Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of StarterKit by
main.cpp
- Committer:
- elmkom
- Date:
- 2016-09-19
- Revision:
- 35:2e864bae3af0
- Parent:
- 34:029e07b67a41
- Child:
- 36:f8d96ff1dd1b
File content as of revision 35:2e864bae3af0:
#include "mbed.h" #include <cctype> #include <string> #include "SerialBuffered.h" #include "HTS221.h" #include "config_me.h" #include "wnc_control.h" #include "sensors.h" #include "hardware.h" I2C i2c(PTC11, PTC10); //SDA, SCL -- define the I2C pins being used I2C proximityi2c(PTE25, PTE24); // comment out the following line if color is not supported on the terminal #define USE_COLOR #ifdef USE_COLOR #define BLK "\033[30m" #define RED "\033[31m" #define GRN "\033[32m" #define YEL "\033[33m" #define BLU "\033[34m" #define MAG "\033[35m" #define CYN "\033[36m" #define WHT "\033[37m" #define DEF "\033[39m" #else #define BLK #define RED #define GRN #define YEL #define BLU #define MAG #define CYN #define WHT #define DEF #endif #define MDM_DBG_OFF 0 #define MDM_DBG_AT_CMDS (1 << 0) int mdm_dbgmask = MDM_DBG_OFF; Serial pc(USBTX, USBRX); SerialBuffered mdm(PTD3, PTD2, 128); DigitalOut led_green(LED_GREEN); DigitalOut led_red(LED_RED); DigitalOut led_blue(LED_BLUE); DigitalOut mdm_uart2_rx_boot_mode_sel(PTC17); // on powerup, 0 = boot mode, 1 = normal boot DigitalOut mdm_power_on(PTB9); // 0 = turn modem on, 1 = turn modem off (should be held high for >5 seconds to cycle modem) DigitalOut mdm_wakeup_in(PTC2); // 0 = let modem sleep, 1 = keep modem awake -- Note: pulled high on shield DigitalOut mdm_reset(PTC12); // active high DigitalOut shield_3v3_1v8_sig_trans_ena(PTC4); // 0 = disabled (all signals high impedence, 1 = translation active DigitalOut mdm_uart1_cts(PTD0); #define TOUPPER(a) (a) //toupper(a) const char ok_str[] = "OK"; const char error_str[] = "ERROR"; #define MDM_OK 0 #define MDM_ERR_TIMEOUT -1 #define MAX_AT_RSP_LEN 255 short proximity = 0; void prox_write_reg(char address,char reg, char cmd) { char txbuffer [2]; txbuffer[0] = reg; txbuffer[1] = cmd; proximityi2c.write(address<<1, txbuffer, 2,false ); } void prox_write(char address, char cmd) { char txbuffer [1]; txbuffer[0] = cmd; proximityi2c.write(address<<1, txbuffer, 1,false ); } unsigned char prox_read_reg(char address,char reg) { char txbuffer [1]; char rxbuffer [1]; rxbuffer[0] = 0; txbuffer[0] = reg; proximityi2c.write(address<<1, txbuffer, 1,false ); proximityi2c.read(address<<1, rxbuffer, 1 ); return (unsigned char)rxbuffer[0]; } void init_proximity_sensor(int sensor) { char C25ma = 0x00; char C50ma = 0x01; char C100m1 = 0x02; char C200ma = 0x03; char GainAls1Ir1 = 0x00<<2; char GainAls2Ir1 = 0x04<<2; char GainAls2Ir2 = 0x05<<2; char GainAls64Ir64 = 0x0A<<2; char GainAls128Ir64 = 0x0D<<2; char GainAls128Ir128 = 0x0F<<2; char Als0Ps0 = 0x00; char Als0Ps10 = 0x01; char Als0Ps40 = 0x02; char Als0Ps100 = 0x03; char Als0Ps400 = 0x04; char Als100Ps0 = 0x05; char Als100Ps100 = 0x06; char Als100Ps400 = 0x07; char Als401Ps0 = 0x08; char Als401Ps100 = 0x09; char Als400Ps0 = 0x0A; char Als400Ps400 = 0x0B; char Als50Ps50 = 0x0C; char muxaddress = 0x70; char proxaddress = 0x39; prox_write(muxaddress,sensor); // sensor 2 prox_write_reg(proxaddress,0x41,Als0Ps400); // initiate ALS: and PS prox_write_reg(proxaddress,0x42,GainAls64Ir64|C25ma); // set ALS_VIS=ALS_IR GAIN = 64 current 25ma } short read_proximity(int sensor) { char muxaddress = 0x70; char proxaddress = 0x39; prox_write(muxaddress,sensor); // sensor 2 unsigned char prox_lsb = prox_read_reg(proxaddress,0x44); unsigned char prox_msb = prox_read_reg(proxaddress,0x45); unsigned char ALS_lsb = prox_read_reg(proxaddress,0x46); unsigned char ALS_msb = prox_read_reg(proxaddress,0x47); unsigned char IR_lsb = prox_read_reg(proxaddress,0x48); unsigned char IR_msb = prox_read_reg(proxaddress,0x49); short proximity = prox_msb*256+prox_lsb; short ALS = ALS_msb*256+ALS_lsb; short IR = IR_msb*256+IR_lsb; pc.printf(GRN "Sensor %d\n\r",sensor); pc.printf(GRN "Prox %d\n\r",proximity); pc.printf(GRN "ALS %d\n\r",ALS); pc.printf(GRN "IR %d\n\r",IR); return proximity; } /* I2C_w_3 (sfh_address*2, 0x41, 0x08); // initiate ALS: 400ms rep rate, T_int=100ms I2C_w_3 (sfh_address*2, 0x42, 0x28); // set ALS_VIS=ALS_IR GAIN = 64 I2C_w_2_r_1 (sfh_address*2, 0x46); // read lsb of ALS_VIS, register 0x46 Content1 = Content; I2C_w_2_r_1 (sfh_address*2, 0x47); // read msb of ALS_VIS, register 0x47 ALS_VIS = (Content * 256 + Content1); // combining LSB+MSB byte to decimal value I2C_w_2_r_1 (sfh_address*2, 0x48); // read lsb of ALS_IR, register 0x48 Content1 = Content; I2C_w_2_r_1 (sfh_address*2, 0x49); // read msb of ALS_IR, register 0x49 ALS_IR = (Content * 256 + Content1); // combining LSB+MSB byte to decimal value // Lux Calculation based on ALS Gain = 64 and ALS_Int_Time = 100 ms // Lux value in front of sensor, no cover glass IF ((ALS_IR / ALS_VIS) < 0.109) {LUX = (1.534 * ALS_VIS / 64 - 3.759 * ALS_IR / 64) * 1}; ELSE IF ((ALS_IR / ALS_VIS) < 0.429) {LUX = (1.339 * ALS_VIS / 64 – 1.972 * ALS_IR / 64) * 1}; ELSE IF ((ALS_IR/ALS_VIS) < (0.95 * 1.45)) {LUX = (0.701 * ALS_VIS / 64 – 0.483 * ALS_IR / 64) * 1}; ELSE IF ((ALS_IR/ALS_VIS) < (1.5 * 1.45)) {LUX = (2 * 0.701 * ALS_VIS / 64 – 1.18 * 0.483 * ALS_IR / 64) * 1}; ELSE IF ((ALS_IR/ALS_VIS) < (2.5 * 1.45)) {LUX = (4 * 0.701 * ALS_VIS / 64 – 1.33 * 0.483 * ALS_IR / 64) * 1}; Else {LUX = 8 * 0.701 * ALS_VIS / 64}; */ short oldread_proximity( void ) { char muxaddress = (0x70<<1); char proxaddress = (0x39<<1); char reg = 0x40; short muxvalue = 0; short value = 0; char sensor = 0x02; char txbuffer [1]; char rxbuffer [1]; rxbuffer[0] = 0; txbuffer[0] = sensor; proximityi2c.write(muxaddress, txbuffer, 1,false ); proximityi2c.read(muxaddress, rxbuffer, 1 ); muxvalue = (unsigned char)rxbuffer[0]; rxbuffer[0] = 0; txbuffer[0] = reg; proximityi2c.write(proxaddress, txbuffer, 1,false ); proximityi2c.read(proxaddress, rxbuffer, 1 ); value = (unsigned char)rxbuffer[0]; pc.printf(GRN "Mux %d\n\r",muxvalue); pc.printf(GRN "Proximity %d\n\r",value); return value; } ssize_t mdm_getline(char *buff, size_t size, int timeout_ms) { int cin = -1; int cin_last; if (NULL == buff || size == 0) { return -1; } size_t len = 0; Timer timer; timer.start(); while ((len < (size-1)) && (timer.read_ms() < timeout_ms)) { if (mdm.readable()) { cin_last = cin; cin = mdm.getc(); if (isprint(cin)) { buff[len++] = (char)cin; continue; } else if (('\r' == cin_last) && ('\n' == cin)) { break; } } wait_ms(1); } buff[len] = (char)NULL; return len; } int mdm_sendAtCmd(const char *cmd, const char **rsp_list, int timeout_ms) { if (cmd && strlen(cmd) > 0) { if (mdm_dbgmask & MDM_DBG_AT_CMDS) { printf(MAG "ATCMD: " DEF "--> " GRN "%s" DEF "\n", cmd); } mdm.printf("%s\r\n", cmd); } if (rsp_list) { Timer timer; char rsp[MAX_AT_RSP_LEN+1]; int len; timer.start(); while (timer.read_ms() < timeout_ms) { len = mdm_getline(rsp, sizeof(rsp), timeout_ms - timer.read_ms()); if (len < 0) return MDM_ERR_TIMEOUT; if (len == 0) continue; if (mdm_dbgmask & MDM_DBG_AT_CMDS) { printf(MAG "ATRSP: " DEF "<-- " CYN "%s" DEF "\n", rsp); } if (rsp_list) { int rsp_idx = 0; while (rsp_list[rsp_idx]) { if (strcasecmp(rsp, rsp_list[rsp_idx]) == 0) { return rsp_idx; } rsp_idx++; } } } return MDM_ERR_TIMEOUT; } return MDM_OK; } int mdm_init(void) { // disable signal level translator (necessary // for the modem to boot properly) shield_3v3_1v8_sig_trans_ena = 0; // Hard reset the modem (doesn't go through // the signal level translator) mdm_reset = 1; // wait a moment for the modem to react wait_ms(10); // Let modem boot mdm_reset = 0; // wait a moment for the modem to react wait(1.0); // power modem on //off mdm_power_on = 0; //1; // insure modem boots into normal operating mode // and does not go to sleep when powered on mdm_uart2_rx_boot_mode_sel = 1; mdm_wakeup_in = 1; // initialze comm with the modem mdm.baud(115200); // clear out potential garbage while (mdm.readable()) mdm.getc(); mdm_uart1_cts = 0; // wait a moment for the modem to react to signal // conditions while the level translator is disabled // (sorry, don't have enough information to know // what exactly the modem is doing with the current // pin settings) wait(1.0); // enable the signal level translator to start // modem reset process (modem will be powered down) shield_3v3_1v8_sig_trans_ena = 1; // Give the modem 60 secons to start responding by // sending simple 'AT' commands to modem once per second. Timer timer; timer.start(); while (timer.read() < 60) { const char * rsp_lst[] = { ok_str, error_str, NULL }; int rc = mdm_sendAtCmd("AT", rsp_lst, 500); if (rc == 0) return true; //timer.read(); wait_ms(1000 - (timer.read_ms() % 1000)); pc.printf("\r%d",timer.read_ms()/1000); } return false; } int oldmdm_init(void) { // Hard reset the modem (doesn't go through // the signal level translator) mdm_reset = 0; // disable signal level translator (necessary // for the modem to boot properly). All signals // except mdm_reset go through the level translator // and have internal pull-up/down in the module. While // the level translator is disabled, these pins will // be in the correct state. shield_3v3_1v8_sig_trans_ena = 0; // While the level translator is disabled and ouptut pins // are tristated, make sure the inputs are in the same state // as the WNC Module pins so that when the level translator is // enabled, there are no differences. mdm_uart2_rx_boot_mode_sel = 1; // UART2_RX should be high mdm_power_on = 0; // powr_on should be low mdm_wakeup_in = 1; // wake-up should be high mdm_uart1_cts = 0; // indicate that it is ok to send // Now, wait for the WNC Module to perform its initial boot correctly wait(1.0); // The WNC module initializes comms at 115200 8N1 so set it up mdm.baud(115200); //Now, enable the level translator, the input pins should now be the //same as how the M14A module is driving them with internal pull ups/downs. //When enabled, there will be no changes in these 4 pins... shield_3v3_1v8_sig_trans_ena = 1; // Now, give the modem 60 secons to start responding by // sending simple 'AT' commands to modem once per second. Timer timer; timer.start(); while (timer.read() < 60) { const char * rsp_lst[] = { ok_str, error_str, NULL }; int rc = mdm_sendAtCmd("AT", rsp_lst, 500); if (rc == 0) return true; //timer.read(); wait_ms(1000 - (timer.read_ms() % 1000)); pc.printf("\r%d",timer.read_ms()/1000); } return false; } int mdm_sendAtCmdRsp(const char *cmd, const char **rsp_list, int timeout_ms, string * rsp, int * len) { static char cmd_buf[3200]; // Need enough room for the WNC sockreads (over 3000 chars) size_t n = strlen(cmd); if (cmd && n > 0) { if (mdm_dbgmask & MDM_DBG_AT_CMDS) { printf(MAG "ATCMD: " DEF "--> " GRN "%s" DEF "\n", cmd); } while (n--) { mdm.putc(*cmd++); wait_ms(1); }; mdm.putc('\r'); wait_ms(1); mdm.putc('\n'); wait_ms(1); } if (rsp_list) { rsp->erase(); // Clean up from prior cmd response *len = 0; Timer timer; timer.start(); while (timer.read_ms() < timeout_ms) { int lenCmd = mdm_getline(cmd_buf, sizeof(cmd_buf), timeout_ms - timer.read_ms()); if (lenCmd == 0) continue; if (lenCmd < 0) return MDM_ERR_TIMEOUT; else { *len += lenCmd; *rsp += cmd_buf; } if (mdm_dbgmask & MDM_DBG_AT_CMDS) { printf(MAG "ATRSP: " DEF "<-- " CYN "%s" DEF "\n", cmd_buf); } int rsp_idx = 0; while (rsp_list[rsp_idx]) { if (strcasecmp(cmd_buf, rsp_list[rsp_idx]) == 0) { return rsp_idx; } rsp_idx++; } } return MDM_ERR_TIMEOUT; } pc.printf("D %s",rsp); return MDM_OK; } void reinitialize_mdm(void) { // Initialize the modem printf(GRN "Modem RE-initializing..." DEF "\r\n"); if (!mdm_init()) { printf(RED "\n\rModem RE-initialization failed!" DEF "\n"); } printf("\r\n"); } // These are built on the fly string MyServerIpAddress; string MySocketData; // These are to be built on the fly string my_temp; string my_humidity; #define CTOF(x) ((x)*1.8+32) //******************************************************************************************************************************************** //* Create string with sensor readings that can be sent to flow as an HTTP get //******************************************************************************************************************************************** K64F_Sensors_t SENSOR_DATA = { .Temperature = "0", .Humidity = "0", .AccelX = "0", .AccelY = "0", .AccelZ = "0", .MagnetometerX = "0", .MagnetometerY = "0", .MagnetometerZ = "0", .AmbientLightVis = "0", .AmbientLightIr = "0", .UVindex = "0", .Proximity = "0", .Temperature_Si7020 = "0", .Humidity_Si7020 = "0" }; void GenerateModemString(char * modem_string) { switch(iSensorsToReport) { case PROXIMITY: { sprintf(modem_string, "GET %s%s?serial=%s&temp=%s&humidity=%s&proximity=%d %s%s\r\n\r\n", FLOW_BASE_URL, FLOW_INPUT_NAME, FLOW_DEVICE_NAME, SENSOR_DATA.Temperature, SENSOR_DATA.Humidity,proximity, FLOW_URL_TYPE, MY_SERVER_URL); break; } case TEMP_HUMIDITY_ONLY: { sprintf(modem_string, "GET %s%s?serial=%s&temp=%s&humidity=%s %s%s\r\n\r\n", FLOW_BASE_URL, FLOW_INPUT_NAME, FLOW_DEVICE_NAME, SENSOR_DATA.Temperature, SENSOR_DATA.Humidity, FLOW_URL_TYPE, MY_SERVER_URL); break; } case TEMP_HUMIDITY_ACCELEROMETER: { sprintf(modem_string, "GET %s%s?serial=%s&temp=%s&humidity=%s&accelX=%s&accelY=%s&accelZ=%s %s%s\r\n\r\n", FLOW_BASE_URL, FLOW_INPUT_NAME, FLOW_DEVICE_NAME, SENSOR_DATA.Temperature, SENSOR_DATA.Humidity, SENSOR_DATA.AccelX,SENSOR_DATA.AccelY,SENSOR_DATA.AccelZ, FLOW_URL_TYPE, MY_SERVER_URL); break; } case TEMP_HUMIDITY_ACCELEROMETER_PMODSENSORS: { sprintf(modem_string, "GET %s%s?serial=%s&temp=%s&humidity=%s&accelX=%s&accelY=%s&accelZ=%s&proximity=%s&light_uv=%s&light_vis=%s&light_ir=%s %s%s\r\n\r\n", FLOW_BASE_URL, FLOW_INPUT_NAME, FLOW_DEVICE_NAME, SENSOR_DATA.Temperature, SENSOR_DATA.Humidity, SENSOR_DATA.AccelX,SENSOR_DATA.AccelY,SENSOR_DATA.AccelZ, SENSOR_DATA.Proximity, SENSOR_DATA.UVindex, SENSOR_DATA.AmbientLightVis, SENSOR_DATA.AmbientLightIr, FLOW_URL_TYPE, MY_SERVER_URL); break; } default: { sprintf(modem_string, "Invalid sensor selected\r\n\r\n"); break; } } //switch(iSensorsToReport) } //GenerateModemString //Periodic timer Ticker OneMsTicker; volatile bool bTimerExpiredFlag = false; int OneMsTicks = 0; int iTimer1Interval_ms = 1000; //******************************************************************************************************************************************** //* Periodic 1ms timer tick //******************************************************************************************************************************************** void OneMsFunction() { OneMsTicks++; if ((OneMsTicks % iTimer1Interval_ms) == 0) { bTimerExpiredFlag = true; } } //OneMsFunction() //******************************************************************************************************************************************** //* Set the RGB LED's Color //* LED Color 0=Off to 7=White. 3 bits represent BGR (bit0=Red, bit1=Green, bit2=Blue) //******************************************************************************************************************************************** void SetLedColor(unsigned char ucColor) { //Note that when an LED is on, you write a 0 to it: led_red = !(ucColor & 0x1); //bit 0 led_green = !(ucColor & 0x2); //bit 1 led_blue = !(ucColor & 0x4); //bit 2 } //SetLedColor() //******************************************************************************************************************************************** //* Process JSON response messages //******************************************************************************************************************************************** bool extract_JSON(char* search_field, char* found_string) { char* beginquote; char* endquote; beginquote = strchr(search_field, '{'); //start of JSON endquote = strchr(search_field, '}'); //end of JSON if (beginquote != 0) { uint16_t ifoundlen; if (endquote != 0) { ifoundlen = (uint16_t) (endquote - beginquote) + 1; strncpy(found_string, beginquote, ifoundlen ); found_string[ifoundlen] = 0; //null terminate return true; } else { endquote = strchr(search_field, '\0'); //end of string... sometimes the end bracket is missing ifoundlen = (uint16_t) (endquote - beginquote) + 1; strncpy(found_string, beginquote, ifoundlen ); found_string[ifoundlen] = 0; //null terminate return false; } } else { return false; } } //extract_JSON bool parse_JSON(char* json_string) { char* beginquote; char token[] = "\"LED\":\""; beginquote = strstr(json_string, token ); if ((beginquote != 0)) { char cLedColor = beginquote[strlen(token)]; printf(GRN "LED Found : %c" DEF "\r\n", cLedColor); switch(cLedColor) { case 'O': { //Off SetLedColor(0); break; } case 'R': { //Red SetLedColor(1); break; } case 'G': { //Green SetLedColor(2); break; } case 'Y': { //Yellow SetLedColor(3); break; } case 'B': { //Blue SetLedColor(4); break; } case 'M': { //Magenta SetLedColor(5); break; } case 'T': { //Turquoise SetLedColor(6); break; } case 'W': { //White SetLedColor(7); break; } default: { break; } } //switch(cLedColor) return true; } else { return false; } } //parse_JSON int main() { int i; HTS221 hts221; pc.baud(115200); proximityi2c.frequency(400000); for(int i = 0;i<8;i++) init_proximity_sensor(i); void hts221_init(void); // Set LED to RED until init finishes SetLedColor(0x1); pc.printf(BLU "Hello World from AT&T Shape!\r\n\n\r"); pc.printf(GRN "Initialize the HTS221\n\r"); i = hts221.begin(); if( i ) pc.printf(BLU "HTS221 Detected! (0x%02X)\n\r",i); else pc.printf(RED "HTS221 NOT DETECTED!!\n\r"); printf("Temp is: %0.2f F \n\r",CTOF(hts221.readTemperature())); printf("Humid is: %02d %%\n\r",hts221.readHumidity()); sensors_init(); read_sensors(); // Initialize the modem printf(GRN "Modem initializing... will take up to 60 seconds" DEF "\r\n"); do { i=mdm_init(); if (!i) { pc.printf(RED "Modem initialization failed!" DEF "\n"); } } while (!i); //Software init software_init_mdm(); // Resolve URL to IP address to connect to resolve_mdm(); //Create a 1ms timer tick function: OneMsTicker.attach(OneMsFunction, 0.001f) ; iTimer1Interval_ms = SENSOR_UPDATE_INTERVAL_MS; // Open the socket (connect to the server) sockopen_mdm(); // Set LED BLUE for partial init SetLedColor(0x4); // Send and receive data perpetually while(1) { static unsigned ledOnce = 0; if (bTimerExpiredFlag) { bTimerExpiredFlag = false; sprintf(SENSOR_DATA.Temperature, "%0.2f", CTOF(hts221.readTemperature())); sprintf(SENSOR_DATA.Humidity, "%02d", hts221.readHumidity()); read_sensors(); //read available external sensors from a PMOD and the on-board motion sensor for(int i = 0;i<8;i++) proximity = read_proximity(i); char modem_string[512]; GenerateModemString(&modem_string[0]); printf(BLU "Sending to modem : %s" DEF "\n", modem_string); sockwrite_mdm(modem_string); sockread_mdm(&MySocketData, 1024, 20); // If any non-zero response from server, make it GREEN one-time // then the actual FLOW responses will set the color. if ((!ledOnce) && (MySocketData.length() > 0)) { ledOnce = 1; SetLedColor(0x2); } printf(BLU "Read back : %s" DEF "\n", &MySocketData[0]); char myJsonResponse[512]; if (extract_JSON(&MySocketData[0], &myJsonResponse[0])) { printf(GRN "JSON : %s" DEF "\n", &myJsonResponse[0]); parse_JSON(&myJsonResponse[0]); } else { printf(RED "JSON : %s" DEF "\n", &myJsonResponse[0]); //most likely an incomplete JSON string parse_JSON(&myJsonResponse[0]); //This is risky, as the string may be corrupted } } //bTimerExpiredFlag } //forever loop }