V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Revision:
0:3d9c67d97d6f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/FilteringFunctions/arm_fir_decimate_q15.c	Mon Jul 28 15:03:15 2014 +0000
@@ -0,0 +1,696 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
+*    
+* $Date:        12. March 2014
+* $Revision: 	V1.4.3
+*    
+* Project: 	    CMSIS DSP Library    
+* Title:	    arm_fir_decimate_q15.c    
+*    
+* Description:	Q15 FIR Decimator.    
+*    
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Redistribution and use in source and binary forms, with or without 
+* modification, are permitted provided that the following conditions
+* are met:
+*   - Redistributions of source code must retain the above copyright
+*     notice, this list of conditions and the following disclaimer.
+*   - Redistributions in binary form must reproduce the above copyright
+*     notice, this list of conditions and the following disclaimer in
+*     the documentation and/or other materials provided with the 
+*     distribution.
+*   - Neither the name of ARM LIMITED nor the names of its contributors
+*     may be used to endorse or promote products derived from this
+*     software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE. 
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**    
+ * @ingroup groupFilters    
+ */
+
+/**    
+ * @addtogroup FIR_decimate    
+ * @{    
+ */
+
+/**    
+ * @brief Processing function for the Q15 FIR decimator.    
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.    
+ * @param[in] *pSrc points to the block of input data.    
+ * @param[out] *pDst points to the location where the output result is written.    
+ * @param[in] blockSize number of input samples to process per call.    
+ * @return none.    
+ *    
+ * <b>Scaling and Overflow Behavior:</b>    
+ * \par    
+ * The function is implemented using a 64-bit internal accumulator.    
+ * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.    
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.    
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.    
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.    
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.    
+ *    
+ * \par    
+ * Refer to the function <code>arm_fir_decimate_fast_q15()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.    
+ */
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+void arm_fir_decimate_q15(
+  const arm_fir_decimate_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize)
+{
+  q15_t *pState = S->pState;                     /* State pointer */
+  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
+  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
+  q15_t *px;                                     /* Temporary pointer for state buffer */
+  q15_t *pb;                                     /* Temporary pointer coefficient buffer */
+  q31_t x0, x1, c0, c1;                          /* Temporary variables to hold state and coefficient values */
+  q63_t sum0;                                    /* Accumulators */
+  q63_t acc0, acc1;
+  q15_t *px0, *px1;
+  uint32_t blkCntN3;
+  uint32_t numTaps = S->numTaps;                 /* Number of taps */
+  uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M;  /* Loop counters */
+
+
+  /* S->pState buffer contains previous frame (numTaps - 1) samples */
+  /* pStateCurnt points to the location where the new input data should be written */
+  pStateCurnt = S->pState + (numTaps - 1u);
+
+
+  /* Total number of output samples to be computed */
+  blkCnt = outBlockSize / 2;
+  blkCntN3 = outBlockSize - (2 * blkCnt);
+
+
+  while(blkCnt > 0u)
+  {
+    /* Copy decimation factor number of new input samples into the state buffer */
+    i = 2 * S->M;
+
+    do
+    {
+      *pStateCurnt++ = *pSrc++;
+
+    } while(--i);
+
+    /* Set accumulator to zero */
+    acc0 = 0;
+    acc1 = 0;
+
+    /* Initialize state pointer */
+    px0 = pState;
+
+    px1 = pState + S->M;
+
+
+    /* Initialize coeff pointer */
+    pb = pCoeffs;
+
+    /* Loop unrolling.  Process 4 taps at a time. */
+    tapCnt = numTaps >> 2;
+
+    /* Loop over the number of taps.  Unroll by a factor of 4.       
+     ** Repeat until we've computed numTaps-4 coefficients. */
+    while(tapCnt > 0u)
+    {
+      /* Read the Read b[numTaps-1] and b[numTaps-2]  coefficients */
+      c0 = *__SIMD32(pb)++;
+
+      /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+      x0 = *__SIMD32(px0)++;
+
+      x1 = *__SIMD32(px1)++;
+
+      /* Perform the multiply-accumulate */
+      acc0 = __SMLALD(x0, c0, acc0);
+
+      acc1 = __SMLALD(x1, c0, acc1);
+
+      /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+      c0 = *__SIMD32(pb)++;
+
+      /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+      x0 = *__SIMD32(px0)++;
+
+      x1 = *__SIMD32(px1)++;
+
+      /* Perform the multiply-accumulate */
+      acc0 = __SMLALD(x0, c0, acc0);
+
+      acc1 = __SMLALD(x1, c0, acc1);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+    tapCnt = numTaps % 0x4u;
+
+    while(tapCnt > 0u)
+    {
+      /* Read coefficients */
+      c0 = *pb++;
+
+      /* Fetch 1 state variable */
+      x0 = *px0++;
+
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 = __SMLALD(x0, c0, acc0);
+      acc1 = __SMLALD(x1, c0, acc1);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Advance the state pointer by the decimation factor       
+     * to process the next group of decimation factor number samples */
+    pState = pState + S->M * 2;
+
+    /* Store filter output, smlad returns the values in 2.14 format */
+    /* so downsacle by 15 to get output in 1.15 */
+    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+    *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+
+
+  while(blkCntN3 > 0u)
+  {
+    /* Copy decimation factor number of new input samples into the state buffer */
+    i = S->M;
+
+    do
+    {
+      *pStateCurnt++ = *pSrc++;
+
+    } while(--i);
+
+    /*Set sum to zero */
+    sum0 = 0;
+
+    /* Initialize state pointer */
+    px = pState;
+
+    /* Initialize coeff pointer */
+    pb = pCoeffs;
+
+    /* Loop unrolling.  Process 4 taps at a time. */
+    tapCnt = numTaps >> 2;
+
+    /* Loop over the number of taps.  Unroll by a factor of 4.       
+     ** Repeat until we've computed numTaps-4 coefficients. */
+    while(tapCnt > 0u)
+    {
+      /* Read the Read b[numTaps-1] and b[numTaps-2]  coefficients */
+      c0 = *__SIMD32(pb)++;
+
+      /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+      x0 = *__SIMD32(px)++;
+
+      /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+      c1 = *__SIMD32(pb)++;
+
+      /* Perform the multiply-accumulate */
+      sum0 = __SMLALD(x0, c0, sum0);
+
+      /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+      x0 = *__SIMD32(px)++;
+
+      /* Perform the multiply-accumulate */
+      sum0 = __SMLALD(x0, c1, sum0);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+    tapCnt = numTaps % 0x4u;
+
+    while(tapCnt > 0u)
+    {
+      /* Read coefficients */
+      c0 = *pb++;
+
+      /* Fetch 1 state variable */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 = __SMLALD(x0, c0, sum0);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Advance the state pointer by the decimation factor       
+     * to process the next group of decimation factor number samples */
+    pState = pState + S->M;
+
+    /* Store filter output, smlad returns the values in 2.14 format */
+    /* so downsacle by 15 to get output in 1.15 */
+    *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+    /* Decrement the loop counter */
+    blkCntN3--;
+  }
+
+  /* Processing is complete.       
+   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.       
+   ** This prepares the state buffer for the next function call. */
+
+  /* Points to the start of the state buffer */
+  pStateCurnt = S->pState;
+
+  i = (numTaps - 1u) >> 2u;
+
+  /* copy data */
+  while(i > 0u)
+  {
+    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+    /* Decrement the loop counter */
+    i--;
+  }
+
+  i = (numTaps - 1u) % 0x04u;
+
+  /* copy data */
+  while(i > 0u)
+  {
+    *pStateCurnt++ = *pState++;
+
+    /* Decrement the loop counter */
+    i--;
+  }
+}
+
+#else
+
+
+void arm_fir_decimate_q15(
+  const arm_fir_decimate_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize)
+{
+  q15_t *pState = S->pState;                     /* State pointer */
+  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
+  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
+  q15_t *px;                                     /* Temporary pointer for state buffer */
+  q15_t *pb;                                     /* Temporary pointer coefficient buffer */
+  q15_t x0, x1, c0;                              /* Temporary variables to hold state and coefficient values */
+  q63_t sum0;                                    /* Accumulators */
+  q63_t acc0, acc1;
+  q15_t *px0, *px1;
+  uint32_t blkCntN3;
+  uint32_t numTaps = S->numTaps;                 /* Number of taps */
+  uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M;  /* Loop counters */
+
+
+  /* S->pState buffer contains previous frame (numTaps - 1) samples */
+  /* pStateCurnt points to the location where the new input data should be written */
+  pStateCurnt = S->pState + (numTaps - 1u);
+
+
+  /* Total number of output samples to be computed */
+  blkCnt = outBlockSize / 2;
+  blkCntN3 = outBlockSize - (2 * blkCnt);
+
+  while(blkCnt > 0u)
+  {
+    /* Copy decimation factor number of new input samples into the state buffer */
+    i = 2 * S->M;
+
+    do
+    {
+      *pStateCurnt++ = *pSrc++;
+
+    } while(--i);
+
+    /* Set accumulator to zero */
+    acc0 = 0;
+    acc1 = 0;
+
+    /* Initialize state pointer */
+    px0 = pState;
+
+    px1 = pState + S->M;
+
+
+    /* Initialize coeff pointer */
+    pb = pCoeffs;
+
+    /* Loop unrolling.  Process 4 taps at a time. */
+    tapCnt = numTaps >> 2;
+
+    /* Loop over the number of taps.  Unroll by a factor of 4.       
+     ** Repeat until we've computed numTaps-4 coefficients. */
+    while(tapCnt > 0u)
+    {
+      /* Read the Read b[numTaps-1] coefficients */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-1] for sample 0 and for sample 1 */
+      x0 = *px0++;
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 += x0 * c0;
+      acc1 += x1 * c0;
+
+      /* Read the b[numTaps-2] coefficient */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-2] for sample 0 and sample 1 */
+      x0 = *px0++;
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 += x0 * c0;
+      acc1 += x1 * c0;
+
+      /* Read the b[numTaps-3] coefficients */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-3] for sample 0 and sample 1 */
+      x0 = *px0++;
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 += x0 * c0;
+      acc1 += x1 * c0;
+
+      /* Read the b[numTaps-4] coefficient */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-4] for sample 0 and sample 1 */
+      x0 = *px0++;
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 += x0 * c0;
+      acc1 += x1 * c0;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+    tapCnt = numTaps % 0x4u;
+
+    while(tapCnt > 0u)
+    {
+      /* Read coefficients */
+      c0 = *pb++;
+
+      /* Fetch 1 state variable */
+      x0 = *px0++;
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 += x0 * c0;
+      acc1 += x1 * c0;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Advance the state pointer by the decimation factor       
+     * to process the next group of decimation factor number samples */
+    pState = pState + S->M * 2;
+
+    /* Store filter output, smlad returns the values in 2.14 format */
+    /* so downsacle by 15 to get output in 1.15 */
+
+    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+    *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+  while(blkCntN3 > 0u)
+  {
+    /* Copy decimation factor number of new input samples into the state buffer */
+    i = S->M;
+
+    do
+    {
+      *pStateCurnt++ = *pSrc++;
+
+    } while(--i);
+
+    /*Set sum to zero */
+    sum0 = 0;
+
+    /* Initialize state pointer */
+    px = pState;
+
+    /* Initialize coeff pointer */
+    pb = pCoeffs;
+
+    /* Loop unrolling.  Process 4 taps at a time. */
+    tapCnt = numTaps >> 2;
+
+    /* Loop over the number of taps.  Unroll by a factor of 4.       
+     ** Repeat until we've computed numTaps-4 coefficients. */
+    while(tapCnt > 0u)
+    {
+      /* Read the Read b[numTaps-1] coefficients */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-1] and sample */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += x0 * c0;
+
+      /* Read the b[numTaps-2] coefficient */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-2] and  sample */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += x0 * c0;
+
+      /* Read the b[numTaps-3]  coefficients */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-3] sample */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += x0 * c0;
+
+      /* Read the b[numTaps-4] coefficient */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-4] sample */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += x0 * c0;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+    tapCnt = numTaps % 0x4u;
+
+    while(tapCnt > 0u)
+    {
+      /* Read coefficients */
+      c0 = *pb++;
+
+      /* Fetch 1 state variable */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += x0 * c0;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Advance the state pointer by the decimation factor       
+     * to process the next group of decimation factor number samples */
+    pState = pState + S->M;
+
+    /* Store filter output, smlad returns the values in 2.14 format */
+    /* so downsacle by 15 to get output in 1.15 */
+    *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+    /* Decrement the loop counter */
+    blkCntN3--;
+  }
+
+  /* Processing is complete.       
+   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.       
+   ** This prepares the state buffer for the next function call. */
+
+  /* Points to the start of the state buffer */
+  pStateCurnt = S->pState;
+
+  i = (numTaps - 1u) >> 2u;
+
+  /* copy data */
+  while(i > 0u)
+  {
+    *pStateCurnt++ = *pState++;
+    *pStateCurnt++ = *pState++;
+    *pStateCurnt++ = *pState++;
+    *pStateCurnt++ = *pState++;
+
+    /* Decrement the loop counter */
+    i--;
+  }
+
+  i = (numTaps - 1u) % 0x04u;
+
+  /* copy data */
+  while(i > 0u)
+  {
+    *pStateCurnt++ = *pState++;
+
+    /* Decrement the loop counter */
+    i--;
+  }
+}
+
+
+#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
+
+#else
+
+
+void arm_fir_decimate_q15(
+  const arm_fir_decimate_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize)
+{
+  q15_t *pState = S->pState;                     /* State pointer */
+  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
+  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
+  q15_t *px;                                     /* Temporary pointer for state buffer */
+  q15_t *pb;                                     /* Temporary pointer coefficient buffer */
+  q31_t x0, c0;                                  /* Temporary variables to hold state and coefficient values */
+  q63_t sum0;                                    /* Accumulators */
+  uint32_t numTaps = S->numTaps;                 /* Number of taps */
+  uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M;  /* Loop counters */
+
+
+
+/* Run the below code for Cortex-M0 */
+
+  /* S->pState buffer contains previous frame (numTaps - 1) samples */
+  /* pStateCurnt points to the location where the new input data should be written */
+  pStateCurnt = S->pState + (numTaps - 1u);
+
+  /* Total number of output samples to be computed */
+  blkCnt = outBlockSize;
+
+  while(blkCnt > 0u)
+  {
+    /* Copy decimation factor number of new input samples into the state buffer */
+    i = S->M;
+
+    do
+    {
+      *pStateCurnt++ = *pSrc++;
+
+    } while(--i);
+
+    /*Set sum to zero */
+    sum0 = 0;
+
+    /* Initialize state pointer */
+    px = pState;
+
+    /* Initialize coeff pointer */
+    pb = pCoeffs;
+
+    tapCnt = numTaps;
+
+    while(tapCnt > 0u)
+    {
+      /* Read coefficients */
+      c0 = *pb++;
+
+      /* Fetch 1 state variable */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += (q31_t) x0 *c0;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Advance the state pointer by the decimation factor           
+     * to process the next group of decimation factor number samples */
+    pState = pState + S->M;
+
+    /*Store filter output , smlad will return the values in 2.14 format */
+    /* so downsacle by 15 to get output in 1.15 */
+    *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+  /* Processing is complete.         
+   ** Now copy the last numTaps - 1 samples to the start of the state buffer.       
+   ** This prepares the state buffer for the next function call. */
+
+  /* Points to the start of the state buffer */
+  pStateCurnt = S->pState;
+
+  i = numTaps - 1u;
+
+  /* copy data */
+  while(i > 0u)
+  {
+    *pStateCurnt++ = *pState++;
+
+    /* Decrement the loop counter */
+    i--;
+  }
+
+
+}
+#endif /*   #ifndef ARM_MATH_CM0_FAMILY */
+
+
+/**    
+ * @} end of FIR_decimate group    
+ */