V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Revision:
0:3d9c67d97d6f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/FilteringFunctions/arm_conv_q7.c	Mon Jul 28 15:03:15 2014 +0000
@@ -0,0 +1,690 @@
+/* ----------------------------------------------------------------------   
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.   
+*   
+* $Date:        12. March 2014
+* $Revision: 	V1.4.3
+*   
+* Project: 	    CMSIS DSP Library   
+* Title:		arm_conv_q7.c   
+*   
+* Description:	Convolution of Q7 sequences. 
+*   
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Redistribution and use in source and binary forms, with or without 
+* modification, are permitted provided that the following conditions
+* are met:
+*   - Redistributions of source code must retain the above copyright
+*     notice, this list of conditions and the following disclaimer.
+*   - Redistributions in binary form must reproduce the above copyright
+*     notice, this list of conditions and the following disclaimer in
+*     the documentation and/or other materials provided with the 
+*     distribution.
+*   - Neither the name of ARM LIMITED nor the names of its contributors
+*     may be used to endorse or promote products derived from this
+*     software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.    
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**   
+ * @ingroup groupFilters   
+ */
+
+/**   
+ * @addtogroup Conv   
+ * @{   
+ */
+
+/**   
+ * @brief Convolution of Q7 sequences.   
+ * @param[in] *pSrcA points to the first input sequence.   
+ * @param[in] srcALen length of the first input sequence.   
+ * @param[in] *pSrcB points to the second input sequence.   
+ * @param[in] srcBLen length of the second input sequence.   
+ * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.   
+ * @return none.   
+ *   
+ * @details   
+ * <b>Scaling and Overflow Behavior:</b>   
+ *   
+ * \par   
+ * The function is implemented using a 32-bit internal accumulator.   
+ * Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.   
+ * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.   
+ * This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.   
+ * The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and then saturated to 1.7 format.   
+ *
+ * \par    
+ * Refer the function <code>arm_conv_opt_q7()</code> for a faster implementation of this function.
+ * 
+ */
+
+void arm_conv_q7(
+  q7_t * pSrcA,
+  uint32_t srcALen,
+  q7_t * pSrcB,
+  uint32_t srcBLen,
+  q7_t * pDst)
+{
+
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  q7_t *pIn1;                                    /* inputA pointer */
+  q7_t *pIn2;                                    /* inputB pointer */
+  q7_t *pOut = pDst;                             /* output pointer */
+  q7_t *px;                                      /* Intermediate inputA pointer */
+  q7_t *py;                                      /* Intermediate inputB pointer */
+  q7_t *pSrc1, *pSrc2;                           /* Intermediate pointers */
+  q7_t x0, x1, x2, x3, c0, c1;                   /* Temporary variables to hold state and coefficient values */
+  q31_t sum, acc0, acc1, acc2, acc3;             /* Accumulator */
+  q31_t input1, input2;                          /* Temporary input variables */
+  q15_t in1, in2;                                /* Temporary input variables */
+  uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3;     /* loop counter */
+
+  /* The algorithm implementation is based on the lengths of the inputs. */
+  /* srcB is always made to slide across srcA. */
+  /* So srcBLen is always considered as shorter or equal to srcALen */
+  if(srcALen >= srcBLen)
+  {
+    /* Initialization of inputA pointer */
+    pIn1 = pSrcA;
+
+    /* Initialization of inputB pointer */
+    pIn2 = pSrcB;
+  }
+  else
+  {
+    /* Initialization of inputA pointer */
+    pIn1 = pSrcB;
+
+    /* Initialization of inputB pointer */
+    pIn2 = pSrcA;
+
+    /* srcBLen is always considered as shorter or equal to srcALen */
+    j = srcBLen;
+    srcBLen = srcALen;
+    srcALen = j;
+  }
+
+  /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+  /* The function is internally   
+   * divided into three stages according to the number of multiplications that has to be   
+   * taken place between inputA samples and inputB samples. In the first stage of the   
+   * algorithm, the multiplications increase by one for every iteration.   
+   * In the second stage of the algorithm, srcBLen number of multiplications are done.   
+   * In the third stage of the algorithm, the multiplications decrease by one   
+   * for every iteration. */
+
+  /* The algorithm is implemented in three stages.   
+     The loop counters of each stage is initiated here. */
+  blockSize1 = srcBLen - 1u;
+  blockSize2 = (srcALen - srcBLen) + 1u;
+  blockSize3 = blockSize1;
+
+  /* --------------------------   
+   * Initializations of stage1   
+   * -------------------------*/
+
+  /* sum = x[0] * y[0]   
+   * sum = x[0] * y[1] + x[1] * y[0]   
+   * ....   
+   * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]   
+   */
+
+  /* In this stage the MAC operations are increased by 1 for every iteration.   
+     The count variable holds the number of MAC operations performed */
+  count = 1u;
+
+  /* Working pointer of inputA */
+  px = pIn1;
+
+  /* Working pointer of inputB */
+  py = pIn2;
+
+
+  /* ------------------------   
+   * Stage1 process   
+   * ----------------------*/
+
+  /* The first stage starts here */
+  while(blockSize1 > 0u)
+  {
+    /* Accumulator is made zero for every iteration */
+    sum = 0;
+
+    /* Apply loop unrolling and compute 4 MACs simultaneously. */
+    k = count >> 2u;
+
+    /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.   
+     ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+    while(k > 0u)
+    {
+      /* x[0] , x[1] */
+      in1 = (q15_t) * px++;
+      in2 = (q15_t) * px++;
+      input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+      /* y[srcBLen - 1] , y[srcBLen - 2] */
+      in1 = (q15_t) * py--;
+      in2 = (q15_t) * py--;
+      input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+      /* x[0] * y[srcBLen - 1] */
+      /* x[1] * y[srcBLen - 2] */
+      sum = __SMLAD(input1, input2, sum);
+
+      /* x[2] , x[3] */
+      in1 = (q15_t) * px++;
+      in2 = (q15_t) * px++;
+      input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+      /* y[srcBLen - 3] , y[srcBLen - 4] */
+      in1 = (q15_t) * py--;
+      in2 = (q15_t) * py--;
+      input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+      /* x[2] * y[srcBLen - 3] */
+      /* x[3] * y[srcBLen - 4] */
+      sum = __SMLAD(input1, input2, sum);
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+    /* If the count is not a multiple of 4, compute any remaining MACs here.   
+     ** No loop unrolling is used. */
+    k = count % 0x4u;
+
+    while(k > 0u)
+    {
+      /* Perform the multiply-accumulates */
+      sum += ((q15_t) * px++ * *py--);
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+    /* Store the result in the accumulator in the destination buffer. */
+    *pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
+
+    /* Update the inputA and inputB pointers for next MAC calculation */
+    py = pIn2 + count;
+    px = pIn1;
+
+    /* Increment the MAC count */
+    count++;
+
+    /* Decrement the loop counter */
+    blockSize1--;
+  }
+
+  /* --------------------------   
+   * Initializations of stage2   
+   * ------------------------*/
+
+  /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]   
+   * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]   
+   * ....   
+   * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]   
+   */
+
+  /* Working pointer of inputA */
+  px = pIn1;
+
+  /* Working pointer of inputB */
+  pSrc2 = pIn2 + (srcBLen - 1u);
+  py = pSrc2;
+
+  /* count is index by which the pointer pIn1 to be incremented */
+  count = 0u;
+
+  /* -------------------   
+   * Stage2 process   
+   * ------------------*/
+
+  /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.   
+   * So, to loop unroll over blockSize2,   
+   * srcBLen should be greater than or equal to 4 */
+  if(srcBLen >= 4u)
+  {
+    /* Loop unroll over blockSize2, by 4 */
+    blkCnt = blockSize2 >> 2u;
+
+    while(blkCnt > 0u)
+    {
+      /* Set all accumulators to zero */
+      acc0 = 0;
+      acc1 = 0;
+      acc2 = 0;
+      acc3 = 0;
+
+      /* read x[0], x[1], x[2] samples */
+      x0 = *(px++);
+      x1 = *(px++);
+      x2 = *(px++);
+
+      /* Apply loop unrolling and compute 4 MACs simultaneously. */
+      k = srcBLen >> 2u;
+
+      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.   
+       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+      do
+      {
+        /* Read y[srcBLen - 1] sample */
+        c0 = *(py--);
+        /* Read y[srcBLen - 2] sample */
+        c1 = *(py--);
+
+        /* Read x[3] sample */
+        x3 = *(px++);
+
+        /* x[0] and x[1] are packed */
+        in1 = (q15_t) x0;
+        in2 = (q15_t) x1;
+
+        input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* y[srcBLen - 1]   and y[srcBLen - 2] are packed */
+        in1 = (q15_t) c0;
+        in2 = (q15_t) c1;
+
+        input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2]  */
+        acc0 = __SMLAD(input1, input2, acc0);
+
+        /* x[1] and x[2] are packed */
+        in1 = (q15_t) x1;
+        in2 = (q15_t) x2;
+
+        input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2]  */
+        acc1 = __SMLAD(input1, input2, acc1);
+
+        /* x[2] and x[3] are packed */
+        in1 = (q15_t) x2;
+        in2 = (q15_t) x3;
+
+        input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2]  */
+        acc2 = __SMLAD(input1, input2, acc2);
+
+        /* Read x[4] sample */
+        x0 = *(px++);
+
+        /* x[3] and x[4] are packed */
+        in1 = (q15_t) x3;
+        in2 = (q15_t) x0;
+
+        input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2]  */
+        acc3 = __SMLAD(input1, input2, acc3);
+
+        /* Read y[srcBLen - 3] sample */
+        c0 = *(py--);
+        /* Read y[srcBLen - 4] sample */
+        c1 = *(py--);
+
+        /* Read x[5] sample */
+        x1 = *(px++);
+
+        /* x[2] and x[3] are packed */
+        in1 = (q15_t) x2;
+        in2 = (q15_t) x3;
+
+        input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* y[srcBLen - 3] and y[srcBLen - 4] are packed */
+        in1 = (q15_t) c0;
+        in2 = (q15_t) c1;
+
+        input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4]  */
+        acc0 = __SMLAD(input1, input2, acc0);
+
+        /* x[3] and x[4] are packed */
+        in1 = (q15_t) x3;
+        in2 = (q15_t) x0;
+
+        input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4]  */
+        acc1 = __SMLAD(input1, input2, acc1);
+
+        /* x[4] and x[5] are packed */
+        in1 = (q15_t) x0;
+        in2 = (q15_t) x1;
+
+        input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4]  */
+        acc2 = __SMLAD(input1, input2, acc2);
+
+        /* Read x[6] sample */
+        x2 = *(px++);
+
+        /* x[5] and x[6] are packed */
+        in1 = (q15_t) x1;
+        in2 = (q15_t) x2;
+
+        input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4]  */
+        acc3 = __SMLAD(input1, input2, acc3);
+
+      } while(--k);
+
+      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.   
+       ** No loop unrolling is used. */
+      k = srcBLen % 0x4u;
+
+      while(k > 0u)
+      {
+        /* Read y[srcBLen - 5] sample */
+        c0 = *(py--);
+
+        /* Read x[7] sample */
+        x3 = *(px++);
+
+        /* Perform the multiply-accumulates */
+        /* acc0 +=  x[4] * y[srcBLen - 5] */
+        acc0 += ((q15_t) x0 * c0);
+        /* acc1 +=  x[5] * y[srcBLen - 5] */
+        acc1 += ((q15_t) x1 * c0);
+        /* acc2 +=  x[6] * y[srcBLen - 5] */
+        acc2 += ((q15_t) x2 * c0);
+        /* acc3 +=  x[7] * y[srcBLen - 5] */
+        acc3 += ((q15_t) x3 * c0);
+
+        /* Reuse the present samples for the next MAC */
+        x0 = x1;
+        x1 = x2;
+        x2 = x3;
+
+        /* Decrement the loop counter */
+        k--;
+      }
+
+
+      /* Store the result in the accumulator in the destination buffer. */
+      *pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));
+      *pOut++ = (q7_t) (__SSAT(acc1 >> 7u, 8));
+      *pOut++ = (q7_t) (__SSAT(acc2 >> 7u, 8));
+      *pOut++ = (q7_t) (__SSAT(acc3 >> 7u, 8));
+
+      /* Increment the pointer pIn1 index, count by 4 */
+      count += 4u;
+
+      /* Update the inputA and inputB pointers for next MAC calculation */
+      px = pIn1 + count;
+      py = pSrc2;
+
+      /* Decrement the loop counter */
+      blkCnt--;
+    }
+
+    /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.   
+     ** No loop unrolling is used. */
+    blkCnt = blockSize2 % 0x4u;
+
+    while(blkCnt > 0u)
+    {
+      /* Accumulator is made zero for every iteration */
+      sum = 0;
+
+      /* Apply loop unrolling and compute 4 MACs simultaneously. */
+      k = srcBLen >> 2u;
+
+      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.   
+       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+      while(k > 0u)
+      {
+
+        /* Reading two inputs of SrcA buffer and packing */
+        in1 = (q15_t) * px++;
+        in2 = (q15_t) * px++;
+        input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* Reading two inputs of SrcB buffer and packing */
+        in1 = (q15_t) * py--;
+        in2 = (q15_t) * py--;
+        input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* Perform the multiply-accumulates */
+        sum = __SMLAD(input1, input2, sum);
+
+        /* Reading two inputs of SrcA buffer and packing */
+        in1 = (q15_t) * px++;
+        in2 = (q15_t) * px++;
+        input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* Reading two inputs of SrcB buffer and packing */
+        in1 = (q15_t) * py--;
+        in2 = (q15_t) * py--;
+        input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+        /* Perform the multiply-accumulates */
+        sum = __SMLAD(input1, input2, sum);
+
+        /* Decrement the loop counter */
+        k--;
+      }
+
+      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.   
+       ** No loop unrolling is used. */
+      k = srcBLen % 0x4u;
+
+      while(k > 0u)
+      {
+        /* Perform the multiply-accumulates */
+        sum += ((q15_t) * px++ * *py--);
+
+        /* Decrement the loop counter */
+        k--;
+      }
+
+      /* Store the result in the accumulator in the destination buffer. */
+      *pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
+
+      /* Increment the pointer pIn1 index, count by 1 */
+      count++;
+
+      /* Update the inputA and inputB pointers for next MAC calculation */
+      px = pIn1 + count;
+      py = pSrc2;
+
+      /* Decrement the loop counter */
+      blkCnt--;
+    }
+  }
+  else
+  {
+    /* If the srcBLen is not a multiple of 4,   
+     * the blockSize2 loop cannot be unrolled by 4 */
+    blkCnt = blockSize2;
+
+    while(blkCnt > 0u)
+    {
+      /* Accumulator is made zero for every iteration */
+      sum = 0;
+
+      /* srcBLen number of MACS should be performed */
+      k = srcBLen;
+
+      while(k > 0u)
+      {
+        /* Perform the multiply-accumulate */
+        sum += ((q15_t) * px++ * *py--);
+
+        /* Decrement the loop counter */
+        k--;
+      }
+
+      /* Store the result in the accumulator in the destination buffer. */
+      *pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
+
+      /* Increment the MAC count */
+      count++;
+
+      /* Update the inputA and inputB pointers for next MAC calculation */
+      px = pIn1 + count;
+      py = pSrc2;
+
+      /* Decrement the loop counter */
+      blkCnt--;
+    }
+  }
+
+
+  /* --------------------------   
+   * Initializations of stage3   
+   * -------------------------*/
+
+  /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]   
+   * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]   
+   * ....   
+   * sum +=  x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]   
+   * sum +=  x[srcALen-1] * y[srcBLen-1]   
+   */
+
+  /* In this stage the MAC operations are decreased by 1 for every iteration.   
+     The blockSize3 variable holds the number of MAC operations performed */
+
+  /* Working pointer of inputA */
+  pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
+  px = pSrc1;
+
+  /* Working pointer of inputB */
+  pSrc2 = pIn2 + (srcBLen - 1u);
+  py = pSrc2;
+
+  /* -------------------   
+   * Stage3 process   
+   * ------------------*/
+
+  while(blockSize3 > 0u)
+  {
+    /* Accumulator is made zero for every iteration */
+    sum = 0;
+
+    /* Apply loop unrolling and compute 4 MACs simultaneously. */
+    k = blockSize3 >> 2u;
+
+    /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.   
+     ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+    while(k > 0u)
+    {
+      /* Reading two inputs, x[srcALen - srcBLen + 1] and x[srcALen - srcBLen + 2] of SrcA buffer and packing */
+      in1 = (q15_t) * px++;
+      in2 = (q15_t) * px++;
+      input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+      /* Reading two inputs, y[srcBLen - 1] and y[srcBLen - 2] of SrcB buffer and packing */
+      in1 = (q15_t) * py--;
+      in2 = (q15_t) * py--;
+      input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+      /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
+      /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
+      sum = __SMLAD(input1, input2, sum);
+
+      /* Reading two inputs, x[srcALen - srcBLen + 3] and x[srcALen - srcBLen + 4] of SrcA buffer and packing */
+      in1 = (q15_t) * px++;
+      in2 = (q15_t) * px++;
+      input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+      /* Reading two inputs, y[srcBLen - 3] and y[srcBLen - 4] of SrcB buffer and packing */
+      in1 = (q15_t) * py--;
+      in2 = (q15_t) * py--;
+      input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
+
+      /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
+      /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
+      sum = __SMLAD(input1, input2, sum);
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+    /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.   
+     ** No loop unrolling is used. */
+    k = blockSize3 % 0x4u;
+
+    while(k > 0u)
+    {
+      /* Perform the multiply-accumulates */
+      sum += ((q15_t) * px++ * *py--);
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+    /* Store the result in the accumulator in the destination buffer. */
+    *pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
+
+    /* Update the inputA and inputB pointers for next MAC calculation */
+    px = ++pSrc1;
+    py = pSrc2;
+
+    /* Decrement the loop counter */
+    blockSize3--;
+  }
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  q7_t *pIn1 = pSrcA;                            /* input pointer */
+  q7_t *pIn2 = pSrcB;                            /* coefficient pointer */
+  q31_t sum;                                     /* Accumulator */
+  uint32_t i, j;                                 /* loop counter */
+
+  /* Loop to calculate output of convolution for output length number of times */
+  for (i = 0; i < (srcALen + srcBLen - 1); i++)
+  {
+    /* Initialize sum with zero to carry on MAC operations */
+    sum = 0;
+
+    /* Loop to perform MAC operations according to convolution equation */
+    for (j = 0; j <= i; j++)
+    {
+      /* Check the array limitations */
+      if(((i - j) < srcBLen) && (j < srcALen))
+      {
+        /* z[i] += x[i-j] * y[j] */
+        sum += (q15_t) pIn1[j] * (pIn2[i - j]);
+      }
+    }
+
+    /* Store the output in the destination buffer */
+    pDst[i] = (q7_t) __SSAT((sum >> 7u), 8u);
+  }
+
+#endif /*   #ifndef ARM_MATH_CM0_FAMILY        */
+
+}
+
+/**   
+ * @} end of Conv group   
+ */