V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Revision:
0:3d9c67d97d6f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/FilteringFunctions/arm_lms_norm_q15.c	Mon Jul 28 15:03:15 2014 +0000
@@ -0,0 +1,440 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
+*    
+* $Date:        12. March 2014
+* $Revision: 	V1.4.3
+*    
+* Project: 	    CMSIS DSP Library    
+* Title:	    arm_lms_norm_q15.c    
+*    
+* Description:	Q15 NLMS filter.    
+*    
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Redistribution and use in source and binary forms, with or without 
+* modification, are permitted provided that the following conditions
+* are met:
+*   - Redistributions of source code must retain the above copyright
+*     notice, this list of conditions and the following disclaimer.
+*   - Redistributions in binary form must reproduce the above copyright
+*     notice, this list of conditions and the following disclaimer in
+*     the documentation and/or other materials provided with the 
+*     distribution.
+*   - Neither the name of ARM LIMITED nor the names of its contributors
+*     may be used to endorse or promote products derived from this
+*     software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.    
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**    
+ * @ingroup groupFilters    
+ */
+
+/**    
+ * @addtogroup LMS_NORM    
+ * @{    
+ */
+
+/**    
+* @brief Processing function for Q15 normalized LMS filter.    
+* @param[in] *S points to an instance of the Q15 normalized LMS filter structure.    
+* @param[in] *pSrc points to the block of input data.    
+* @param[in] *pRef points to the block of reference data.    
+* @param[out] *pOut points to the block of output data.    
+* @param[out] *pErr points to the block of error data.    
+* @param[in] blockSize number of samples to process.    
+* @return none.    
+*    
+* <b>Scaling and Overflow Behavior:</b>     
+* \par     
+* The function is implemented using a 64-bit internal accumulator.     
+* Both coefficients and state variables are represented in 1.15 format and    
+* multiplications yield a 2.30 result. The 2.30 intermediate results are    
+* accumulated in a 64-bit accumulator in 34.30 format.     
+* There is no risk of internal overflow with this approach and the full    
+* precision of intermediate multiplications is preserved. After all additions    
+* have been performed, the accumulator is truncated to 34.15 format by    
+* discarding low 15 bits. Lastly, the accumulator is saturated to yield a    
+* result in 1.15 format.    
+*    
+* \par   
+* 	In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted.    
+*    
+ */
+
+void arm_lms_norm_q15(
+  arm_lms_norm_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pRef,
+  q15_t * pOut,
+  q15_t * pErr,
+  uint32_t blockSize)
+{
+  q15_t *pState = S->pState;                     /* State pointer */
+  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
+  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
+  q15_t *px, *pb;                                /* Temporary pointers for state and coefficient buffers */
+  q15_t mu = S->mu;                              /* Adaptive factor */
+  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
+  uint32_t tapCnt, blkCnt;                       /* Loop counters */
+  q31_t energy;                                  /* Energy of the input */
+  q63_t acc;                                     /* Accumulator */
+  q15_t e = 0, d = 0;                            /* error, reference data sample */
+  q15_t w = 0, in;                               /* weight factor and state */
+  q15_t x0;                                      /* temporary variable to hold input sample */
+  //uint32_t shift = (uint32_t) S->postShift + 1u; /* Shift to be applied to the output */ 
+  q15_t errorXmu, oneByEnergy;                   /* Temporary variables to store error and mu product and reciprocal of energy */
+  q15_t postShift;                               /* Post shift to be applied to weight after reciprocal calculation */
+  q31_t coef;                                    /* Teporary variable for coefficient */
+  q31_t acc_l, acc_h;
+  int32_t lShift = (15 - (int32_t) S->postShift);       /*  Post shift  */
+  int32_t uShift = (32 - lShift);
+
+  energy = S->energy;
+  x0 = S->x0;
+
+  /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+  /* pStateCurnt points to the location where the new input data should be written */
+  pStateCurnt = &(S->pState[(numTaps - 1u)]);
+
+  /* Loop over blockSize number of values */
+  blkCnt = blockSize;
+
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  while(blkCnt > 0u)
+  {
+    /* Copy the new input sample into the state buffer */
+    *pStateCurnt++ = *pSrc;
+
+    /* Initialize pState pointer */
+    px = pState;
+
+    /* Initialize coeff pointer */
+    pb = (pCoeffs);
+
+    /* Read the sample from input buffer */
+    in = *pSrc++;
+
+    /* Update the energy calculation */
+    energy -= (((q31_t) x0 * (x0)) >> 15);
+    energy += (((q31_t) in * (in)) >> 15);
+
+    /* Set the accumulator to zero */
+    acc = 0;
+
+    /* Loop unrolling.  Process 4 taps at a time. */
+    tapCnt = numTaps >> 2;
+
+    while(tapCnt > 0u)
+    {
+
+      /* Perform the multiply-accumulate */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+      acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
+      acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
+
+#else
+
+      acc += (((q31_t) * px++ * (*pb++)));
+      acc += (((q31_t) * px++ * (*pb++)));
+      acc += (((q31_t) * px++ * (*pb++)));
+      acc += (((q31_t) * px++ * (*pb++)));
+
+#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+    tapCnt = numTaps % 0x4u;
+
+    while(tapCnt > 0u)
+    {
+      /* Perform the multiply-accumulate */
+      acc += (((q31_t) * px++ * (*pb++)));
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Calc lower part of acc */
+    acc_l = acc & 0xffffffff;
+
+    /* Calc upper part of acc */
+    acc_h = (acc >> 32) & 0xffffffff;
+
+    /* Apply shift for lower part of acc and upper part of acc */
+    acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+    /* Converting the result to 1.15 format and saturate the output */
+    acc = __SSAT(acc, 16u);
+
+    /* Store the result from accumulator into the destination buffer. */
+    *pOut++ = (q15_t) acc;
+
+    /* Compute and store error */
+    d = *pRef++;
+    e = d - (q15_t) acc;
+    *pErr++ = e;
+
+    /* Calculation of 1/energy */
+    postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
+                              &oneByEnergy, S->recipTable);
+
+    /* Calculation of e * mu value */
+    errorXmu = (q15_t) (((q31_t) e * mu) >> 15);
+
+    /* Calculation of (e * mu) * (1/energy) value */
+    acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));
+
+    /* Weighting factor for the normalized version */
+    w = (q15_t) __SSAT((q31_t) acc, 16);
+
+    /* Initialize pState pointer */
+    px = pState;
+
+    /* Initialize coeff pointer */
+    pb = (pCoeffs);
+
+    /* Loop unrolling.  Process 4 taps at a time. */
+    tapCnt = numTaps >> 2;
+
+    /* Update filter coefficients */
+    while(tapCnt > 0u)
+    {
+      coef = *pb + (((q31_t) w * (*px++)) >> 15);
+      *pb++ = (q15_t) __SSAT((coef), 16);
+      coef = *pb + (((q31_t) w * (*px++)) >> 15);
+      *pb++ = (q15_t) __SSAT((coef), 16);
+      coef = *pb + (((q31_t) w * (*px++)) >> 15);
+      *pb++ = (q15_t) __SSAT((coef), 16);
+      coef = *pb + (((q31_t) w * (*px++)) >> 15);
+      *pb++ = (q15_t) __SSAT((coef), 16);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+    tapCnt = numTaps % 0x4u;
+
+    while(tapCnt > 0u)
+    {
+      /* Perform the multiply-accumulate */
+      coef = *pb + (((q31_t) w * (*px++)) >> 15);
+      *pb++ = (q15_t) __SSAT((coef), 16);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Read the sample from state buffer */
+    x0 = *pState;
+
+    /* Advance state pointer by 1 for the next sample */
+    pState = pState + 1u;
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+  /* Save energy and x0 values for the next frame */
+  S->energy = (q15_t) energy;
+  S->x0 = x0;
+
+  /* Processing is complete. Now copy the last numTaps - 1 samples to the    
+     satrt of the state buffer. This prepares the state buffer for the    
+     next function call. */
+
+  /* Points to the start of the pState buffer */
+  pStateCurnt = S->pState;
+
+  /* Calculation of count for copying integer writes */
+  tapCnt = (numTaps - 1u) >> 2;
+
+  while(tapCnt > 0u)
+  {
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+#else
+
+    *pStateCurnt++ = *pState++;
+    *pStateCurnt++ = *pState++;
+    *pStateCurnt++ = *pState++;
+    *pStateCurnt++ = *pState++;
+
+#endif
+
+    tapCnt--;
+
+  }
+
+  /* Calculation of count for remaining q15_t data */
+  tapCnt = (numTaps - 1u) % 0x4u;
+
+  /* copy data */
+  while(tapCnt > 0u)
+  {
+    *pStateCurnt++ = *pState++;
+
+    /* Decrement the loop counter */
+    tapCnt--;
+  }
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  while(blkCnt > 0u)
+  {
+    /* Copy the new input sample into the state buffer */
+    *pStateCurnt++ = *pSrc;
+
+    /* Initialize pState pointer */
+    px = pState;
+
+    /* Initialize pCoeffs pointer */
+    pb = pCoeffs;
+
+    /* Read the sample from input buffer */
+    in = *pSrc++;
+
+    /* Update the energy calculation */
+    energy -= (((q31_t) x0 * (x0)) >> 15);
+    energy += (((q31_t) in * (in)) >> 15);
+
+    /* Set the accumulator to zero */
+    acc = 0;
+
+    /* Loop over numTaps number of values */
+    tapCnt = numTaps;
+
+    while(tapCnt > 0u)
+    {
+      /* Perform the multiply-accumulate */
+      acc += (((q31_t) * px++ * (*pb++)));
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Calc lower part of acc */
+    acc_l = acc & 0xffffffff;
+
+    /* Calc upper part of acc */
+    acc_h = (acc >> 32) & 0xffffffff;
+
+    /* Apply shift for lower part of acc and upper part of acc */
+    acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+    /* Converting the result to 1.15 format and saturate the output */
+    acc = __SSAT(acc, 16u);
+
+    /* Converting the result to 1.15 format */
+    //acc = __SSAT((acc >> (16u - shift)), 16u); 
+
+    /* Store the result from accumulator into the destination buffer. */
+    *pOut++ = (q15_t) acc;
+
+    /* Compute and store error */
+    d = *pRef++;
+    e = d - (q15_t) acc;
+    *pErr++ = e;
+
+    /* Calculation of 1/energy */
+    postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
+                              &oneByEnergy, S->recipTable);
+
+    /* Calculation of e * mu value */
+    errorXmu = (q15_t) (((q31_t) e * mu) >> 15);
+
+    /* Calculation of (e * mu) * (1/energy) value */
+    acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));
+
+    /* Weighting factor for the normalized version */
+    w = (q15_t) __SSAT((q31_t) acc, 16);
+
+    /* Initialize pState pointer */
+    px = pState;
+
+    /* Initialize coeff pointer */
+    pb = (pCoeffs);
+
+    /* Loop over numTaps number of values */
+    tapCnt = numTaps;
+
+    while(tapCnt > 0u)
+    {
+      /* Perform the multiply-accumulate */
+      coef = *pb + (((q31_t) w * (*px++)) >> 15);
+      *pb++ = (q15_t) __SSAT((coef), 16);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Read the sample from state buffer */
+    x0 = *pState;
+
+    /* Advance state pointer by 1 for the next sample */
+    pState = pState + 1u;
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+  /* Save energy and x0 values for the next frame */
+  S->energy = (q15_t) energy;
+  S->x0 = x0;
+
+  /* Processing is complete. Now copy the last numTaps - 1 samples to the        
+     satrt of the state buffer. This prepares the state buffer for the        
+     next function call. */
+
+  /* Points to the start of the pState buffer */
+  pStateCurnt = S->pState;
+
+  /* copy (numTaps - 1u) data */
+  tapCnt = (numTaps - 1u);
+
+  /* copy data */
+  while(tapCnt > 0u)
+  {
+    *pStateCurnt++ = *pState++;
+
+    /* Decrement the loop counter */
+    tapCnt--;
+  }
+
+#endif /*   #ifndef ARM_MATH_CM0_FAMILY */
+
+}
+
+
+/**    
+   * @} end of LMS_NORM group    
+   */