (q15_t) e;
emh203 0:3d9c67d97d6f 182
emh203 0:3d9c67d97d6f 183 /* Compute alpha i.e. intermediate constant for taps update */
emh203 0:3d9c67d97d6f 184 alpha = (q15_t) (((q31_t) e * (mu)) >> 15);
emh203 0:3d9c67d97d6f 185
emh203 0:3d9c67d97d6f 186 /* Initialize state pointer */
emh203 0:3d9c67d97d6f 187 /* Advance state pointer by 1 for the next sample */
emh203 0:3d9c67d97d6f 188 px = pState++;
emh203 0:3d9c67d97d6f 189
emh203 0:3d9c67d97d6f 190 /* Initialize coefficient pointer */
emh203 0:3d9c67d97d6f 191 pb = pCoeffs;
emh203 0:3d9c67d97d6f 192
emh203 0:3d9c67d97d6f 193 /* Loop unrolling. Process 4 taps at a time. */
emh203 0:3d9c67d97d6f 194 tapCnt = numTaps >> 2u;
emh203 0:3d9c67d97d6f 195
emh203 0:3d9c67d97d6f 196 /* Update filter coefficients */
emh203 0:3d9c67d97d6f 197 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 198 {
emh203 0:3d9c67d97d6f 199 coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
emh203 0:3d9c67d97d6f 200 *pb++ = (q15_t) __SSAT((coef), 16);
emh203 0:3d9c67d97d6f 201 coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
emh203 0:3d9c67d97d6f 202 *pb++ = (q15_t) __SSAT((coef), 16);
emh203 0:3d9c67d97d6f 203 coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
emh203 0:3d9c67d97d6f 204 *pb++ = (q15_t) __SSAT((coef), 16);
emh203 0:3d9c67d97d6f 205 coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
emh203 0:3d9c67d97d6f 206 *pb++ = (q15_t) __SSAT((coef), 16);
emh203 0:3d9c67d97d6f 207
emh203 0:3d9c67d97d6f 208 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 209 tapCnt--;
emh203 0:3d9c67d97d6f 210 }
emh203 0:3d9c67d97d6f 211
emh203 0:3d9c67d97d6f 212 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
emh203 0:3d9c67d97d6f 213 tapCnt = numTaps % 0x4u;
emh203 0:3d9c67d97d6f 214
emh203 0:3d9c67d97d6f 215 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 216 {
emh203 0:3d9c67d97d6f 217 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 218 coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
emh203 0:3d9c67d97d6f 219 *pb++ = (q15_t) __SSAT((coef), 16);
emh203 0:3d9c67d97d6f 220
emh203 0:3d9c67d97d6f 221 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 222 tapCnt--;
emh203 0:3d9c67d97d6f 223 }
emh203 0:3d9c67d97d6f 224
emh203 0:3d9c67d97d6f 225 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 226 blkCnt--;
emh203 0:3d9c67d97d6f 227
emh203 0:3d9c67d97d6f 228 }
emh203 0:3d9c67d97d6f 229
emh203 0:3d9c67d97d6f 230 /* Processing is complete. Now copy the last numTaps - 1 samples to the
emh203 0:3d9c67d97d6f 231 satrt of the state buffer. This prepares the state buffer for the
emh203 0:3d9c67d97d6f 232 next function call. */
emh203 0:3d9c67d97d6f 233
emh203 0:3d9c67d97d6f 234 /* Points to the start of the pState buffer */
emh203 0:3d9c67d97d6f 235 pStateCurnt = S->pState;
emh203 0:3d9c67d97d6f 236
emh203 0:3d9c67d97d6f 237 /* Calculation of count for copying integer writes */
emh203 0:3d9c67d97d6f 238 tapCnt = (numTaps - 1u) >> 2;
emh203 0:3d9c67d97d6f 239
emh203 0:3d9c67d97d6f 240 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 241 {
emh203 0:3d9c67d97d6f 242
emh203 0:3d9c67d97d6f 243 #ifndef UNALIGNED_SUPPORT_DISABLE
emh203 0:3d9c67d97d6f 244
emh203 0:3d9c67d97d6f 245 *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
emh203 0:3d9c67d97d6f 246 *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
emh203 0:3d9c67d97d6f 247 #else
emh203 0:3d9c67d97d6f 248 *pStateCurnt++ = *pState++;
emh203 0:3d9c67d97d6f 249 *pStateCurnt++ = *pState++;
emh203 0:3d9c67d97d6f 250 *pStateCurnt++ = *pState++;
emh203 0:3d9c67d97d6f 251 *pStateCurnt++ = *pState++;
emh203 0:3d9c67d97d6f 252 #endif
emh203 0:3d9c67d97d6f 253
emh203 0:3d9c67d97d6f 254 tapCnt--;
emh203 0:3d9c67d97d6f 255
emh203 0:3d9c67d97d6f 256 }
emh203 0:3d9c67d97d6f 257
emh203 0:3d9c67d97d6f 258 /* Calculation of count for remaining q15_t data */
emh203 0:3d9c67d97d6f 259 tapCnt = (numTaps - 1u) % 0x4u;
emh203 0:3d9c67d97d6f 260
emh203 0:3d9c67d97d6f 261 /* copy data */
emh203 0:3d9c67d97d6f 262 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 263 {
emh203 0:3d9c67d97d6f 264 *pStateCurnt++ = *pState++;
emh203 0:3d9c67d97d6f 265
emh203 0:3d9c67d97d6f 266 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 267 tapCnt--;
emh203 0:3d9c67d97d6f 268 }
emh203 0:3d9c67d97d6f 269
emh203 0:3d9c67d97d6f 270 #else
emh203 0:3d9c67d97d6f 271
emh203 0:3d9c67d97d6f 272 /* Run the below code for Cortex-M0 */
emh203 0:3d9c67d97d6f 273
emh203 0:3d9c67d97d6f 274 /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
emh203 0:3d9c67d97d6f 275 /* pStateCurnt points to the location where the new input data should be written */
emh203 0:3d9c67d97d6f 276 pStateCurnt = &(S->pState[(numTaps - 1u)]);
emh203 0:3d9c67d97d6f 277
emh203 0:3d9c67d97d6f 278 /* Loop over blockSize number of values */
emh203 0:3d9c67d97d6f 279 blkCnt = blockSize;
emh203 0:3d9c67d97d6f 280
emh203 0:3d9c67d97d6f 281 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 282 {
emh203 0:3d9c67d97d6f 283 /* Copy the new input sample into the state buffer */
emh203 0:3d9c67d97d6f 284 *pStateCurnt++ = *pSrc++;
emh203 0:3d9c67d97d6f 285
emh203 0:3d9c67d97d6f 286 /* Initialize pState pointer */
emh203 0:3d9c67d97d6f 287 px = pState;
emh203 0:3d9c67d97d6f 288
emh203 0:3d9c67d97d6f 289 /* Initialize pCoeffs pointer */
emh203 0:3d9c67d97d6f 290 pb = pCoeffs;
emh203 0:3d9c67d97d6f 291
emh203 0:3d9c67d97d6f 292 /* Set the accumulator to zero */
emh203 0:3d9c67d97d6f 293 acc = 0;
emh203 0:3d9c67d97d6f 294
emh203 0:3d9c67d97d6f 295 /* Loop over numTaps number of values */
emh203 0:3d9c67d97d6f 296 tapCnt = numTaps;
emh203 0:3d9c67d97d6f 297
emh203 0:3d9c67d97d6f 298 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 299 {
emh203 0:3d9c67d97d6f 300 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 301 acc += (q63_t) ((q31_t) (*px++) * (*pb++));
emh203 0:3d9c67d97d6f 302
emh203 0:3d9c67d97d6f 303 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 304 tapCnt--;
emh203 0:3d9c67d97d6f 305 }
emh203 0:3d9c67d97d6f 306
emh203 0:3d9c67d97d6f 307 /* Calc lower part of acc */
emh203 0:3d9c67d97d6f 308 acc_l = acc & 0xffffffff;
emh203 0:3d9c67d97d6f 309
emh203 0:3d9c67d97d6f 310 /* Calc upper part of acc */
emh203 0:3d9c67d97d6f 311 acc_h = (acc >> 32) & 0xffffffff;
emh203 0:3d9c67d97d6f 312
emh203 0:3d9c67d97d6f 313 /* Apply shift for lower part of acc and upper part of acc */
emh203 0:3d9c67d97d6f 314 acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
emh203 0:3d9c67d97d6f 315
emh203 0:3d9c67d97d6f 316 /* Converting the result to 1.15 format and saturate the output */
emh203 0:3d9c67d97d6f 317 acc = __SSAT(acc, 16);
emh203 0:3d9c67d97d6f 318
emh203 0:3d9c67d97d6f 319 /* Store the result from accumulator into the destination buffer. */
emh203 0:3d9c67d97d6f 320 *pOut++ = (q15_t) acc;
emh203 0:3d9c67d97d6f 321
emh203 0:3d9c67d97d6f 322 /* Compute and store error */
emh203 0:3d9c67d97d6f 323 e = *pRef++ - (q15_t) acc;
emh203 0:3d9c67d97d6f 324
emh203 0:3d9c67d97d6f 325 *pErr++ = (q15_t) e;
emh203 0:3d9c67d97d6f 326
emh203 0:3d9c67d97d6f 327 /* Compute alpha i.e. intermediate constant for taps update */
emh203 0:3d9c67d97d6f 328 alpha = (q15_t) (((q31_t) e * (mu)) >> 15);
emh203 0:3d9c67d97d6f 329
emh203 0:3d9c67d97d6f 330 /* Initialize pState pointer */
emh203 0:3d9c67d97d6f 331 /* Advance state pointer by 1 for the next sample */
emh203 0:3d9c67d97d6f 332 px = pState++;
emh203 0:3d9c67d97d6f 333
emh203 0:3d9c67d97d6f 334 /* Initialize pCoeffs pointer */
emh203 0:3d9c67d97d6f 335 pb = pCoeffs;
emh203 0:3d9c67d97d6f 336
emh203 0:3d9c67d97d6f 337 /* Loop over numTaps number of values */
emh203 0:3d9c67d97d6f 338 tapCnt = numTaps;
emh203 0:3d9c67d97d6f 339
emh203 0:3d9c67d97d6f 340 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 341 {
emh203 0:3d9c67d97d6f 342 /* Perform the multiply-accumulate */
emh203 0:3d9c67d97d6f 343 coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
emh203 0:3d9c67d97d6f 344 *pb++ = (q15_t) __SSAT((coef), 16);
emh203 0:3d9c67d97d6f 345
emh203 0:3d9c67d97d6f 346 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 347 tapCnt--;
emh203 0:3d9c67d97d6f 348 }
emh203 0:3d9c67d97d6f 349
emh203 0:3d9c67d97d6f 350 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 351 blkCnt--;
emh203 0:3d9c67d97d6f 352
emh203 0:3d9c67d97d6f 353 }
emh203 0:3d9c67d97d6f 354
emh203 0:3d9c67d97d6f 355 /* Processing is complete. Now copy the last numTaps - 1 samples to the
emh203 0:3d9c67d97d6f 356 start of the state buffer. This prepares the state buffer for the
emh203 0:3d9c67d97d6f 357 next function call. */
emh203 0:3d9c67d97d6f 358
emh203 0:3d9c67d97d6f 359 /* Points to the start of the pState buffer */
emh203 0:3d9c67d97d6f 360 pStateCurnt = S->pState;
emh203 0:3d9c67d97d6f 361
emh203 0:3d9c67d97d6f 362 /* Copy (numTaps - 1u) samples */
emh203 0:3d9c67d97d6f 363 tapCnt = (numTaps - 1u);
emh203 0:3d9c67d97d6f 364
emh203 0:3d9c67d97d6f 365 /* Copy the data */
emh203 0:3d9c67d97d6f 366 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 367 {
emh203 0:3d9c67d97d6f 368 *pStateCurnt++ = *pState++;
emh203 0:3d9c67d97d6f 369
emh203 0:3d9c67d97d6f 370 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 371 tapCnt--;
emh203 0:3d9c67d97d6f 372 }
emh203 0:3d9c67d97d6f 373
emh203 0:3d9c67d97d6f 374 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emh203 0:3d9c67d97d6f 375
emh203 0:3d9c67d97d6f 376 }
emh203 0:3d9c67d97d6f 377
emh203 0:3d9c67d97d6f 378 /**
emh203 0:3d9c67d97d6f 379 * @} end of LMS group
emh203 0:3d9c67d97d6f 380 */