Fork to update libraries and fix disk_read/disk_write functions
Dependencies: FATFileSystem mbed-rtos
Dependents: lpc4088_qsb_usbhost
Fork of LPC4088-USBHost by
USBHost/USBHost.cpp
- Committer:
- va009039
- Date:
- 2014-04-25
- Revision:
- 0:148fca6fd246
File content as of revision 0:148fca6fd246:
/* mbed USBHost Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "USBHost.h" #define USB_DEBUG #include "BaseUsbHostDebug.h" #define TEST #include "BaseUsbHostTest.h" USBHost* USBHost::inst = NULL; USBHost* USBHost::getHostInst() { if (inst == NULL) { inst = new USBHost(); inst->init(); } return inst; } void USBHost::poll() { if (inst) { inst->task(); } } USBHost::USBHost() { } /* virtual */ bool USBHost::addDevice(USBDeviceConnected* parent, int port, bool lowSpeed) { USBDeviceConnected* dev = new USBDeviceConnected; USBEndpoint* ep = new USBEndpoint(dev); dev->init(0, port, lowSpeed); dev->setAddress(0); dev->setEpCtl(ep); uint8_t desc[18]; wait_ms(100); int rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, 8); USB_TEST_ASSERT(rc == USB_TYPE_OK); if (rc != USB_TYPE_OK) { USB_ERR("ADD DEVICE FAILD"); } USB_DBG_HEX(desc, 8); DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc); ep->setSize(dev_desc->bMaxPacketSize); int new_addr = USBDeviceConnected::getNewAddress(); rc = controlWrite(dev, 0x00, SET_ADDRESS, new_addr, 0, NULL, 0); USB_TEST_ASSERT(rc == USB_TYPE_OK); dev->setAddress(new_addr); wait_ms(100); rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc)); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, sizeof(desc)); dev->setVid(dev_desc->idVendor); dev->setPid(dev_desc->idProduct); dev->setClass(dev_desc->bDeviceClass); USB_INFO("parent:%p port:%d speed:%s VID:%04x PID:%04x class:%02x addr:%d", parent, port, (lowSpeed ? "low " : "full"), dev->getVid(), dev->getPid(), dev->getClass(), dev->getAddress()); DeviceLists.push_back(dev); if (dev->getClass() == HUB_CLASS) { const int config = 1; int rc = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0); USB_TEST_ASSERT(rc == USB_TYPE_OK); wait_ms(100); Hub(dev); } return true; } // enumerate a device with the control USBEndpoint USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator) { if (dev->getClass() == HUB_CLASS) { // skip hub class return USB_TYPE_OK; } uint8_t desc[18]; USB_TYPE rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc)); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, sizeof(desc)); if (rc != USB_TYPE_OK) { return rc; } DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc); dev->setClass(dev_desc->bDeviceClass); pEnumerator->setVidPid(dev->getVid(), dev->getPid()); rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, desc, 4); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, 4); int TotalLength = desc[2]|desc[3]<<8; uint8_t* buf = new uint8_t[TotalLength]; rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, buf, TotalLength); USB_TEST_ASSERT(rc == USB_TYPE_OK); //USB_DBG_HEX(buf, TotalLength); // Parse the configuration descriptor parseConfDescr(dev, buf, TotalLength, pEnumerator); delete[] buf; // only set configuration if not enumerated before if (!dev->isEnumerated()) { USB_DBG("Set configuration 1 on dev: %p", dev); // sixth step: set configuration (only 1 supported) int config = 1; USB_TYPE res = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0); if (res != USB_TYPE_OK) { USB_ERR("SET CONF FAILED"); return res; } // Some devices may require this delay wait_ms(100); dev->setEnumerated(); // Now the device is enumerated! USB_DBG("dev %p is enumerated", dev); } return USB_TYPE_OK; } // this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor. void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator) { uint32_t index = 0; uint32_t len_desc = 0; uint8_t id = 0; USBEndpoint * ep = NULL; uint8_t intf_nb = 0; bool parsing_intf = false; uint8_t current_intf = 0; EndpointDescriptor* ep_desc; while (index < len) { len_desc = conf_descr[index]; id = conf_descr[index+1]; USB_DBG_HEX(conf_descr+index, len_desc); switch (id) { case CONFIGURATION_DESCRIPTOR: USB_DBG("dev: %p has %d intf", dev, conf_descr[4]); dev->setNbIntf(conf_descr[4]); break; case INTERFACE_DESCRIPTOR: if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) { intf_nb++; current_intf = conf_descr[index + 2]; dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]); USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]); parsing_intf = true; } else { parsing_intf = false; } break; case ENDPOINT_DESCRIPTOR: ep_desc = reinterpret_cast<EndpointDescriptor*>(conf_descr+index); if (parsing_intf && (intf_nb <= MAX_INTF) ) { ENDPOINT_TYPE type = (ENDPOINT_TYPE)(ep_desc->bmAttributes & 0x03); ENDPOINT_DIRECTION dir = (ep_desc->bEndpointAddress & 0x80) ? IN : OUT; if(pEnumerator->useEndpoint(current_intf, type, dir)) { ep = new USBEndpoint(dev); ep->init(type, dir, ep_desc->wMaxPacketSize, ep_desc->bEndpointAddress); USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev); dev->addEndpoint(current_intf, ep); } } break; case HID_DESCRIPTOR: //lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8); break; default: break; } index += len_desc; } } USB_TYPE USBHost::controlRead(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { USBEndpoint* ep = dev->getEpCtl(); return controlRead(ep, requestType, request, value, index, buf, len); } USB_TYPE USBHost::controlWrite(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { USBEndpoint* ep = dev->getEpCtl(); return controlWrite(ep, requestType, request, value, index, buf, len); } USB_TYPE USBHost::controlRead(USBEndpoint* ep, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t* buf, uint32_t len) { SETUP_PACKET setup(requestType, request, value, index, len); int result = token_setup(ep, &setup, len); // setup stage if (result < 0) { return USB_TYPE_ERROR; } result = token_in(ep, buf, len); // data stage if (result < 0) { return USB_TYPE_ERROR; } int read_len = result; ep->m_pED->setToggleDATA1(); result = token_out(ep); // status stage if (result < 0) { return USB_TYPE_ERROR; } ep->setLengthTransferred(read_len); return USB_TYPE_OK; } USB_TYPE USBHost::controlWrite(USBEndpoint* ep, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { SETUP_PACKET setup(requestType, request, value, index, len); int result = token_setup(ep, &setup, len); // setup stage if (result < 0) { return USB_TYPE_ERROR; } int write_len = 0; if (buf != NULL) { result = token_out(ep, buf, len); // data stage if (result < 0) { return USB_TYPE_ERROR; } write_len = result; } ep->m_pED->setToggleDATA1(); result = token_in(ep); // status stage if (result < 0) { return USB_TYPE_ERROR; } ep->setLengthTransferred(write_len); return USB_TYPE_OK; } USB_TYPE USBHost::bulkRead(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) { if (!blocking) { ep->setBuffer(buf, len); ep_queue.push(ep); token_inNB(ep, buf, len); return USB_TYPE_PROCESSING; } int result = token_in(ep, buf, len); if (result >= 0) { ep->setLengthTransferred(result); return USB_TYPE_OK; } return USB_TYPE_ERROR; } USB_TYPE USBHost::bulkWrite(USBDeviceConnected * dev, USBEndpoint* ep, uint8_t * buf, uint32_t len, bool blocking) { int result = token_out(ep, buf, len); if (result >= 0) { ep->setLengthTransferred(result); return USB_TYPE_OK; } return USB_TYPE_ERROR; } USB_TYPE USBHost::interruptRead(USBDeviceConnected * dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) { if (!blocking) { ep->setBuffer(buf, len); ep_queue.push(ep); token_inNB(ep, buf, len); return USB_TYPE_PROCESSING; } int result = token_in(ep, buf, len); if (result >= 0) { ep->setLengthTransferred(result); return USB_TYPE_OK; } return USB_TYPE_ERROR; } int USBHost::interruptReadNB(USBEndpoint* ep, uint8_t* data, int size) { if (ep->getState() != USB_TYPE_PROCESSING) { ep->setState(USB_TYPE_PROCESSING); ep->setBuffer(data, size); token_inNB(ep, data, size); } if (token_inNB_result(ep) != USB_TYPE_PROCESSING) { return ep->getLengthTransferred(); } return -1; } int USBHost::bulkReadNB(USBEndpoint*ep, uint8_t* data, int size) { return interruptReadNB(ep, data, size); } void USBHost::task() { USBEndpoint* ep = ep_queue.pop(); if (ep) { if (token_inNB_result(ep) == USB_TYPE_OK) { ep->call(); } else { ep_queue.push(ep); } } }