V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Committer:
emh203
Date:
Mon Jul 28 15:03:15 2014 +0000
Revision:
0:3d9c67d97d6f
1st working commit.   Had to remove arm_bitreversal2.s     arm_cfft_f32.c and arm_rfft_fast_f32.c.    The .s will not assemble.      For now I removed these functions so we could at least have a library for the other functions.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emh203 0:3d9c67d97d6f 1 /* ----------------------------------------------------------------------
emh203 0:3d9c67d97d6f 2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
emh203 0:3d9c67d97d6f 3 *
emh203 0:3d9c67d97d6f 4 * $Date: 12. March 2014
emh203 0:3d9c67d97d6f 5 * $Revision: V1.4.3
emh203 0:3d9c67d97d6f 6 *
emh203 0:3d9c67d97d6f 7 * Project: CMSIS DSP Library
emh203 0:3d9c67d97d6f 8 * Title: arm_fir_fast_q31.c
emh203 0:3d9c67d97d6f 9 *
emh203 0:3d9c67d97d6f 10 * Description: Processing function for the Q31 Fast FIR filter.
emh203 0:3d9c67d97d6f 11 *
emh203 0:3d9c67d97d6f 12 * Target Processor: Cortex-M4/Cortex-M3
emh203 0:3d9c67d97d6f 13 *
emh203 0:3d9c67d97d6f 14 * Redistribution and use in source and binary forms, with or without
emh203 0:3d9c67d97d6f 15 * modification, are permitted provided that the following conditions
emh203 0:3d9c67d97d6f 16 * are met:
emh203 0:3d9c67d97d6f 17 * - Redistributions of source code must retain the above copyright
emh203 0:3d9c67d97d6f 18 * notice, this list of conditions and the following disclaimer.
emh203 0:3d9c67d97d6f 19 * - Redistributions in binary form must reproduce the above copyright
emh203 0:3d9c67d97d6f 20 * notice, this list of conditions and the following disclaimer in
emh203 0:3d9c67d97d6f 21 * the documentation and/or other materials provided with the
emh203 0:3d9c67d97d6f 22 * distribution.
emh203 0:3d9c67d97d6f 23 * - Neither the name of ARM LIMITED nor the names of its contributors
emh203 0:3d9c67d97d6f 24 * may be used to endorse or promote products derived from this
emh203 0:3d9c67d97d6f 25 * software without specific prior written permission.
emh203 0:3d9c67d97d6f 26 *
emh203 0:3d9c67d97d6f 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
emh203 0:3d9c67d97d6f 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
emh203 0:3d9c67d97d6f 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
emh203 0:3d9c67d97d6f 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
emh203 0:3d9c67d97d6f 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
emh203 0:3d9c67d97d6f 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
emh203 0:3d9c67d97d6f 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
emh203 0:3d9c67d97d6f 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
emh203 0:3d9c67d97d6f 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
emh203 0:3d9c67d97d6f 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
emh203 0:3d9c67d97d6f 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
emh203 0:3d9c67d97d6f 38 * POSSIBILITY OF SUCH DAMAGE.
emh203 0:3d9c67d97d6f 39 * -------------------------------------------------------------------- */
emh203 0:3d9c67d97d6f 40
emh203 0:3d9c67d97d6f 41 #include "arm_math.h"
emh203 0:3d9c67d97d6f 42
emh203 0:3d9c67d97d6f 43 /**
emh203 0:3d9c67d97d6f 44 * @ingroup groupFilters
emh203 0:3d9c67d97d6f 45 */
emh203 0:3d9c67d97d6f 46
emh203 0:3d9c67d97d6f 47 /**
emh203 0:3d9c67d97d6f 48 * @addtogroup FIR
emh203 0:3d9c67d97d6f 49 * @{
emh203 0:3d9c67d97d6f 50 */
emh203 0:3d9c67d97d6f 51
emh203 0:3d9c67d97d6f 52 /**
emh203 0:3d9c67d97d6f 53 * @param[in] *S points to an instance of the Q31 structure.
emh203 0:3d9c67d97d6f 54 * @param[in] *pSrc points to the block of input data.
emh203 0:3d9c67d97d6f 55 * @param[out] *pDst points to the block output data.
emh203 0:3d9c67d97d6f 56 * @param[in] blockSize number of samples to process per call.
emh203 0:3d9c67d97d6f 57 * @return none.
emh203 0:3d9c67d97d6f 58 *
emh203 0:3d9c67d97d6f 59 * <b>Scaling and Overflow Behavior:</b>
emh203 0:3d9c67d97d6f 60 *
emh203 0:3d9c67d97d6f 61 * \par
emh203 0:3d9c67d97d6f 62 * This function is optimized for speed at the expense of fixed-point precision and overflow protection.
emh203 0:3d9c67d97d6f 63 * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
emh203 0:3d9c67d97d6f 64 * These intermediate results are added to a 2.30 accumulator.
emh203 0:3d9c67d97d6f 65 * Finally, the accumulator is saturated and converted to a 1.31 result.
emh203 0:3d9c67d97d6f 66 * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
emh203 0:3d9c67d97d6f 67 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
emh203 0:3d9c67d97d6f 68 *
emh203 0:3d9c67d97d6f 69 * \par
emh203 0:3d9c67d97d6f 70 * Refer to the function <code>arm_fir_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision. Both the slow and the fast versions use the same instance structure.
emh203 0:3d9c67d97d6f 71 * Use the function <code>arm_fir_init_q31()</code> to initialize the filter structure.
emh203 0:3d9c67d97d6f 72 */
emh203 0:3d9c67d97d6f 73
emh203 0:3d9c67d97d6f 74 IAR_ONLY_LOW_OPTIMIZATION_ENTER
emh203 0:3d9c67d97d6f 75 void arm_fir_fast_q31(
emh203 0:3d9c67d97d6f 76 const arm_fir_instance_q31 * S,
emh203 0:3d9c67d97d6f 77 q31_t * pSrc,
emh203 0:3d9c67d97d6f 78 q31_t * pDst,
emh203 0:3d9c67d97d6f 79 uint32_t blockSize)
emh203 0:3d9c67d97d6f 80 {
emh203 0:3d9c67d97d6f 81 q31_t *pState = S->pState; /* State pointer */
emh203 0:3d9c67d97d6f 82 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
emh203 0:3d9c67d97d6f 83 q31_t *pStateCurnt; /* Points to the current sample of the state */
emh203 0:3d9c67d97d6f 84 q31_t x0, x1, x2, x3; /* Temporary variables to hold state */
emh203 0:3d9c67d97d6f 85 q31_t c0; /* Temporary variable to hold coefficient value */
emh203 0:3d9c67d97d6f 86 q31_t *px; /* Temporary pointer for state */
emh203 0:3d9c67d97d6f 87 q31_t *pb; /* Temporary pointer for coefficient buffer */
emh203 0:3d9c67d97d6f 88 q31_t acc0, acc1, acc2, acc3; /* Accumulators */
emh203 0:3d9c67d97d6f 89 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
emh203 0:3d9c67d97d6f 90 uint32_t i, tapCnt, blkCnt; /* Loop counters */
emh203 0:3d9c67d97d6f 91
emh203 0:3d9c67d97d6f 92 /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
emh203 0:3d9c67d97d6f 93 /* pStateCurnt points to the location where the new input data should be written */
emh203 0:3d9c67d97d6f 94 pStateCurnt = &(S->pState[(numTaps - 1u)]);
emh203 0:3d9c67d97d6f 95
emh203 0:3d9c67d97d6f 96 /* Apply loop unrolling and compute 4 output values simultaneously.
emh203 0:3d9c67d97d6f 97 * The variables acc0 ... acc3 hold output values that are being computed:
emh203 0:3d9c67d97d6f 98 *
emh203 0:3d9c67d97d6f 99 * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
emh203 0:3d9c67d97d6f 100 * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
emh203 0:3d9c67d97d6f 101 * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
emh203 0:3d9c67d97d6f 102 * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
emh203 0:3d9c67d97d6f 103 */
emh203 0:3d9c67d97d6f 104 blkCnt = blockSize >> 2;
emh203 0:3d9c67d97d6f 105
emh203 0:3d9c67d97d6f 106 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
emh203 0:3d9c67d97d6f 107 ** a second loop below computes the remaining 1 to 3 samples. */
emh203 0:3d9c67d97d6f 108 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 109 {
emh203 0:3d9c67d97d6f 110 /* Copy four new input samples into the state buffer */
emh203 0:3d9c67d97d6f 111 *pStateCurnt++ = *pSrc++;
emh203 0:3d9c67d97d6f 112 *pStateCurnt++ = *pSrc++;
emh203 0:3d9c67d97d6f 113 *pStateCurnt++ = *pSrc++;
emh203 0:3d9c67d97d6f 114 *pStateCurnt++ = *pSrc++;
emh203 0:3d9c67d97d6f 115
emh203 0:3d9c67d97d6f 116 /* Set all accumulators to zero */
emh203 0:3d9c67d97d6f 117 acc0 = 0;
emh203 0:3d9c67d97d6f 118 acc1 = 0;
emh203 0:3d9c67d97d6f 119 acc2 = 0;
emh203 0:3d9c67d97d6f 120 acc3 = 0;
emh203 0:3d9c67d97d6f 121
emh203 0:3d9c67d97d6f 122 /* Initialize state pointer */
emh203 0:3d9c67d97d6f 123 px = pState;
emh203 0:3d9c67d97d6f 124
emh203 0:3d9c67d97d6f 125 /* Initialize coefficient pointer */
emh203 0:3d9c67d97d6f 126 pb = pCoeffs;
emh203 0:3d9c67d97d6f 127
emh203 0:3d9c67d97d6f 128 /* Read the first three samples from the state buffer:
emh203 0:3d9c67d97d6f 129 * x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
emh203 0:3d9c67d97d6f 130 x0 = *(px++);
emh203 0:3d9c67d97d6f 131 x1 = *(px++);
emh203 0:3d9c67d97d6f 132 x2 = *(px++);
emh203 0:3d9c67d97d6f 133
emh203 0:3d9c67d97d6f 134 /* Loop unrolling. Process 4 taps at a time. */
emh203 0:3d9c67d97d6f 135 tapCnt = numTaps >> 2;
emh203 0:3d9c67d97d6f 136 i = tapCnt;
emh203 0:3d9c67d97d6f 137
emh203 0:3d9c67d97d6f 138 while(i > 0u)
emh203 0:3d9c67d97d6f 139 {
emh203 0:3d9c67d97d6f 140 /* Read the b[numTaps] coefficient */
emh203 0:3d9c67d97d6f 141 c0 = *(pb++);
emh203 0:3d9c67d97d6f 142
emh203 0:3d9c67d97d6f 143 /* Read x[n-numTaps-3] sample */
emh203 0:3d9c67d97d6f 144 x3 = *(px++);
emh203 0:3d9c67d97d6f 145
emh203 0:3d9c67d97d6f 146 /* acc0 += b[numTaps] * x[n-numTaps] */
emh203 0:3d9c67d97d6f 147 multAcc_32x32_keep32_R(acc0, x0, c0);
emh203 0:3d9c67d97d6f 148
emh203 0:3d9c67d97d6f 149 /* acc1 += b[numTaps] * x[n-numTaps-1] */
emh203 0:3d9c67d97d6f 150 multAcc_32x32_keep32_R(acc1, x1, c0);
emh203 0:3d9c67d97d6f 151
emh203 0:3d9c67d97d6f 152 /* acc2 += b[numTaps] * x[n-numTaps-2] */
emh203 0:3d9c67d97d6f 153 multAcc_32x32_keep32_R(acc2, x2, c0);
emh203 0:3d9c67d97d6f 154
emh203 0:3d9c67d97d6f 155 /* acc3 += b[numTaps] * x[n-numTaps-3] */
emh203 0:3d9c67d97d6f 156 multAcc_32x32_keep32_R(acc3, x3, c0);
emh203 0:3d9c67d97d6f 157
emh203 0:3d9c67d97d6f 158 /* Read the b[numTaps-1] coefficient */
emh203 0:3d9c67d97d6f 159 c0 = *(pb++);
emh203 0:3d9c67d97d6f 160
emh203 0:3d9c67d97d6f 161 /* Read x[n-numTaps-4] sample */
emh203 0:3d9c67d97d6f 162 x0 = *(px++);
emh203 0:3d9c67d97d6f 163
emh203 0:3d9c67d97d6f 164 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 165 multAcc_32x32_keep32_R(acc0, x1, c0);
emh203 0:3d9c67d97d6f 166 multAcc_32x32_keep32_R(acc1, x2, c0);
emh203 0:3d9c67d97d6f 167 multAcc_32x32_keep32_R(acc2, x3, c0);
emh203 0:3d9c67d97d6f 168 multAcc_32x32_keep32_R(acc3, x0, c0);
emh203 0:3d9c67d97d6f 169
emh203 0:3d9c67d97d6f 170 /* Read the b[numTaps-2] coefficient */
emh203 0:3d9c67d97d6f 171 c0 = *(pb++);
emh203 0:3d9c67d97d6f 172
emh203 0:3d9c67d97d6f 173 /* Read x[n-numTaps-5] sample */
emh203 0:3d9c67d97d6f 174 x1 = *(px++);
emh203 0:3d9c67d97d6f 175
emh203 0:3d9c67d97d6f 176 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 177 multAcc_32x32_keep32_R(acc0, x2, c0);
emh203 0:3d9c67d97d6f 178 multAcc_32x32_keep32_R(acc1, x3, c0);
emh203 0:3d9c67d97d6f 179 multAcc_32x32_keep32_R(acc2, x0, c0);
emh203 0:3d9c67d97d6f 180 multAcc_32x32_keep32_R(acc3, x1, c0);
emh203 0:3d9c67d97d6f 181
emh203 0:3d9c67d97d6f 182 /* Read the b[numTaps-3] coefficients */
emh203 0:3d9c67d97d6f 183 c0 = *(pb++);
emh203 0:3d9c67d97d6f 184
emh203 0:3d9c67d97d6f 185 /* Read x[n-numTaps-6] sample */
emh203 0:3d9c67d97d6f 186 x2 = *(px++);
emh203 0:3d9c67d97d6f 187
emh203 0:3d9c67d97d6f 188 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 189 multAcc_32x32_keep32_R(acc0, x3, c0);
emh203 0:3d9c67d97d6f 190 multAcc_32x32_keep32_R(acc1, x0, c0);
emh203 0:3d9c67d97d6f 191 multAcc_32x32_keep32_R(acc2, x1, c0);
emh203 0:3d9c67d97d6f 192 multAcc_32x32_keep32_R(acc3, x2, c0);
emh203 0:3d9c67d97d6f 193 i--;
emh203 0:3d9c67d97d6f 194 }
emh203 0:3d9c67d97d6f 195
emh203 0:3d9c67d97d6f 196 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
emh203 0:3d9c67d97d6f 197
emh203 0:3d9c67d97d6f 198 i = numTaps - (tapCnt * 4u);
emh203 0:3d9c67d97d6f 199 while(i > 0u)
emh203 0:3d9c67d97d6f 200 {
emh203 0:3d9c67d97d6f 201 /* Read coefficients */
emh203 0:3d9c67d97d6f 202 c0 = *(pb++);
emh203 0:3d9c67d97d6f 203
emh203 0:3d9c67d97d6f 204 /* Fetch 1 state variable */
emh203 0:3d9c67d97d6f 205 x3 = *(px++);
emh203 0:3d9c67d97d6f 206
emh203 0:3d9c67d97d6f 207 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 208 multAcc_32x32_keep32_R(acc0, x0, c0);
emh203 0:3d9c67d97d6f 209 multAcc_32x32_keep32_R(acc1, x1, c0);
emh203 0:3d9c67d97d6f 210 multAcc_32x32_keep32_R(acc2, x2, c0);
emh203 0:3d9c67d97d6f 211 multAcc_32x32_keep32_R(acc3, x3, c0);
emh203 0:3d9c67d97d6f 212
emh203 0:3d9c67d97d6f 213 /* Reuse the present sample states for next sample */
emh203 0:3d9c67d97d6f 214 x0 = x1;
emh203 0:3d9c67d97d6f 215 x1 = x2;
emh203 0:3d9c67d97d6f 216 x2 = x3;
emh203 0:3d9c67d97d6f 217
emh203 0:3d9c67d97d6f 218 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 219 i--;
emh203 0:3d9c67d97d6f 220 }
emh203 0:3d9c67d97d6f 221
emh203 0:3d9c67d97d6f 222 /* Advance the state pointer by 4 to process the next group of 4 samples */
emh203 0:3d9c67d97d6f 223 pState = pState + 4;
emh203 0:3d9c67d97d6f 224
emh203 0:3d9c67d97d6f 225 /* The results in the 4 accumulators are in 2.30 format. Convert to 1.31
emh203 0:3d9c67d97d6f 226 ** Then store the 4 outputs in the destination buffer. */
emh203 0:3d9c67d97d6f 227 *pDst++ = (q31_t) (acc0 << 1);
emh203 0:3d9c67d97d6f 228 *pDst++ = (q31_t) (acc1 << 1);
emh203 0:3d9c67d97d6f 229 *pDst++ = (q31_t) (acc2 << 1);
emh203 0:3d9c67d97d6f 230 *pDst++ = (q31_t) (acc3 << 1);
emh203 0:3d9c67d97d6f 231
emh203 0:3d9c67d97d6f 232 /* Decrement the samples loop counter */
emh203 0:3d9c67d97d6f 233 blkCnt--;
emh203 0:3d9c67d97d6f 234 }
emh203 0:3d9c67d97d6f 235
emh203 0:3d9c67d97d6f 236
emh203 0:3d9c67d97d6f 237 /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
emh203 0:3d9c67d97d6f 238 ** No loop unrolling is used. */
emh203 0:3d9c67d97d6f 239 blkCnt = blockSize % 4u;
emh203 0:3d9c67d97d6f 240
emh203 0:3d9c67d97d6f 241 while(blkCnt > 0u)
emh203 0:3d9c67d97d6f 242 {
emh203 0:3d9c67d97d6f 243 /* Copy one sample at a time into state buffer */
emh203 0:3d9c67d97d6f 244 *pStateCurnt++ = *pSrc++;
emh203 0:3d9c67d97d6f 245
emh203 0:3d9c67d97d6f 246 /* Set the accumulator to zero */
emh203 0:3d9c67d97d6f 247 acc0 = 0;
emh203 0:3d9c67d97d6f 248
emh203 0:3d9c67d97d6f 249 /* Initialize state pointer */
emh203 0:3d9c67d97d6f 250 px = pState;
emh203 0:3d9c67d97d6f 251
emh203 0:3d9c67d97d6f 252 /* Initialize Coefficient pointer */
emh203 0:3d9c67d97d6f 253 pb = (pCoeffs);
emh203 0:3d9c67d97d6f 254
emh203 0:3d9c67d97d6f 255 i = numTaps;
emh203 0:3d9c67d97d6f 256
emh203 0:3d9c67d97d6f 257 /* Perform the multiply-accumulates */
emh203 0:3d9c67d97d6f 258 do
emh203 0:3d9c67d97d6f 259 {
emh203 0:3d9c67d97d6f 260 multAcc_32x32_keep32_R(acc0, (*px++), (*(pb++)));
emh203 0:3d9c67d97d6f 261 i--;
emh203 0:3d9c67d97d6f 262 } while(i > 0u);
emh203 0:3d9c67d97d6f 263
emh203 0:3d9c67d97d6f 264 /* The result is in 2.30 format. Convert to 1.31
emh203 0:3d9c67d97d6f 265 ** Then store the output in the destination buffer. */
emh203 0:3d9c67d97d6f 266 *pDst++ = (q31_t) (acc0 << 1);
emh203 0:3d9c67d97d6f 267
emh203 0:3d9c67d97d6f 268 /* Advance state pointer by 1 for the next sample */
emh203 0:3d9c67d97d6f 269 pState = pState + 1;
emh203 0:3d9c67d97d6f 270
emh203 0:3d9c67d97d6f 271 /* Decrement the samples loop counter */
emh203 0:3d9c67d97d6f 272 blkCnt--;
emh203 0:3d9c67d97d6f 273 }
emh203 0:3d9c67d97d6f 274
emh203 0:3d9c67d97d6f 275 /* Processing is complete.
emh203 0:3d9c67d97d6f 276 ** Now copy the last numTaps - 1 samples to the start of the state buffer.
emh203 0:3d9c67d97d6f 277 ** This prepares the state buffer for the next function call. */
emh203 0:3d9c67d97d6f 278
emh203 0:3d9c67d97d6f 279 /* Points to the start of the state buffer */
emh203 0:3d9c67d97d6f 280 pStateCurnt = S->pState;
emh203 0:3d9c67d97d6f 281
emh203 0:3d9c67d97d6f 282 /* Calculate remaining number of copies */
emh203 0:3d9c67d97d6f 283 tapCnt = (numTaps - 1u);
emh203 0:3d9c67d97d6f 284
emh203 0:3d9c67d97d6f 285 /* Copy the remaining q31_t data */
emh203 0:3d9c67d97d6f 286 while(tapCnt > 0u)
emh203 0:3d9c67d97d6f 287 {
emh203 0:3d9c67d97d6f 288 *pStateCurnt++ = *pState++;
emh203 0:3d9c67d97d6f 289
emh203 0:3d9c67d97d6f 290 /* Decrement the loop counter */
emh203 0:3d9c67d97d6f 291 tapCnt--;
emh203 0:3d9c67d97d6f 292 }
emh203 0:3d9c67d97d6f 293
emh203 0:3d9c67d97d6f 294
emh203 0:3d9c67d97d6f 295 }
emh203 0:3d9c67d97d6f 296 IAR_ONLY_LOW_OPTIMIZATION_EXIT
emh203 0:3d9c67d97d6f 297 /**
emh203 0:3d9c67d97d6f 298 * @} end of FIR group
emh203 0:3d9c67d97d6f 299 */