Speed testing IMUs
Dependencies: MadgwickAHRS mbed
Fork of IMU_serial by
MPU9250.h@0:80a695ae3cc3, 2016-09-28 (annotated)
- Committer:
- rctaduio
- Date:
- Wed Sep 28 23:59:57 2016 +0000
- Revision:
- 0:80a695ae3cc3
- Child:
- 3:c1902ecb30a7
stuff
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
rctaduio | 0:80a695ae3cc3 | 1 | /* |
rctaduio | 0:80a695ae3cc3 | 2 | TODO: |
rctaduio | 0:80a695ae3cc3 | 3 | add configuration function: |
rctaduio | 0:80a695ae3cc3 | 4 | loop through mux |
rctaduio | 0:80a695ae3cc3 | 5 | if imu |
rctaduio | 0:80a695ae3cc3 | 6 | append imu to a list |
rctaduio | 0:80a695ae3cc3 | 7 | ... |
rctaduio | 0:80a695ae3cc3 | 8 | ... |
rctaduio | 0:80a695ae3cc3 | 9 | if list > 0 |
rctaduio | 0:80a695ae3cc3 | 10 | return something good |
rctaduio | 0:80a695ae3cc3 | 11 | |
rctaduio | 0:80a695ae3cc3 | 12 | add config output function |
rctaduio | 0:80a695ae3cc3 | 13 | |
rctaduio | 0:80a695ae3cc3 | 14 | |
rctaduio | 0:80a695ae3cc3 | 15 | |
rctaduio | 0:80a695ae3cc3 | 16 | */ |
rctaduio | 0:80a695ae3cc3 | 17 | |
rctaduio | 0:80a695ae3cc3 | 18 | |
rctaduio | 0:80a695ae3cc3 | 19 | #ifndef MPU9250_H |
rctaduio | 0:80a695ae3cc3 | 20 | #define MPU9250_H |
rctaduio | 0:80a695ae3cc3 | 21 | |
rctaduio | 0:80a695ae3cc3 | 22 | #include "mbed.h" |
rctaduio | 0:80a695ae3cc3 | 23 | #include "math.h" |
rctaduio | 0:80a695ae3cc3 | 24 | #include "MadgwickAHRS.h" |
rctaduio | 0:80a695ae3cc3 | 25 | |
rctaduio | 0:80a695ae3cc3 | 26 | // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in |
rctaduio | 0:80a695ae3cc3 | 27 | // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map |
rctaduio | 0:80a695ae3cc3 | 28 | // |
rctaduio | 0:80a695ae3cc3 | 29 | //Magnetometer Registers |
rctaduio | 0:80a695ae3cc3 | 30 | #define AK8963_ADDRESS 0x0C<<1 |
rctaduio | 0:80a695ae3cc3 | 31 | #define WHO_AM_I_AK8963 0x00 // should return 0x48 |
rctaduio | 0:80a695ae3cc3 | 32 | #define INFO 0x01 |
rctaduio | 0:80a695ae3cc3 | 33 | #define AK8963_ST1 0x02 // data ready status bit 0 |
rctaduio | 0:80a695ae3cc3 | 34 | #define AK8963_XOUT_L 0x03 // data |
rctaduio | 0:80a695ae3cc3 | 35 | #define AK8963_XOUT_H 0x04 |
rctaduio | 0:80a695ae3cc3 | 36 | #define AK8963_YOUT_L 0x05 |
rctaduio | 0:80a695ae3cc3 | 37 | #define AK8963_YOUT_H 0x06 |
rctaduio | 0:80a695ae3cc3 | 38 | #define AK8963_ZOUT_L 0x07 |
rctaduio | 0:80a695ae3cc3 | 39 | #define AK8963_ZOUT_H 0x08 |
rctaduio | 0:80a695ae3cc3 | 40 | #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 |
rctaduio | 0:80a695ae3cc3 | 41 | #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 |
rctaduio | 0:80a695ae3cc3 | 42 | #define AK8963_ASTC 0x0C // Self test control |
rctaduio | 0:80a695ae3cc3 | 43 | #define AK8963_I2CDIS 0x0F // I2C disable |
rctaduio | 0:80a695ae3cc3 | 44 | #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value |
rctaduio | 0:80a695ae3cc3 | 45 | #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value |
rctaduio | 0:80a695ae3cc3 | 46 | #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value |
rctaduio | 0:80a695ae3cc3 | 47 | |
rctaduio | 0:80a695ae3cc3 | 48 | #define SELF_TEST_X_GYRO 0x00 |
rctaduio | 0:80a695ae3cc3 | 49 | #define SELF_TEST_Y_GYRO 0x01 |
rctaduio | 0:80a695ae3cc3 | 50 | #define SELF_TEST_Z_GYRO 0x02 |
rctaduio | 0:80a695ae3cc3 | 51 | |
rctaduio | 0:80a695ae3cc3 | 52 | /*#define X_FINE_GAIN 0x03 // [7:0] fine gain |
rctaduio | 0:80a695ae3cc3 | 53 | #define Y_FINE_GAIN 0x04 |
rctaduio | 0:80a695ae3cc3 | 54 | #define Z_FINE_GAIN 0x05 |
rctaduio | 0:80a695ae3cc3 | 55 | #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer |
rctaduio | 0:80a695ae3cc3 | 56 | #define XA_OFFSET_L_TC 0x07 |
rctaduio | 0:80a695ae3cc3 | 57 | #define YA_OFFSET_H 0x08 |
rctaduio | 0:80a695ae3cc3 | 58 | #define YA_OFFSET_L_TC 0x09 |
rctaduio | 0:80a695ae3cc3 | 59 | #define ZA_OFFSET_H 0x0A |
rctaduio | 0:80a695ae3cc3 | 60 | #define ZA_OFFSET_L_TC 0x0B */ |
rctaduio | 0:80a695ae3cc3 | 61 | |
rctaduio | 0:80a695ae3cc3 | 62 | #define SELF_TEST_X_ACCEL 0x0D |
rctaduio | 0:80a695ae3cc3 | 63 | #define SELF_TEST_Y_ACCEL 0x0E |
rctaduio | 0:80a695ae3cc3 | 64 | #define SELF_TEST_Z_ACCEL 0x0F |
rctaduio | 0:80a695ae3cc3 | 65 | |
rctaduio | 0:80a695ae3cc3 | 66 | #define SELF_TEST_A 0x10 |
rctaduio | 0:80a695ae3cc3 | 67 | |
rctaduio | 0:80a695ae3cc3 | 68 | #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope |
rctaduio | 0:80a695ae3cc3 | 69 | #define XG_OFFSET_L 0x14 |
rctaduio | 0:80a695ae3cc3 | 70 | #define YG_OFFSET_H 0x15 |
rctaduio | 0:80a695ae3cc3 | 71 | #define YG_OFFSET_L 0x16 |
rctaduio | 0:80a695ae3cc3 | 72 | #define ZG_OFFSET_H 0x17 |
rctaduio | 0:80a695ae3cc3 | 73 | #define ZG_OFFSET_L 0x18 |
rctaduio | 0:80a695ae3cc3 | 74 | #define SMPLRT_DIV 0x19 |
rctaduio | 0:80a695ae3cc3 | 75 | #define CONFIG 0x1A |
rctaduio | 0:80a695ae3cc3 | 76 | #define GYRO_CONFIG 0x1B |
rctaduio | 0:80a695ae3cc3 | 77 | #define ACCEL_CONFIG 0x1C |
rctaduio | 0:80a695ae3cc3 | 78 | #define ACCEL_CONFIG2 0x1D |
rctaduio | 0:80a695ae3cc3 | 79 | #define LP_ACCEL_ODR 0x1E |
rctaduio | 0:80a695ae3cc3 | 80 | #define WOM_THR 0x1F |
rctaduio | 0:80a695ae3cc3 | 81 | |
rctaduio | 0:80a695ae3cc3 | 82 | #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms |
rctaduio | 0:80a695ae3cc3 | 83 | #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] |
rctaduio | 0:80a695ae3cc3 | 84 | #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms |
rctaduio | 0:80a695ae3cc3 | 85 | |
rctaduio | 0:80a695ae3cc3 | 86 | #define FIFO_EN 0x23 |
rctaduio | 0:80a695ae3cc3 | 87 | #define I2C_MST_CTRL 0x24 |
rctaduio | 0:80a695ae3cc3 | 88 | #define I2C_SLV0_ADDR 0x25 |
rctaduio | 0:80a695ae3cc3 | 89 | #define I2C_SLV0_REG 0x26 |
rctaduio | 0:80a695ae3cc3 | 90 | #define I2C_SLV0_CTRL 0x27 |
rctaduio | 0:80a695ae3cc3 | 91 | #define I2C_SLV1_ADDR 0x28 |
rctaduio | 0:80a695ae3cc3 | 92 | #define I2C_SLV1_REG 0x29 |
rctaduio | 0:80a695ae3cc3 | 93 | #define I2C_SLV1_CTRL 0x2A |
rctaduio | 0:80a695ae3cc3 | 94 | #define I2C_SLV2_ADDR 0x2B |
rctaduio | 0:80a695ae3cc3 | 95 | #define I2C_SLV2_REG 0x2C |
rctaduio | 0:80a695ae3cc3 | 96 | #define I2C_SLV2_CTRL 0x2D |
rctaduio | 0:80a695ae3cc3 | 97 | #define I2C_SLV3_ADDR 0x2E |
rctaduio | 0:80a695ae3cc3 | 98 | #define I2C_SLV3_REG 0x2F |
rctaduio | 0:80a695ae3cc3 | 99 | #define I2C_SLV3_CTRL 0x30 |
rctaduio | 0:80a695ae3cc3 | 100 | #define I2C_SLV4_ADDR 0x31 |
rctaduio | 0:80a695ae3cc3 | 101 | #define I2C_SLV4_REG 0x32 |
rctaduio | 0:80a695ae3cc3 | 102 | #define I2C_SLV4_DO 0x33 |
rctaduio | 0:80a695ae3cc3 | 103 | #define I2C_SLV4_CTRL 0x34 |
rctaduio | 0:80a695ae3cc3 | 104 | #define I2C_SLV4_DI 0x35 |
rctaduio | 0:80a695ae3cc3 | 105 | #define I2C_MST_STATUS 0x36 |
rctaduio | 0:80a695ae3cc3 | 106 | #define INT_PIN_CFG 0x37 |
rctaduio | 0:80a695ae3cc3 | 107 | #define INT_ENABLE 0x38 |
rctaduio | 0:80a695ae3cc3 | 108 | #define DMP_INT_STATUS 0x39 // Check DMP interrupt |
rctaduio | 0:80a695ae3cc3 | 109 | #define INT_STATUS 0x3A |
rctaduio | 0:80a695ae3cc3 | 110 | #define ACCEL_XOUT_H 0x3B |
rctaduio | 0:80a695ae3cc3 | 111 | #define ACCEL_XOUT_L 0x3C |
rctaduio | 0:80a695ae3cc3 | 112 | #define ACCEL_YOUT_H 0x3D |
rctaduio | 0:80a695ae3cc3 | 113 | #define ACCEL_YOUT_L 0x3E |
rctaduio | 0:80a695ae3cc3 | 114 | #define ACCEL_ZOUT_H 0x3F |
rctaduio | 0:80a695ae3cc3 | 115 | #define ACCEL_ZOUT_L 0x40 |
rctaduio | 0:80a695ae3cc3 | 116 | #define TEMP_OUT_H 0x41 |
rctaduio | 0:80a695ae3cc3 | 117 | #define TEMP_OUT_L 0x42 |
rctaduio | 0:80a695ae3cc3 | 118 | #define GYRO_XOUT_H 0x43 |
rctaduio | 0:80a695ae3cc3 | 119 | #define GYRO_XOUT_L 0x44 |
rctaduio | 0:80a695ae3cc3 | 120 | #define GYRO_YOUT_H 0x45 |
rctaduio | 0:80a695ae3cc3 | 121 | #define GYRO_YOUT_L 0x46 |
rctaduio | 0:80a695ae3cc3 | 122 | #define GYRO_ZOUT_H 0x47 |
rctaduio | 0:80a695ae3cc3 | 123 | #define GYRO_ZOUT_L 0x48 |
rctaduio | 0:80a695ae3cc3 | 124 | #define EXT_SENS_DATA_00 0x49 |
rctaduio | 0:80a695ae3cc3 | 125 | #define EXT_SENS_DATA_01 0x4A |
rctaduio | 0:80a695ae3cc3 | 126 | #define EXT_SENS_DATA_02 0x4B |
rctaduio | 0:80a695ae3cc3 | 127 | #define EXT_SENS_DATA_03 0x4C |
rctaduio | 0:80a695ae3cc3 | 128 | #define EXT_SENS_DATA_04 0x4D |
rctaduio | 0:80a695ae3cc3 | 129 | #define EXT_SENS_DATA_05 0x4E |
rctaduio | 0:80a695ae3cc3 | 130 | #define EXT_SENS_DATA_06 0x4F |
rctaduio | 0:80a695ae3cc3 | 131 | #define EXT_SENS_DATA_07 0x50 |
rctaduio | 0:80a695ae3cc3 | 132 | #define EXT_SENS_DATA_08 0x51 |
rctaduio | 0:80a695ae3cc3 | 133 | #define EXT_SENS_DATA_09 0x52 |
rctaduio | 0:80a695ae3cc3 | 134 | #define EXT_SENS_DATA_10 0x53 |
rctaduio | 0:80a695ae3cc3 | 135 | #define EXT_SENS_DATA_11 0x54 |
rctaduio | 0:80a695ae3cc3 | 136 | #define EXT_SENS_DATA_12 0x55 |
rctaduio | 0:80a695ae3cc3 | 137 | #define EXT_SENS_DATA_13 0x56 |
rctaduio | 0:80a695ae3cc3 | 138 | #define EXT_SENS_DATA_14 0x57 |
rctaduio | 0:80a695ae3cc3 | 139 | #define EXT_SENS_DATA_15 0x58 |
rctaduio | 0:80a695ae3cc3 | 140 | #define EXT_SENS_DATA_16 0x59 |
rctaduio | 0:80a695ae3cc3 | 141 | #define EXT_SENS_DATA_17 0x5A |
rctaduio | 0:80a695ae3cc3 | 142 | #define EXT_SENS_DATA_18 0x5B |
rctaduio | 0:80a695ae3cc3 | 143 | #define EXT_SENS_DATA_19 0x5C |
rctaduio | 0:80a695ae3cc3 | 144 | #define EXT_SENS_DATA_20 0x5D |
rctaduio | 0:80a695ae3cc3 | 145 | #define EXT_SENS_DATA_21 0x5E |
rctaduio | 0:80a695ae3cc3 | 146 | #define EXT_SENS_DATA_22 0x5F |
rctaduio | 0:80a695ae3cc3 | 147 | #define EXT_SENS_DATA_23 0x60 |
rctaduio | 0:80a695ae3cc3 | 148 | #define MOT_DETECT_STATUS 0x61 |
rctaduio | 0:80a695ae3cc3 | 149 | #define I2C_SLV0_DO 0x63 |
rctaduio | 0:80a695ae3cc3 | 150 | #define I2C_SLV1_DO 0x64 |
rctaduio | 0:80a695ae3cc3 | 151 | #define I2C_SLV2_DO 0x65 |
rctaduio | 0:80a695ae3cc3 | 152 | #define I2C_SLV3_DO 0x66 |
rctaduio | 0:80a695ae3cc3 | 153 | #define I2C_MST_DELAY_CTRL 0x67 |
rctaduio | 0:80a695ae3cc3 | 154 | #define SIGNAL_PATH_RESET 0x68 |
rctaduio | 0:80a695ae3cc3 | 155 | #define MOT_DETECT_CTRL 0x69 |
rctaduio | 0:80a695ae3cc3 | 156 | #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP |
rctaduio | 0:80a695ae3cc3 | 157 | #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode |
rctaduio | 0:80a695ae3cc3 | 158 | #define PWR_MGMT_2 0x6C |
rctaduio | 0:80a695ae3cc3 | 159 | #define DMP_BANK 0x6D // Activates a specific bank in the DMP |
rctaduio | 0:80a695ae3cc3 | 160 | #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank |
rctaduio | 0:80a695ae3cc3 | 161 | #define DMP_REG 0x6F // Register in DMP from which to read or to which to write |
rctaduio | 0:80a695ae3cc3 | 162 | #define DMP_REG_1 0x70 |
rctaduio | 0:80a695ae3cc3 | 163 | #define DMP_REG_2 0x71 |
rctaduio | 0:80a695ae3cc3 | 164 | #define FIFO_COUNTH 0x72 |
rctaduio | 0:80a695ae3cc3 | 165 | #define FIFO_COUNTL 0x73 |
rctaduio | 0:80a695ae3cc3 | 166 | #define FIFO_R_W 0x74 |
rctaduio | 0:80a695ae3cc3 | 167 | #define WHO_AM_I_MPU9250 0x75 // Should return 0x71 |
rctaduio | 0:80a695ae3cc3 | 168 | #define XA_OFFSET_H 0x77 |
rctaduio | 0:80a695ae3cc3 | 169 | #define XA_OFFSET_L 0x78 |
rctaduio | 0:80a695ae3cc3 | 170 | #define YA_OFFSET_H 0x7A |
rctaduio | 0:80a695ae3cc3 | 171 | #define YA_OFFSET_L 0x7B |
rctaduio | 0:80a695ae3cc3 | 172 | #define ZA_OFFSET_H 0x7D |
rctaduio | 0:80a695ae3cc3 | 173 | #define ZA_OFFSET_L 0x7E |
rctaduio | 0:80a695ae3cc3 | 174 | |
rctaduio | 0:80a695ae3cc3 | 175 | // Using the MSENSR-9250 breakout board, ADO is set to 0 |
rctaduio | 0:80a695ae3cc3 | 176 | // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 |
rctaduio | 0:80a695ae3cc3 | 177 | //mbed uses the eight-bit device address, so shift seven-bit addresses left by one! |
rctaduio | 0:80a695ae3cc3 | 178 | #define ADO 0 |
rctaduio | 0:80a695ae3cc3 | 179 | #if ADO |
rctaduio | 0:80a695ae3cc3 | 180 | #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1 |
rctaduio | 0:80a695ae3cc3 | 181 | #else |
rctaduio | 0:80a695ae3cc3 | 182 | #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0 |
rctaduio | 0:80a695ae3cc3 | 183 | #endif |
rctaduio | 0:80a695ae3cc3 | 184 | |
rctaduio | 0:80a695ae3cc3 | 185 | // Set initial input parameters |
rctaduio | 0:80a695ae3cc3 | 186 | enum Ascale { |
rctaduio | 0:80a695ae3cc3 | 187 | AFS_2G = 0, |
rctaduio | 0:80a695ae3cc3 | 188 | AFS_4G, |
rctaduio | 0:80a695ae3cc3 | 189 | AFS_8G, |
rctaduio | 0:80a695ae3cc3 | 190 | AFS_16G |
rctaduio | 0:80a695ae3cc3 | 191 | }; |
rctaduio | 0:80a695ae3cc3 | 192 | |
rctaduio | 0:80a695ae3cc3 | 193 | enum Gscale { |
rctaduio | 0:80a695ae3cc3 | 194 | GFS_250DPS = 0, |
rctaduio | 0:80a695ae3cc3 | 195 | GFS_500DPS, |
rctaduio | 0:80a695ae3cc3 | 196 | GFS_1000DPS, |
rctaduio | 0:80a695ae3cc3 | 197 | GFS_2000DPS |
rctaduio | 0:80a695ae3cc3 | 198 | }; |
rctaduio | 0:80a695ae3cc3 | 199 | |
rctaduio | 0:80a695ae3cc3 | 200 | enum Mscale { |
rctaduio | 0:80a695ae3cc3 | 201 | MFS_14BITS = 0, // 0.6 mG per LSB |
rctaduio | 0:80a695ae3cc3 | 202 | MFS_16BITS // 0.15 mG per LSB |
rctaduio | 0:80a695ae3cc3 | 203 | }; |
rctaduio | 0:80a695ae3cc3 | 204 | |
rctaduio | 0:80a695ae3cc3 | 205 | uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G |
rctaduio | 0:80a695ae3cc3 | 206 | uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS |
rctaduio | 0:80a695ae3cc3 | 207 | uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution |
rctaduio | 0:80a695ae3cc3 | 208 | uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR |
rctaduio | 0:80a695ae3cc3 | 209 | float aRes, gRes, mRes; // scale resolutions per LSB for the sensors |
rctaduio | 0:80a695ae3cc3 | 210 | |
rctaduio | 0:80a695ae3cc3 | 211 | //Set up I2C, (SDA,SCL) |
rctaduio | 0:80a695ae3cc3 | 212 | I2C i2c(I2C_SDA, I2C_SCL); |
rctaduio | 0:80a695ae3cc3 | 213 | |
rctaduio | 0:80a695ae3cc3 | 214 | DigitalOut myled(LED1); |
rctaduio | 0:80a695ae3cc3 | 215 | |
rctaduio | 0:80a695ae3cc3 | 216 | // Pin definitions |
rctaduio | 0:80a695ae3cc3 | 217 | int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins |
rctaduio | 0:80a695ae3cc3 | 218 | |
rctaduio | 0:80a695ae3cc3 | 219 | float SelfTest[6]; |
rctaduio | 0:80a695ae3cc3 | 220 | |
rctaduio | 0:80a695ae3cc3 | 221 | int delt_t = 0; // used to control display output rate |
rctaduio | 0:80a695ae3cc3 | 222 | int count = 0; // used to control display output rate |
rctaduio | 0:80a695ae3cc3 | 223 | |
rctaduio | 0:80a695ae3cc3 | 224 | // parameters for 6 DoF sensor fusion calculations |
rctaduio | 0:80a695ae3cc3 | 225 | float PI = 3.14159265358979323846f; |
rctaduio | 0:80a695ae3cc3 | 226 | float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 |
rctaduio | 0:80a695ae3cc3 | 227 | //float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta |
rctaduio | 0:80a695ae3cc3 | 228 | float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) |
rctaduio | 0:80a695ae3cc3 | 229 | float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value |
rctaduio | 0:80a695ae3cc3 | 230 | #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral |
rctaduio | 0:80a695ae3cc3 | 231 | #define Ki 0.0f |
rctaduio | 0:80a695ae3cc3 | 232 | |
rctaduio | 0:80a695ae3cc3 | 233 | |
rctaduio | 0:80a695ae3cc3 | 234 | |
rctaduio | 0:80a695ae3cc3 | 235 | class MPU9250 |
rctaduio | 0:80a695ae3cc3 | 236 | { |
rctaduio | 0:80a695ae3cc3 | 237 | |
rctaduio | 0:80a695ae3cc3 | 238 | protected: |
rctaduio | 0:80a695ae3cc3 | 239 | |
rctaduio | 0:80a695ae3cc3 | 240 | public: |
rctaduio | 0:80a695ae3cc3 | 241 | int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output |
rctaduio | 0:80a695ae3cc3 | 242 | int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output |
rctaduio | 0:80a695ae3cc3 | 243 | int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output |
rctaduio | 0:80a695ae3cc3 | 244 | float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values |
rctaduio | 0:80a695ae3cc3 | 245 | float magCalibration[3]; |
rctaduio | 0:80a695ae3cc3 | 246 | float magbias[3]; // Factory mag calibration and mag bias |
rctaduio | 0:80a695ae3cc3 | 247 | float gyroBias[3]; |
rctaduio | 0:80a695ae3cc3 | 248 | float accelBias[3]; // Bias corrections for gyro and accelerometer |
rctaduio | 0:80a695ae3cc3 | 249 | int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius |
rctaduio | 0:80a695ae3cc3 | 250 | float temperature; |
rctaduio | 0:80a695ae3cc3 | 251 | float pitch, yaw, roll; |
rctaduio | 0:80a695ae3cc3 | 252 | float deltat; // integration interval for both filter schemes |
rctaduio | 0:80a695ae3cc3 | 253 | int lastUpdate; |
rctaduio | 0:80a695ae3cc3 | 254 | int firstUpdate; |
rctaduio | 0:80a695ae3cc3 | 255 | int Now; // used to calculate integration interval |
rctaduio | 0:80a695ae3cc3 | 256 | float q[4]; // vector to hold quaternion |
rctaduio | 0:80a695ae3cc3 | 257 | float eInt[3]; // vector to hold integral error for Mahony method |
rctaduio | 0:80a695ae3cc3 | 258 | uint32_t checksum; |
rctaduio | 0:80a695ae3cc3 | 259 | |
rctaduio | 0:80a695ae3cc3 | 260 | MPU9250() { |
rctaduio | 0:80a695ae3cc3 | 261 | ax=ay=az=gx=gy=gz=mx=my=mz=0.0; |
rctaduio | 0:80a695ae3cc3 | 262 | for (int i = 0; i < 3; i++) { |
rctaduio | 0:80a695ae3cc3 | 263 | magCalibration[i] = 0.0; |
rctaduio | 0:80a695ae3cc3 | 264 | magbias[i] = 0.0; |
rctaduio | 0:80a695ae3cc3 | 265 | gyroBias[i] = 0.0; |
rctaduio | 0:80a695ae3cc3 | 266 | accelBias[i] = 0.0; |
rctaduio | 0:80a695ae3cc3 | 267 | eInt[i] = 0.0f; |
rctaduio | 0:80a695ae3cc3 | 268 | } // end of for |
rctaduio | 0:80a695ae3cc3 | 269 | q[0] = 1.0f; |
rctaduio | 0:80a695ae3cc3 | 270 | q[1] = 0.0f; |
rctaduio | 0:80a695ae3cc3 | 271 | q[2] = 0.0f; |
rctaduio | 0:80a695ae3cc3 | 272 | q[3] = 0.0f; |
rctaduio | 0:80a695ae3cc3 | 273 | lastUpdate = 0, firstUpdate = 0, Now = 0; |
rctaduio | 0:80a695ae3cc3 | 274 | deltat = 0.0f; |
rctaduio | 0:80a695ae3cc3 | 275 | } // end of initalizer |
rctaduio | 0:80a695ae3cc3 | 276 | |
rctaduio | 0:80a695ae3cc3 | 277 | //=================================================================================================================== |
rctaduio | 0:80a695ae3cc3 | 278 | //====== Set of useful function to access acceleratio, gyroscope, and temperature data |
rctaduio | 0:80a695ae3cc3 | 279 | //=================================================================================================================== |
rctaduio | 0:80a695ae3cc3 | 280 | |
rctaduio | 0:80a695ae3cc3 | 281 | void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { |
rctaduio | 0:80a695ae3cc3 | 282 | char data_write[2]; |
rctaduio | 0:80a695ae3cc3 | 283 | data_write[0] = subAddress; |
rctaduio | 0:80a695ae3cc3 | 284 | data_write[1] = data; |
rctaduio | 0:80a695ae3cc3 | 285 | i2c.write(address, data_write, 2, 0); |
rctaduio | 0:80a695ae3cc3 | 286 | } |
rctaduio | 0:80a695ae3cc3 | 287 | |
rctaduio | 0:80a695ae3cc3 | 288 | |
rctaduio | 0:80a695ae3cc3 | 289 | void selfTest(Serial &pc , bool show = false) { |
rctaduio | 0:80a695ae3cc3 | 290 | resetMPU9250(); // Reset registers to default in preparation for device calibration |
rctaduio | 0:80a695ae3cc3 | 291 | MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values |
rctaduio | 0:80a695ae3cc3 | 292 | if (show) { |
rctaduio | 0:80a695ae3cc3 | 293 | pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); |
rctaduio | 0:80a695ae3cc3 | 294 | pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); |
rctaduio | 0:80a695ae3cc3 | 295 | pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); |
rctaduio | 0:80a695ae3cc3 | 296 | pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); |
rctaduio | 0:80a695ae3cc3 | 297 | pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); |
rctaduio | 0:80a695ae3cc3 | 298 | pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); |
rctaduio | 0:80a695ae3cc3 | 299 | } |
rctaduio | 0:80a695ae3cc3 | 300 | //calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers |
rctaduio | 0:80a695ae3cc3 | 301 | if(show) { |
rctaduio | 0:80a695ae3cc3 | 302 | pc.printf("x gyro bias = %f\n\r", gyroBias[0]); |
rctaduio | 0:80a695ae3cc3 | 303 | pc.printf("y gyro bias = %f\n\r", gyroBias[1]); |
rctaduio | 0:80a695ae3cc3 | 304 | pc.printf("z gyro bias = %f\n\r", gyroBias[2]); |
rctaduio | 0:80a695ae3cc3 | 305 | pc.printf("x accel bias = %f\n\r", accelBias[0]); |
rctaduio | 0:80a695ae3cc3 | 306 | pc.printf("y accel bias = %f\n\r", accelBias[1]); |
rctaduio | 0:80a695ae3cc3 | 307 | pc.printf("z accel bias = %f\n\r", accelBias[2]); |
rctaduio | 0:80a695ae3cc3 | 308 | } |
rctaduio | 0:80a695ae3cc3 | 309 | } |
rctaduio | 0:80a695ae3cc3 | 310 | |
rctaduio | 0:80a695ae3cc3 | 311 | |
rctaduio | 0:80a695ae3cc3 | 312 | void config(Serial &pc, bool show = false) { |
rctaduio | 0:80a695ae3cc3 | 313 | initMPU9250(); |
rctaduio | 0:80a695ae3cc3 | 314 | if (show) |
rctaduio | 0:80a695ae3cc3 | 315 | pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature |
rctaduio | 0:80a695ae3cc3 | 316 | initAK8963(magCalibration); |
rctaduio | 0:80a695ae3cc3 | 317 | if(show) { |
rctaduio | 0:80a695ae3cc3 | 318 | pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer |
rctaduio | 0:80a695ae3cc3 | 319 | pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); |
rctaduio | 0:80a695ae3cc3 | 320 | pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); |
rctaduio | 0:80a695ae3cc3 | 321 | if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); |
rctaduio | 0:80a695ae3cc3 | 322 | if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); |
rctaduio | 0:80a695ae3cc3 | 323 | if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); |
rctaduio | 0:80a695ae3cc3 | 324 | if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); |
rctaduio | 0:80a695ae3cc3 | 325 | pc.printf("mag calibration: \r\nx:\t%f\r\ny:\t%f\r\nz:\t%f\r\n", magbias[0], magbias[1], magbias[2]); |
rctaduio | 0:80a695ae3cc3 | 326 | } |
rctaduio | 0:80a695ae3cc3 | 327 | } |
rctaduio | 0:80a695ae3cc3 | 328 | |
rctaduio | 0:80a695ae3cc3 | 329 | |
rctaduio | 0:80a695ae3cc3 | 330 | void sensitivity(Serial &pc, bool show = false) { |
rctaduio | 0:80a695ae3cc3 | 331 | getAres(); // Get accelerometer sensitivity |
rctaduio | 0:80a695ae3cc3 | 332 | getGres(); // Get gyro sensitivity |
rctaduio | 0:80a695ae3cc3 | 333 | getMres(); // Get magnetometer sensitivity |
rctaduio | 0:80a695ae3cc3 | 334 | if (show) { |
rctaduio | 0:80a695ae3cc3 | 335 | pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); |
rctaduio | 0:80a695ae3cc3 | 336 | pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); |
rctaduio | 0:80a695ae3cc3 | 337 | pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); |
rctaduio | 0:80a695ae3cc3 | 338 | } |
rctaduio | 0:80a695ae3cc3 | 339 | } |
rctaduio | 0:80a695ae3cc3 | 340 | |
rctaduio | 0:80a695ae3cc3 | 341 | |
rctaduio | 0:80a695ae3cc3 | 342 | char readByte(uint8_t address, uint8_t subAddress) { |
rctaduio | 0:80a695ae3cc3 | 343 | char data[1]; // `data` will store the register data |
rctaduio | 0:80a695ae3cc3 | 344 | char data_write[1]; |
rctaduio | 0:80a695ae3cc3 | 345 | data_write[0] = subAddress; |
rctaduio | 0:80a695ae3cc3 | 346 | i2c.write(address, data_write, 1, 1); // no stop |
rctaduio | 0:80a695ae3cc3 | 347 | i2c.read(address, data, 1, 0); |
rctaduio | 0:80a695ae3cc3 | 348 | return data[0]; |
rctaduio | 0:80a695ae3cc3 | 349 | } |
rctaduio | 0:80a695ae3cc3 | 350 | |
rctaduio | 0:80a695ae3cc3 | 351 | |
rctaduio | 0:80a695ae3cc3 | 352 | void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) { |
rctaduio | 0:80a695ae3cc3 | 353 | char data[14]; |
rctaduio | 0:80a695ae3cc3 | 354 | char data_write[1]; |
rctaduio | 0:80a695ae3cc3 | 355 | data_write[0] = subAddress; |
rctaduio | 0:80a695ae3cc3 | 356 | i2c.write(address, data_write, 1, 1); // no stop |
rctaduio | 0:80a695ae3cc3 | 357 | i2c.read(address, data, count, 0); |
rctaduio | 0:80a695ae3cc3 | 358 | for(int ii = 0; ii < count; ii++) { |
rctaduio | 0:80a695ae3cc3 | 359 | dest[ii] = data[ii]; |
rctaduio | 0:80a695ae3cc3 | 360 | } |
rctaduio | 0:80a695ae3cc3 | 361 | } |
rctaduio | 0:80a695ae3cc3 | 362 | |
rctaduio | 0:80a695ae3cc3 | 363 | |
rctaduio | 0:80a695ae3cc3 | 364 | void getMres() { |
rctaduio | 0:80a695ae3cc3 | 365 | switch (Mscale) { |
rctaduio | 0:80a695ae3cc3 | 366 | // Possible magnetometer scales (and their register bit settings) are: |
rctaduio | 0:80a695ae3cc3 | 367 | // 14 bit resolution (0) and 16 bit resolution (1) |
rctaduio | 0:80a695ae3cc3 | 368 | case MFS_14BITS: |
rctaduio | 0:80a695ae3cc3 | 369 | mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss |
rctaduio | 0:80a695ae3cc3 | 370 | break; |
rctaduio | 0:80a695ae3cc3 | 371 | case MFS_16BITS: |
rctaduio | 0:80a695ae3cc3 | 372 | mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss |
rctaduio | 0:80a695ae3cc3 | 373 | break; |
rctaduio | 0:80a695ae3cc3 | 374 | } |
rctaduio | 0:80a695ae3cc3 | 375 | } |
rctaduio | 0:80a695ae3cc3 | 376 | |
rctaduio | 0:80a695ae3cc3 | 377 | |
rctaduio | 0:80a695ae3cc3 | 378 | void getGres() { |
rctaduio | 0:80a695ae3cc3 | 379 | switch (Gscale) { |
rctaduio | 0:80a695ae3cc3 | 380 | // Possible gyro scales (and their register bit settings) are: |
rctaduio | 0:80a695ae3cc3 | 381 | // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). |
rctaduio | 0:80a695ae3cc3 | 382 | // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: |
rctaduio | 0:80a695ae3cc3 | 383 | case GFS_250DPS: |
rctaduio | 0:80a695ae3cc3 | 384 | gRes = 250.0/32768.0; |
rctaduio | 0:80a695ae3cc3 | 385 | break; |
rctaduio | 0:80a695ae3cc3 | 386 | case GFS_500DPS: |
rctaduio | 0:80a695ae3cc3 | 387 | gRes = 500.0/32768.0; |
rctaduio | 0:80a695ae3cc3 | 388 | break; |
rctaduio | 0:80a695ae3cc3 | 389 | case GFS_1000DPS: |
rctaduio | 0:80a695ae3cc3 | 390 | gRes = 1000.0/32768.0; |
rctaduio | 0:80a695ae3cc3 | 391 | break; |
rctaduio | 0:80a695ae3cc3 | 392 | case GFS_2000DPS: |
rctaduio | 0:80a695ae3cc3 | 393 | gRes = 2000.0/32768.0; |
rctaduio | 0:80a695ae3cc3 | 394 | break; |
rctaduio | 0:80a695ae3cc3 | 395 | } |
rctaduio | 0:80a695ae3cc3 | 396 | } |
rctaduio | 0:80a695ae3cc3 | 397 | |
rctaduio | 0:80a695ae3cc3 | 398 | |
rctaduio | 0:80a695ae3cc3 | 399 | void getAres() { |
rctaduio | 0:80a695ae3cc3 | 400 | switch (Ascale) { |
rctaduio | 0:80a695ae3cc3 | 401 | // Possible accelerometer scales (and their register bit settings) are: |
rctaduio | 0:80a695ae3cc3 | 402 | // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). |
rctaduio | 0:80a695ae3cc3 | 403 | // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: |
rctaduio | 0:80a695ae3cc3 | 404 | case AFS_2G: |
rctaduio | 0:80a695ae3cc3 | 405 | aRes = 2.0/32768.0; |
rctaduio | 0:80a695ae3cc3 | 406 | break; |
rctaduio | 0:80a695ae3cc3 | 407 | case AFS_4G: |
rctaduio | 0:80a695ae3cc3 | 408 | aRes = 4.0/32768.0; |
rctaduio | 0:80a695ae3cc3 | 409 | break; |
rctaduio | 0:80a695ae3cc3 | 410 | case AFS_8G: |
rctaduio | 0:80a695ae3cc3 | 411 | aRes = 8.0/32768.0; |
rctaduio | 0:80a695ae3cc3 | 412 | break; |
rctaduio | 0:80a695ae3cc3 | 413 | case AFS_16G: |
rctaduio | 0:80a695ae3cc3 | 414 | aRes = 16.0/32768.0; |
rctaduio | 0:80a695ae3cc3 | 415 | break; |
rctaduio | 0:80a695ae3cc3 | 416 | } |
rctaduio | 0:80a695ae3cc3 | 417 | } |
rctaduio | 0:80a695ae3cc3 | 418 | |
rctaduio | 0:80a695ae3cc3 | 419 | |
rctaduio | 0:80a695ae3cc3 | 420 | void readAccelData() { |
rctaduio | 0:80a695ae3cc3 | 421 | uint8_t rawData[6]; // x/y/z accel register data stored here |
rctaduio | 0:80a695ae3cc3 | 422 | readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array |
rctaduio | 0:80a695ae3cc3 | 423 | ax = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
rctaduio | 0:80a695ae3cc3 | 424 | ay = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
rctaduio | 0:80a695ae3cc3 | 425 | az = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
rctaduio | 0:80a695ae3cc3 | 426 | } |
rctaduio | 0:80a695ae3cc3 | 427 | |
rctaduio | 0:80a695ae3cc3 | 428 | void readGyroData() { |
rctaduio | 0:80a695ae3cc3 | 429 | uint8_t rawData[6]; // x/y/z gyro register data stored here |
rctaduio | 0:80a695ae3cc3 | 430 | readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]) ; // Read the six raw data registers sequentially into data array |
rctaduio | 0:80a695ae3cc3 | 431 | gx = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
rctaduio | 0:80a695ae3cc3 | 432 | gy = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
rctaduio | 0:80a695ae3cc3 | 433 | gz = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
rctaduio | 0:80a695ae3cc3 | 434 | } |
rctaduio | 0:80a695ae3cc3 | 435 | |
rctaduio | 0:80a695ae3cc3 | 436 | void readMagData() { |
rctaduio | 0:80a695ae3cc3 | 437 | uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition |
rctaduio | 0:80a695ae3cc3 | 438 | if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { |
rctaduio | 0:80a695ae3cc3 | 439 | // wait for magnetometer data ready bit to be set |
rctaduio | 0:80a695ae3cc3 | 440 | readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array |
rctaduio | 0:80a695ae3cc3 | 441 | uint8_t c = rawData[6]; // End data read by reading ST2 register |
rctaduio | 0:80a695ae3cc3 | 442 | if(!(c & 0x08)) { |
rctaduio | 0:80a695ae3cc3 | 443 | // Check if magnetic sensor overflow set, if not then report data |
rctaduio | 0:80a695ae3cc3 | 444 | mx = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]) ; // Turn the MSB and LSB into a signed 16-bit value |
rctaduio | 0:80a695ae3cc3 | 445 | my = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian |
rctaduio | 0:80a695ae3cc3 | 446 | mz = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; |
rctaduio | 0:80a695ae3cc3 | 447 | } |
rctaduio | 0:80a695ae3cc3 | 448 | } |
rctaduio | 0:80a695ae3cc3 | 449 | } |
rctaduio | 0:80a695ae3cc3 | 450 | |
rctaduio | 0:80a695ae3cc3 | 451 | void readimu() { |
rctaduio | 0:80a695ae3cc3 | 452 | readAccelData(); |
rctaduio | 0:80a695ae3cc3 | 453 | ax = ax*aRes - accelBias[0]; |
rctaduio | 0:80a695ae3cc3 | 454 | ay = ay*aRes - accelBias[1]; |
rctaduio | 0:80a695ae3cc3 | 455 | az = az*aRes - accelBias[2]; |
rctaduio | 0:80a695ae3cc3 | 456 | |
rctaduio | 0:80a695ae3cc3 | 457 | readGyroData(); |
rctaduio | 0:80a695ae3cc3 | 458 | gx = gx*gRes - gyroBias[0]; |
rctaduio | 0:80a695ae3cc3 | 459 | gy = gy*gRes - gyroBias[1]; |
rctaduio | 0:80a695ae3cc3 | 460 | gz = gz*gRes - gyroBias[2]; |
rctaduio | 0:80a695ae3cc3 | 461 | |
rctaduio | 0:80a695ae3cc3 | 462 | // Calculate the magnetometer values in milliGauss |
rctaduio | 0:80a695ae3cc3 | 463 | // Include factory calibration per data sheet and user environmental corrections |
rctaduio | 0:80a695ae3cc3 | 464 | readMagData(); |
rctaduio | 0:80a695ae3cc3 | 465 | mx = mx*mRes*magCalibration[0] - magbias[0]; |
rctaduio | 0:80a695ae3cc3 | 466 | my = my*mRes*magCalibration[1] - magbias[1]; |
rctaduio | 0:80a695ae3cc3 | 467 | mz = mz*mRes*magCalibration[2] - magbias[2]; |
rctaduio | 0:80a695ae3cc3 | 468 | |
rctaduio | 0:80a695ae3cc3 | 469 | checksum = 0; |
rctaduio | 0:80a695ae3cc3 | 470 | checksum += int(1000*ax) + int(1000*ay) + int(1000*az) +int(gx) + int(gy) + int(gz) +int(mx) + int(my) + int(mz); |
rctaduio | 0:80a695ae3cc3 | 471 | |
rctaduio | 0:80a695ae3cc3 | 472 | }// end of read IMUData() |
rctaduio | 0:80a695ae3cc3 | 473 | |
rctaduio | 0:80a695ae3cc3 | 474 | int16_t readTempData() { |
rctaduio | 0:80a695ae3cc3 | 475 | uint8_t rawData[2]; // x/y/z gyro register data stored here |
rctaduio | 0:80a695ae3cc3 | 476 | readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array |
rctaduio | 0:80a695ae3cc3 | 477 | return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value |
rctaduio | 0:80a695ae3cc3 | 478 | } |
rctaduio | 0:80a695ae3cc3 | 479 | |
rctaduio | 0:80a695ae3cc3 | 480 | |
rctaduio | 0:80a695ae3cc3 | 481 | void resetMPU9250() { |
rctaduio | 0:80a695ae3cc3 | 482 | // reset device |
rctaduio | 0:80a695ae3cc3 | 483 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device |
rctaduio | 0:80a695ae3cc3 | 484 | wait(0.1); |
rctaduio | 0:80a695ae3cc3 | 485 | } |
rctaduio | 0:80a695ae3cc3 | 486 | |
rctaduio | 0:80a695ae3cc3 | 487 | void initAK8963(float * destination) { |
rctaduio | 0:80a695ae3cc3 | 488 | // First extract the factory calibration for each magnetometer axis |
rctaduio | 0:80a695ae3cc3 | 489 | uint8_t rawData[3]; // x/y/z gyro calibration data stored here |
rctaduio | 0:80a695ae3cc3 | 490 | writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer |
rctaduio | 0:80a695ae3cc3 | 491 | wait(0.01); |
rctaduio | 0:80a695ae3cc3 | 492 | writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode |
rctaduio | 0:80a695ae3cc3 | 493 | wait(0.01); |
rctaduio | 0:80a695ae3cc3 | 494 | readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values |
rctaduio | 0:80a695ae3cc3 | 495 | destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc. |
rctaduio | 0:80a695ae3cc3 | 496 | destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f; |
rctaduio | 0:80a695ae3cc3 | 497 | destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f; |
rctaduio | 0:80a695ae3cc3 | 498 | writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer |
rctaduio | 0:80a695ae3cc3 | 499 | wait(0.01); |
rctaduio | 0:80a695ae3cc3 | 500 | // Configure the magnetometer for continuous read and highest resolution |
rctaduio | 0:80a695ae3cc3 | 501 | // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, |
rctaduio | 0:80a695ae3cc3 | 502 | // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates |
rctaduio | 0:80a695ae3cc3 | 503 | writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR |
rctaduio | 0:80a695ae3cc3 | 504 | wait(0.01); |
rctaduio | 0:80a695ae3cc3 | 505 | } |
rctaduio | 0:80a695ae3cc3 | 506 | |
rctaduio | 0:80a695ae3cc3 | 507 | |
rctaduio | 0:80a695ae3cc3 | 508 | void initMPU9250() { |
rctaduio | 0:80a695ae3cc3 | 509 | // Initialize MPU9250 device |
rctaduio | 0:80a695ae3cc3 | 510 | // wake up device |
rctaduio | 0:80a695ae3cc3 | 511 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors |
rctaduio | 0:80a695ae3cc3 | 512 | wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt |
rctaduio | 0:80a695ae3cc3 | 513 | |
rctaduio | 0:80a695ae3cc3 | 514 | // get stable time source |
rctaduio | 0:80a695ae3cc3 | 515 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 |
rctaduio | 0:80a695ae3cc3 | 516 | |
rctaduio | 0:80a695ae3cc3 | 517 | // Configure Gyro and Accelerometer |
rctaduio | 0:80a695ae3cc3 | 518 | // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; |
rctaduio | 0:80a695ae3cc3 | 519 | // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both |
rctaduio | 0:80a695ae3cc3 | 520 | // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate |
rctaduio | 0:80a695ae3cc3 | 521 | writeByte(MPU9250_ADDRESS, CONFIG, 0x03); |
rctaduio | 0:80a695ae3cc3 | 522 | |
rctaduio | 0:80a695ae3cc3 | 523 | // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) |
rctaduio | 0:80a695ae3cc3 | 524 | writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above |
rctaduio | 0:80a695ae3cc3 | 525 | |
rctaduio | 0:80a695ae3cc3 | 526 | // Set gyroscope full scale range |
rctaduio | 0:80a695ae3cc3 | 527 | // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 |
rctaduio | 0:80a695ae3cc3 | 528 | uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); |
rctaduio | 0:80a695ae3cc3 | 529 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] |
rctaduio | 0:80a695ae3cc3 | 530 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] |
rctaduio | 0:80a695ae3cc3 | 531 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro |
rctaduio | 0:80a695ae3cc3 | 532 | |
rctaduio | 0:80a695ae3cc3 | 533 | // Set accelerometer configuration |
rctaduio | 0:80a695ae3cc3 | 534 | c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); |
rctaduio | 0:80a695ae3cc3 | 535 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] |
rctaduio | 0:80a695ae3cc3 | 536 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] |
rctaduio | 0:80a695ae3cc3 | 537 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer |
rctaduio | 0:80a695ae3cc3 | 538 | |
rctaduio | 0:80a695ae3cc3 | 539 | // Set accelerometer sample rate configuration |
rctaduio | 0:80a695ae3cc3 | 540 | // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for |
rctaduio | 0:80a695ae3cc3 | 541 | // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz |
rctaduio | 0:80a695ae3cc3 | 542 | c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); |
rctaduio | 0:80a695ae3cc3 | 543 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) |
rctaduio | 0:80a695ae3cc3 | 544 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz |
rctaduio | 0:80a695ae3cc3 | 545 | |
rctaduio | 0:80a695ae3cc3 | 546 | // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, |
rctaduio | 0:80a695ae3cc3 | 547 | // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting |
rctaduio | 0:80a695ae3cc3 | 548 | |
rctaduio | 0:80a695ae3cc3 | 549 | // Configure Interrupts and Bypass Enable |
rctaduio | 0:80a695ae3cc3 | 550 | // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips |
rctaduio | 0:80a695ae3cc3 | 551 | // can join the I2C bus and all can be controlled by the Arduino as master |
rctaduio | 0:80a695ae3cc3 | 552 | writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); |
rctaduio | 0:80a695ae3cc3 | 553 | writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt |
rctaduio | 0:80a695ae3cc3 | 554 | } |
rctaduio | 0:80a695ae3cc3 | 555 | |
rctaduio | 0:80a695ae3cc3 | 556 | //void calibrateMag(float * dest1, float * dest2, Serial &pc) |
rctaduio | 0:80a695ae3cc3 | 557 | void calibrateMag(Serial &pc) { |
rctaduio | 0:80a695ae3cc3 | 558 | uint16_t ii = 0, sample_count = 0; |
rctaduio | 0:80a695ae3cc3 | 559 | //int32_t mag_bias[3] = {0, 0, 0}; |
rctaduio | 0:80a695ae3cc3 | 560 | int32_t mag_scale[3] = {0, 0, 0}; |
rctaduio | 0:80a695ae3cc3 | 561 | int16_t mag_max[3] = {0x8000, 0x8000, 0x8000}; |
rctaduio | 0:80a695ae3cc3 | 562 | int16_t mag_min[3] = {0x7FFF, 0x7FFF, 0x7FFF}; |
rctaduio | 0:80a695ae3cc3 | 563 | int16_t mag_temp[3] = {0, 0, 0}; |
rctaduio | 0:80a695ae3cc3 | 564 | pc.printf("Pre-Mag Calibration: \r\nx:\t%f\r\ny:\t%f\r\nz:\t%f\r\n", magbias[0], magbias[1], magbias[2]); |
rctaduio | 0:80a695ae3cc3 | 565 | pc.printf("Mag Calibration: Wave device in a figure eight until done!\n"); |
rctaduio | 0:80a695ae3cc3 | 566 | wait(4); |
rctaduio | 0:80a695ae3cc3 | 567 | |
rctaduio | 0:80a695ae3cc3 | 568 | sample_count = 500; |
rctaduio | 0:80a695ae3cc3 | 569 | for(ii = 0; ii < sample_count; ii++) { |
rctaduio | 0:80a695ae3cc3 | 570 | //readMagData(mag_temp); // Read the mag data |
rctaduio | 0:80a695ae3cc3 | 571 | for (int jj = 0; jj < 3; jj++) { |
rctaduio | 0:80a695ae3cc3 | 572 | if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj]; |
rctaduio | 0:80a695ae3cc3 | 573 | if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj]; |
rctaduio | 0:80a695ae3cc3 | 574 | }// end of inner for |
rctaduio | 0:80a695ae3cc3 | 575 | wait(.035); // at 8 Hz ODR, new mag data is available every 125 ms |
rctaduio | 0:80a695ae3cc3 | 576 | pc.printf("%d\t%d\t%d\r\n", mag_temp[0], mag_temp[1], mag_temp[2]); |
rctaduio | 0:80a695ae3cc3 | 577 | }// end of outer for |
rctaduio | 0:80a695ae3cc3 | 578 | wait(1); |
rctaduio | 0:80a695ae3cc3 | 579 | pc.printf("%d\t%d\t%d\t%d\t%d\t%d\r\n", mag_min[0], mag_max[0], mag_min[1], mag_max[1], mag_min[2], mag_max[2]); |
rctaduio | 0:80a695ae3cc3 | 580 | wait(10); |
rctaduio | 0:80a695ae3cc3 | 581 | // Get hard iron correction |
rctaduio | 0:80a695ae3cc3 | 582 | magbias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts |
rctaduio | 0:80a695ae3cc3 | 583 | magbias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts |
rctaduio | 0:80a695ae3cc3 | 584 | magbias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts |
rctaduio | 0:80a695ae3cc3 | 585 | |
rctaduio | 0:80a695ae3cc3 | 586 | //dest1[0] = (float) mag_bias[0]*mRes*MPU9250magCalibration[0]; // save mag biases in G for main program |
rctaduio | 0:80a695ae3cc3 | 587 | //dest1[1] = (float) mag_bias[1]*mRes*MPU9250magCalibration[1]; |
rctaduio | 0:80a695ae3cc3 | 588 | //dest1[2] = (float) mag_bias[2]*mRes*MPU9250magCalibration[2]; |
rctaduio | 0:80a695ae3cc3 | 589 | |
rctaduio | 0:80a695ae3cc3 | 590 | // Get soft iron correction estimate |
rctaduio | 0:80a695ae3cc3 | 591 | mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts |
rctaduio | 0:80a695ae3cc3 | 592 | mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts |
rctaduio | 0:80a695ae3cc3 | 593 | mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts |
rctaduio | 0:80a695ae3cc3 | 594 | |
rctaduio | 0:80a695ae3cc3 | 595 | float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2]; |
rctaduio | 0:80a695ae3cc3 | 596 | avg_rad /= 3.0; |
rctaduio | 0:80a695ae3cc3 | 597 | |
rctaduio | 0:80a695ae3cc3 | 598 | //dest2[0] = avg_rad/((float)mag_scale[0]); |
rctaduio | 0:80a695ae3cc3 | 599 | //dest2[1] = avg_rad/((float)mag_scale[1]); |
rctaduio | 0:80a695ae3cc3 | 600 | //dest2[2] = avg_rad/((float)mag_scale[2]); |
rctaduio | 0:80a695ae3cc3 | 601 | pc.printf("Post-Mag Calibration: \r\nx:\t%f\r\ny:\t%f\r\nz:\t%f\r\n", magbias[0], magbias[1], magbias[2]); |
rctaduio | 0:80a695ae3cc3 | 602 | pc.printf("Mag Calibration done!\n"); |
rctaduio | 0:80a695ae3cc3 | 603 | }// end of calibrateMag |
rctaduio | 0:80a695ae3cc3 | 604 | |
rctaduio | 0:80a695ae3cc3 | 605 | // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average |
rctaduio | 0:80a695ae3cc3 | 606 | // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. |
rctaduio | 0:80a695ae3cc3 | 607 | void calibrateMPU9250(float * dest1, float * dest2) { |
rctaduio | 0:80a695ae3cc3 | 608 | uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data |
rctaduio | 0:80a695ae3cc3 | 609 | uint16_t ii, packet_count, fifo_count; |
rctaduio | 0:80a695ae3cc3 | 610 | int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; |
rctaduio | 0:80a695ae3cc3 | 611 | |
rctaduio | 0:80a695ae3cc3 | 612 | // reset device, reset all registers, clear gyro and accelerometer bias registers |
rctaduio | 0:80a695ae3cc3 | 613 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device |
rctaduio | 0:80a695ae3cc3 | 614 | wait(0.1); |
rctaduio | 0:80a695ae3cc3 | 615 | |
rctaduio | 0:80a695ae3cc3 | 616 | // get stable time source |
rctaduio | 0:80a695ae3cc3 | 617 | // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 |
rctaduio | 0:80a695ae3cc3 | 618 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); |
rctaduio | 0:80a695ae3cc3 | 619 | writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); |
rctaduio | 0:80a695ae3cc3 | 620 | wait(0.2); |
rctaduio | 0:80a695ae3cc3 | 621 | |
rctaduio | 0:80a695ae3cc3 | 622 | // Configure device for bias calculation |
rctaduio | 0:80a695ae3cc3 | 623 | writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts |
rctaduio | 0:80a695ae3cc3 | 624 | writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO |
rctaduio | 0:80a695ae3cc3 | 625 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source |
rctaduio | 0:80a695ae3cc3 | 626 | writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master |
rctaduio | 0:80a695ae3cc3 | 627 | writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes |
rctaduio | 0:80a695ae3cc3 | 628 | writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP |
rctaduio | 0:80a695ae3cc3 | 629 | wait(0.015); |
rctaduio | 0:80a695ae3cc3 | 630 | |
rctaduio | 0:80a695ae3cc3 | 631 | // Configure MPU9250 gyro and accelerometer for bias calculation |
rctaduio | 0:80a695ae3cc3 | 632 | writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz |
rctaduio | 0:80a695ae3cc3 | 633 | writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz |
rctaduio | 0:80a695ae3cc3 | 634 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity |
rctaduio | 0:80a695ae3cc3 | 635 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity |
rctaduio | 0:80a695ae3cc3 | 636 | |
rctaduio | 0:80a695ae3cc3 | 637 | uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec |
rctaduio | 0:80a695ae3cc3 | 638 | uint16_t accelsensitivity = 16384; // = 16384 LSB/g |
rctaduio | 0:80a695ae3cc3 | 639 | |
rctaduio | 0:80a695ae3cc3 | 640 | // Configure FIFO to capture accelerometer and gyro data for bias calculation |
rctaduio | 0:80a695ae3cc3 | 641 | writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO |
rctaduio | 0:80a695ae3cc3 | 642 | writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250) |
rctaduio | 0:80a695ae3cc3 | 643 | wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes |
rctaduio | 0:80a695ae3cc3 | 644 | |
rctaduio | 0:80a695ae3cc3 | 645 | // At end of sample accumulation, turn off FIFO sensor read |
rctaduio | 0:80a695ae3cc3 | 646 | writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO |
rctaduio | 0:80a695ae3cc3 | 647 | readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count |
rctaduio | 0:80a695ae3cc3 | 648 | fifo_count = ((uint16_t)data[0] << 8) | data[1]; |
rctaduio | 0:80a695ae3cc3 | 649 | packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging |
rctaduio | 0:80a695ae3cc3 | 650 | |
rctaduio | 0:80a695ae3cc3 | 651 | for (ii = 0; ii < packet_count; ii++) { |
rctaduio | 0:80a695ae3cc3 | 652 | int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; |
rctaduio | 0:80a695ae3cc3 | 653 | readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging |
rctaduio | 0:80a695ae3cc3 | 654 | accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO |
rctaduio | 0:80a695ae3cc3 | 655 | accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; |
rctaduio | 0:80a695ae3cc3 | 656 | accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; |
rctaduio | 0:80a695ae3cc3 | 657 | gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; |
rctaduio | 0:80a695ae3cc3 | 658 | gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; |
rctaduio | 0:80a695ae3cc3 | 659 | gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; |
rctaduio | 0:80a695ae3cc3 | 660 | |
rctaduio | 0:80a695ae3cc3 | 661 | accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases |
rctaduio | 0:80a695ae3cc3 | 662 | accel_bias[1] += (int32_t) accel_temp[1]; |
rctaduio | 0:80a695ae3cc3 | 663 | accel_bias[2] += (int32_t) accel_temp[2]; |
rctaduio | 0:80a695ae3cc3 | 664 | gyro_bias[0] += (int32_t) gyro_temp[0]; |
rctaduio | 0:80a695ae3cc3 | 665 | gyro_bias[1] += (int32_t) gyro_temp[1]; |
rctaduio | 0:80a695ae3cc3 | 666 | gyro_bias[2] += (int32_t) gyro_temp[2]; |
rctaduio | 0:80a695ae3cc3 | 667 | |
rctaduio | 0:80a695ae3cc3 | 668 | } |
rctaduio | 0:80a695ae3cc3 | 669 | accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases |
rctaduio | 0:80a695ae3cc3 | 670 | accel_bias[1] /= (int32_t) packet_count; |
rctaduio | 0:80a695ae3cc3 | 671 | accel_bias[2] /= (int32_t) packet_count; |
rctaduio | 0:80a695ae3cc3 | 672 | gyro_bias[0] /= (int32_t) packet_count; |
rctaduio | 0:80a695ae3cc3 | 673 | gyro_bias[1] /= (int32_t) packet_count; |
rctaduio | 0:80a695ae3cc3 | 674 | gyro_bias[2] /= (int32_t) packet_count; |
rctaduio | 0:80a695ae3cc3 | 675 | |
rctaduio | 0:80a695ae3cc3 | 676 | if(accel_bias[2] > 0L) { |
rctaduio | 0:80a695ae3cc3 | 677 | accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation |
rctaduio | 0:80a695ae3cc3 | 678 | } else { |
rctaduio | 0:80a695ae3cc3 | 679 | accel_bias[2] += (int32_t) accelsensitivity; |
rctaduio | 0:80a695ae3cc3 | 680 | } |
rctaduio | 0:80a695ae3cc3 | 681 | |
rctaduio | 0:80a695ae3cc3 | 682 | // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup |
rctaduio | 0:80a695ae3cc3 | 683 | data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format |
rctaduio | 0:80a695ae3cc3 | 684 | data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases |
rctaduio | 0:80a695ae3cc3 | 685 | data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; |
rctaduio | 0:80a695ae3cc3 | 686 | data[3] = (-gyro_bias[1]/4) & 0xFF; |
rctaduio | 0:80a695ae3cc3 | 687 | data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; |
rctaduio | 0:80a695ae3cc3 | 688 | data[5] = (-gyro_bias[2]/4) & 0xFF; |
rctaduio | 0:80a695ae3cc3 | 689 | |
rctaduio | 0:80a695ae3cc3 | 690 | /// Push gyro biases to hardware registers |
rctaduio | 0:80a695ae3cc3 | 691 | /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); |
rctaduio | 0:80a695ae3cc3 | 692 | writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]); |
rctaduio | 0:80a695ae3cc3 | 693 | writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]); |
rctaduio | 0:80a695ae3cc3 | 694 | writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]); |
rctaduio | 0:80a695ae3cc3 | 695 | writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); |
rctaduio | 0:80a695ae3cc3 | 696 | writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); |
rctaduio | 0:80a695ae3cc3 | 697 | */ |
rctaduio | 0:80a695ae3cc3 | 698 | dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction |
rctaduio | 0:80a695ae3cc3 | 699 | dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; |
rctaduio | 0:80a695ae3cc3 | 700 | dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; |
rctaduio | 0:80a695ae3cc3 | 701 | |
rctaduio | 0:80a695ae3cc3 | 702 | // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain |
rctaduio | 0:80a695ae3cc3 | 703 | // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold |
rctaduio | 0:80a695ae3cc3 | 704 | // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature |
rctaduio | 0:80a695ae3cc3 | 705 | // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that |
rctaduio | 0:80a695ae3cc3 | 706 | // the accelerometer biases calculated above must be divided by 8. |
rctaduio | 0:80a695ae3cc3 | 707 | |
rctaduio | 0:80a695ae3cc3 | 708 | int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases |
rctaduio | 0:80a695ae3cc3 | 709 | readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values |
rctaduio | 0:80a695ae3cc3 | 710 | accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; |
rctaduio | 0:80a695ae3cc3 | 711 | readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); |
rctaduio | 0:80a695ae3cc3 | 712 | accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; |
rctaduio | 0:80a695ae3cc3 | 713 | readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); |
rctaduio | 0:80a695ae3cc3 | 714 | accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; |
rctaduio | 0:80a695ae3cc3 | 715 | |
rctaduio | 0:80a695ae3cc3 | 716 | uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers |
rctaduio | 0:80a695ae3cc3 | 717 | uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis |
rctaduio | 0:80a695ae3cc3 | 718 | |
rctaduio | 0:80a695ae3cc3 | 719 | for(ii = 0; ii < 3; ii++) { |
rctaduio | 0:80a695ae3cc3 | 720 | if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit |
rctaduio | 0:80a695ae3cc3 | 721 | } |
rctaduio | 0:80a695ae3cc3 | 722 | |
rctaduio | 0:80a695ae3cc3 | 723 | // Construct total accelerometer bias, including calculated average accelerometer bias from above |
rctaduio | 0:80a695ae3cc3 | 724 | accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) |
rctaduio | 0:80a695ae3cc3 | 725 | accel_bias_reg[1] -= (accel_bias[1]/8); |
rctaduio | 0:80a695ae3cc3 | 726 | accel_bias_reg[2] -= (accel_bias[2]/8); |
rctaduio | 0:80a695ae3cc3 | 727 | |
rctaduio | 0:80a695ae3cc3 | 728 | data[0] = (accel_bias_reg[0] >> 8) & 0xFF; |
rctaduio | 0:80a695ae3cc3 | 729 | data[1] = (accel_bias_reg[0]) & 0xFF; |
rctaduio | 0:80a695ae3cc3 | 730 | data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers |
rctaduio | 0:80a695ae3cc3 | 731 | data[2] = (accel_bias_reg[1] >> 8) & 0xFF; |
rctaduio | 0:80a695ae3cc3 | 732 | data[3] = (accel_bias_reg[1]) & 0xFF; |
rctaduio | 0:80a695ae3cc3 | 733 | data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers |
rctaduio | 0:80a695ae3cc3 | 734 | data[4] = (accel_bias_reg[2] >> 8) & 0xFF; |
rctaduio | 0:80a695ae3cc3 | 735 | data[5] = (accel_bias_reg[2]) & 0xFF; |
rctaduio | 0:80a695ae3cc3 | 736 | data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers |
rctaduio | 0:80a695ae3cc3 | 737 | |
rctaduio | 0:80a695ae3cc3 | 738 | // Apparently this is not working for the acceleration biases in the MPU-9250 |
rctaduio | 0:80a695ae3cc3 | 739 | // Are we handling the temperature correction bit properly? |
rctaduio | 0:80a695ae3cc3 | 740 | // Push accelerometer biases to hardware registers |
rctaduio | 0:80a695ae3cc3 | 741 | /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]); |
rctaduio | 0:80a695ae3cc3 | 742 | writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]); |
rctaduio | 0:80a695ae3cc3 | 743 | writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]); |
rctaduio | 0:80a695ae3cc3 | 744 | writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]); |
rctaduio | 0:80a695ae3cc3 | 745 | writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); |
rctaduio | 0:80a695ae3cc3 | 746 | writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); |
rctaduio | 0:80a695ae3cc3 | 747 | */ |
rctaduio | 0:80a695ae3cc3 | 748 | // Output scaled accelerometer biases for manual subtraction in the main program |
rctaduio | 0:80a695ae3cc3 | 749 | dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; |
rctaduio | 0:80a695ae3cc3 | 750 | dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; |
rctaduio | 0:80a695ae3cc3 | 751 | dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; |
rctaduio | 0:80a695ae3cc3 | 752 | } |
rctaduio | 0:80a695ae3cc3 | 753 | |
rctaduio | 0:80a695ae3cc3 | 754 | |
rctaduio | 0:80a695ae3cc3 | 755 | // Accelerometer and gyroscope self test; check calibration wrt factory settings |
rctaduio | 0:80a695ae3cc3 | 756 | void MPU9250SelfTest(float * destination) { // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass |
rctaduio | 0:80a695ae3cc3 | 757 | uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; |
rctaduio | 0:80a695ae3cc3 | 758 | uint8_t selfTest[6]; |
rctaduio | 0:80a695ae3cc3 | 759 | int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; |
rctaduio | 0:80a695ae3cc3 | 760 | float factoryTrim[6]; |
rctaduio | 0:80a695ae3cc3 | 761 | uint8_t FS = 0; |
rctaduio | 0:80a695ae3cc3 | 762 | |
rctaduio | 0:80a695ae3cc3 | 763 | writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz |
rctaduio | 0:80a695ae3cc3 | 764 | writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz |
rctaduio | 0:80a695ae3cc3 | 765 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps |
rctaduio | 0:80a695ae3cc3 | 766 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz |
rctaduio | 0:80a695ae3cc3 | 767 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g |
rctaduio | 0:80a695ae3cc3 | 768 | |
rctaduio | 0:80a695ae3cc3 | 769 | for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer |
rctaduio | 0:80a695ae3cc3 | 770 | |
rctaduio | 0:80a695ae3cc3 | 771 | readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array |
rctaduio | 0:80a695ae3cc3 | 772 | aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
rctaduio | 0:80a695ae3cc3 | 773 | aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
rctaduio | 0:80a695ae3cc3 | 774 | aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
rctaduio | 0:80a695ae3cc3 | 775 | |
rctaduio | 0:80a695ae3cc3 | 776 | readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
rctaduio | 0:80a695ae3cc3 | 777 | gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
rctaduio | 0:80a695ae3cc3 | 778 | gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
rctaduio | 0:80a695ae3cc3 | 779 | gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
rctaduio | 0:80a695ae3cc3 | 780 | } |
rctaduio | 0:80a695ae3cc3 | 781 | |
rctaduio | 0:80a695ae3cc3 | 782 | for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings |
rctaduio | 0:80a695ae3cc3 | 783 | aAvg[ii] /= 200; |
rctaduio | 0:80a695ae3cc3 | 784 | gAvg[ii] /= 200; |
rctaduio | 0:80a695ae3cc3 | 785 | } |
rctaduio | 0:80a695ae3cc3 | 786 | |
rctaduio | 0:80a695ae3cc3 | 787 | // Configure the accelerometer for self-test |
rctaduio | 0:80a695ae3cc3 | 788 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g |
rctaduio | 0:80a695ae3cc3 | 789 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s |
rctaduio | 0:80a695ae3cc3 | 790 | wait_ms(25); // Delay a while to let the device stabilize |
rctaduio | 0:80a695ae3cc3 | 791 | |
rctaduio | 0:80a695ae3cc3 | 792 | for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer |
rctaduio | 0:80a695ae3cc3 | 793 | |
rctaduio | 0:80a695ae3cc3 | 794 | readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array |
rctaduio | 0:80a695ae3cc3 | 795 | aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
rctaduio | 0:80a695ae3cc3 | 796 | aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
rctaduio | 0:80a695ae3cc3 | 797 | aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
rctaduio | 0:80a695ae3cc3 | 798 | |
rctaduio | 0:80a695ae3cc3 | 799 | readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
rctaduio | 0:80a695ae3cc3 | 800 | gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
rctaduio | 0:80a695ae3cc3 | 801 | gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
rctaduio | 0:80a695ae3cc3 | 802 | gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
rctaduio | 0:80a695ae3cc3 | 803 | } |
rctaduio | 0:80a695ae3cc3 | 804 | |
rctaduio | 0:80a695ae3cc3 | 805 | for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings |
rctaduio | 0:80a695ae3cc3 | 806 | aSTAvg[ii] /= 200; |
rctaduio | 0:80a695ae3cc3 | 807 | gSTAvg[ii] /= 200; |
rctaduio | 0:80a695ae3cc3 | 808 | } |
rctaduio | 0:80a695ae3cc3 | 809 | |
rctaduio | 0:80a695ae3cc3 | 810 | // Configure the gyro and accelerometer for normal operation |
rctaduio | 0:80a695ae3cc3 | 811 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); |
rctaduio | 0:80a695ae3cc3 | 812 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); |
rctaduio | 0:80a695ae3cc3 | 813 | wait_ms(25); // Delay a while to let the device stabilize |
rctaduio | 0:80a695ae3cc3 | 814 | |
rctaduio | 0:80a695ae3cc3 | 815 | // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg |
rctaduio | 0:80a695ae3cc3 | 816 | selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results |
rctaduio | 0:80a695ae3cc3 | 817 | selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results |
rctaduio | 0:80a695ae3cc3 | 818 | selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results |
rctaduio | 0:80a695ae3cc3 | 819 | selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results |
rctaduio | 0:80a695ae3cc3 | 820 | selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results |
rctaduio | 0:80a695ae3cc3 | 821 | selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results |
rctaduio | 0:80a695ae3cc3 | 822 | |
rctaduio | 0:80a695ae3cc3 | 823 | // Retrieve factory self-test value from self-test code reads |
rctaduio | 0:80a695ae3cc3 | 824 | factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation |
rctaduio | 0:80a695ae3cc3 | 825 | factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation |
rctaduio | 0:80a695ae3cc3 | 826 | factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation |
rctaduio | 0:80a695ae3cc3 | 827 | factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation |
rctaduio | 0:80a695ae3cc3 | 828 | factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation |
rctaduio | 0:80a695ae3cc3 | 829 | factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation |
rctaduio | 0:80a695ae3cc3 | 830 | |
rctaduio | 0:80a695ae3cc3 | 831 | // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response |
rctaduio | 0:80a695ae3cc3 | 832 | // To get percent, must multiply by 100 |
rctaduio | 0:80a695ae3cc3 | 833 | for (int i = 0; i < 3; i++) { |
rctaduio | 0:80a695ae3cc3 | 834 | destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences |
rctaduio | 0:80a695ae3cc3 | 835 | destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences |
rctaduio | 0:80a695ae3cc3 | 836 | } |
rctaduio | 0:80a695ae3cc3 | 837 | |
rctaduio | 0:80a695ae3cc3 | 838 | } |
rctaduio | 0:80a695ae3cc3 | 839 | |
rctaduio | 0:80a695ae3cc3 | 840 | |
rctaduio | 0:80a695ae3cc3 | 841 | |
rctaduio | 0:80a695ae3cc3 | 842 | // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" |
rctaduio | 0:80a695ae3cc3 | 843 | // (see http://www.x-io.co.uk/category/open-source/ for examples and more details) |
rctaduio | 0:80a695ae3cc3 | 844 | // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute |
rctaduio | 0:80a695ae3cc3 | 845 | // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. |
rctaduio | 0:80a695ae3cc3 | 846 | // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms |
rctaduio | 0:80a695ae3cc3 | 847 | // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! |
rctaduio | 0:80a695ae3cc3 | 848 | void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) { |
rctaduio | 0:80a695ae3cc3 | 849 | float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability |
rctaduio | 0:80a695ae3cc3 | 850 | float norm; |
rctaduio | 0:80a695ae3cc3 | 851 | float hx, hy, _2bx, _2bz; |
rctaduio | 0:80a695ae3cc3 | 852 | float s1, s2, s3, s4; |
rctaduio | 0:80a695ae3cc3 | 853 | float qDot1, qDot2, qDot3, qDot4; |
rctaduio | 0:80a695ae3cc3 | 854 | |
rctaduio | 0:80a695ae3cc3 | 855 | // Auxiliary variables to avoid repeated arithmetic |
rctaduio | 0:80a695ae3cc3 | 856 | float _2q1mx; |
rctaduio | 0:80a695ae3cc3 | 857 | float _2q1my; |
rctaduio | 0:80a695ae3cc3 | 858 | float _2q1mz; |
rctaduio | 0:80a695ae3cc3 | 859 | float _2q2mx; |
rctaduio | 0:80a695ae3cc3 | 860 | float _4bx; |
rctaduio | 0:80a695ae3cc3 | 861 | float _4bz; |
rctaduio | 0:80a695ae3cc3 | 862 | float _2q1 = 2.0f * q1; |
rctaduio | 0:80a695ae3cc3 | 863 | float _2q2 = 2.0f * q2; |
rctaduio | 0:80a695ae3cc3 | 864 | float _2q3 = 2.0f * q3; |
rctaduio | 0:80a695ae3cc3 | 865 | float _2q4 = 2.0f * q4; |
rctaduio | 0:80a695ae3cc3 | 866 | float _2q1q3 = 2.0f * q1 * q3; |
rctaduio | 0:80a695ae3cc3 | 867 | float _2q3q4 = 2.0f * q3 * q4; |
rctaduio | 0:80a695ae3cc3 | 868 | float q1q1 = q1 * q1; |
rctaduio | 0:80a695ae3cc3 | 869 | float q1q2 = q1 * q2; |
rctaduio | 0:80a695ae3cc3 | 870 | float q1q3 = q1 * q3; |
rctaduio | 0:80a695ae3cc3 | 871 | float q1q4 = q1 * q4; |
rctaduio | 0:80a695ae3cc3 | 872 | float q2q2 = q2 * q2; |
rctaduio | 0:80a695ae3cc3 | 873 | float q2q3 = q2 * q3; |
rctaduio | 0:80a695ae3cc3 | 874 | float q2q4 = q2 * q4; |
rctaduio | 0:80a695ae3cc3 | 875 | float q3q3 = q3 * q3; |
rctaduio | 0:80a695ae3cc3 | 876 | float q3q4 = q3 * q4; |
rctaduio | 0:80a695ae3cc3 | 877 | float q4q4 = q4 * q4; |
rctaduio | 0:80a695ae3cc3 | 878 | |
rctaduio | 0:80a695ae3cc3 | 879 | // Normalise accelerometer measurement |
rctaduio | 0:80a695ae3cc3 | 880 | norm = sqrt(ax * ax + ay * ay + az * az); |
rctaduio | 0:80a695ae3cc3 | 881 | if (norm == 0.0f) return; // handle NaN |
rctaduio | 0:80a695ae3cc3 | 882 | norm = 1.0f/norm; |
rctaduio | 0:80a695ae3cc3 | 883 | ax *= norm; |
rctaduio | 0:80a695ae3cc3 | 884 | ay *= norm; |
rctaduio | 0:80a695ae3cc3 | 885 | az *= norm; |
rctaduio | 0:80a695ae3cc3 | 886 | |
rctaduio | 0:80a695ae3cc3 | 887 | // Normalise magnetometer measurement |
rctaduio | 0:80a695ae3cc3 | 888 | norm = sqrt(mx * mx + my * my + mz * mz); |
rctaduio | 0:80a695ae3cc3 | 889 | if (norm == 0.0f) return; // handle NaN |
rctaduio | 0:80a695ae3cc3 | 890 | norm = 1.0f/norm; |
rctaduio | 0:80a695ae3cc3 | 891 | mx *= norm; |
rctaduio | 0:80a695ae3cc3 | 892 | my *= norm; |
rctaduio | 0:80a695ae3cc3 | 893 | mz *= norm; |
rctaduio | 0:80a695ae3cc3 | 894 | |
rctaduio | 0:80a695ae3cc3 | 895 | // Reference direction of Earth's magnetic field |
rctaduio | 0:80a695ae3cc3 | 896 | _2q1mx = 2.0f * q1 * mx; |
rctaduio | 0:80a695ae3cc3 | 897 | _2q1my = 2.0f * q1 * my; |
rctaduio | 0:80a695ae3cc3 | 898 | _2q1mz = 2.0f * q1 * mz; |
rctaduio | 0:80a695ae3cc3 | 899 | _2q2mx = 2.0f * q2 * mx; |
rctaduio | 0:80a695ae3cc3 | 900 | hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; |
rctaduio | 0:80a695ae3cc3 | 901 | hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; |
rctaduio | 0:80a695ae3cc3 | 902 | _2bx = sqrt(hx * hx + hy * hy); |
rctaduio | 0:80a695ae3cc3 | 903 | _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; |
rctaduio | 0:80a695ae3cc3 | 904 | _4bx = 2.0f * _2bx; |
rctaduio | 0:80a695ae3cc3 | 905 | _4bz = 2.0f * _2bz; |
rctaduio | 0:80a695ae3cc3 | 906 | |
rctaduio | 0:80a695ae3cc3 | 907 | // Gradient decent algorithm corrective step |
rctaduio | 0:80a695ae3cc3 | 908 | s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
rctaduio | 0:80a695ae3cc3 | 909 | s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
rctaduio | 0:80a695ae3cc3 | 910 | s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
rctaduio | 0:80a695ae3cc3 | 911 | s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
rctaduio | 0:80a695ae3cc3 | 912 | norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude |
rctaduio | 0:80a695ae3cc3 | 913 | norm = 1.0f/norm; |
rctaduio | 0:80a695ae3cc3 | 914 | s1 *= norm; |
rctaduio | 0:80a695ae3cc3 | 915 | s2 *= norm; |
rctaduio | 0:80a695ae3cc3 | 916 | s3 *= norm; |
rctaduio | 0:80a695ae3cc3 | 917 | s4 *= norm; |
rctaduio | 0:80a695ae3cc3 | 918 | |
rctaduio | 0:80a695ae3cc3 | 919 | // Compute rate of change of quaternion |
rctaduio | 0:80a695ae3cc3 | 920 | qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; |
rctaduio | 0:80a695ae3cc3 | 921 | qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; |
rctaduio | 0:80a695ae3cc3 | 922 | qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; |
rctaduio | 0:80a695ae3cc3 | 923 | qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; |
rctaduio | 0:80a695ae3cc3 | 924 | |
rctaduio | 0:80a695ae3cc3 | 925 | // Integrate to yield quaternion |
rctaduio | 0:80a695ae3cc3 | 926 | q1 += qDot1 * deltat; |
rctaduio | 0:80a695ae3cc3 | 927 | q2 += qDot2 * deltat; |
rctaduio | 0:80a695ae3cc3 | 928 | q3 += qDot3 * deltat; |
rctaduio | 0:80a695ae3cc3 | 929 | q4 += qDot4 * deltat; |
rctaduio | 0:80a695ae3cc3 | 930 | norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion |
rctaduio | 0:80a695ae3cc3 | 931 | norm = 1.0f/norm; |
rctaduio | 0:80a695ae3cc3 | 932 | q[0] = q1 * norm; |
rctaduio | 0:80a695ae3cc3 | 933 | q[1] = q2 * norm; |
rctaduio | 0:80a695ae3cc3 | 934 | q[2] = q3 * norm; |
rctaduio | 0:80a695ae3cc3 | 935 | q[3] = q4 * norm; |
rctaduio | 0:80a695ae3cc3 | 936 | |
rctaduio | 0:80a695ae3cc3 | 937 | } |
rctaduio | 0:80a695ae3cc3 | 938 | |
rctaduio | 0:80a695ae3cc3 | 939 | |
rctaduio | 0:80a695ae3cc3 | 940 | // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and |
rctaduio | 0:80a695ae3cc3 | 941 | // measured ones. |
rctaduio | 0:80a695ae3cc3 | 942 | void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) { |
rctaduio | 0:80a695ae3cc3 | 943 | float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability |
rctaduio | 0:80a695ae3cc3 | 944 | float norm; |
rctaduio | 0:80a695ae3cc3 | 945 | float hx, hy, bx, bz; |
rctaduio | 0:80a695ae3cc3 | 946 | float vx, vy, vz, wx, wy, wz; |
rctaduio | 0:80a695ae3cc3 | 947 | float ex, ey, ez; |
rctaduio | 0:80a695ae3cc3 | 948 | float pa, pb, pc; |
rctaduio | 0:80a695ae3cc3 | 949 | |
rctaduio | 0:80a695ae3cc3 | 950 | // Auxiliary variables to avoid repeated arithmetic |
rctaduio | 0:80a695ae3cc3 | 951 | float q1q1 = q1 * q1; |
rctaduio | 0:80a695ae3cc3 | 952 | float q1q2 = q1 * q2; |
rctaduio | 0:80a695ae3cc3 | 953 | float q1q3 = q1 * q3; |
rctaduio | 0:80a695ae3cc3 | 954 | float q1q4 = q1 * q4; |
rctaduio | 0:80a695ae3cc3 | 955 | float q2q2 = q2 * q2; |
rctaduio | 0:80a695ae3cc3 | 956 | float q2q3 = q2 * q3; |
rctaduio | 0:80a695ae3cc3 | 957 | float q2q4 = q2 * q4; |
rctaduio | 0:80a695ae3cc3 | 958 | float q3q3 = q3 * q3; |
rctaduio | 0:80a695ae3cc3 | 959 | float q3q4 = q3 * q4; |
rctaduio | 0:80a695ae3cc3 | 960 | float q4q4 = q4 * q4; |
rctaduio | 0:80a695ae3cc3 | 961 | |
rctaduio | 0:80a695ae3cc3 | 962 | // Normalise accelerometer measurement |
rctaduio | 0:80a695ae3cc3 | 963 | norm = sqrt(ax * ax + ay * ay + az * az); |
rctaduio | 0:80a695ae3cc3 | 964 | if (norm == 0.0f) return; // handle NaN |
rctaduio | 0:80a695ae3cc3 | 965 | norm = 1.0f / norm; // use reciprocal for division |
rctaduio | 0:80a695ae3cc3 | 966 | ax *= norm; |
rctaduio | 0:80a695ae3cc3 | 967 | ay *= norm; |
rctaduio | 0:80a695ae3cc3 | 968 | az *= norm; |
rctaduio | 0:80a695ae3cc3 | 969 | |
rctaduio | 0:80a695ae3cc3 | 970 | // Normalise magnetometer measurement |
rctaduio | 0:80a695ae3cc3 | 971 | norm = sqrt(mx * mx + my * my + mz * mz); |
rctaduio | 0:80a695ae3cc3 | 972 | if (norm == 0.0f) return; // handle NaN |
rctaduio | 0:80a695ae3cc3 | 973 | norm = 1.0f / norm; // use reciprocal for division |
rctaduio | 0:80a695ae3cc3 | 974 | mx *= norm; |
rctaduio | 0:80a695ae3cc3 | 975 | my *= norm; |
rctaduio | 0:80a695ae3cc3 | 976 | mz *= norm; |
rctaduio | 0:80a695ae3cc3 | 977 | |
rctaduio | 0:80a695ae3cc3 | 978 | // Reference direction of Earth's magnetic field |
rctaduio | 0:80a695ae3cc3 | 979 | hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3); |
rctaduio | 0:80a695ae3cc3 | 980 | hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2); |
rctaduio | 0:80a695ae3cc3 | 981 | bx = sqrt((hx * hx) + (hy * hy)); |
rctaduio | 0:80a695ae3cc3 | 982 | bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3); |
rctaduio | 0:80a695ae3cc3 | 983 | |
rctaduio | 0:80a695ae3cc3 | 984 | // Estimated direction of gravity and magnetic field |
rctaduio | 0:80a695ae3cc3 | 985 | vx = 2.0f * (q2q4 - q1q3); |
rctaduio | 0:80a695ae3cc3 | 986 | vy = 2.0f * (q1q2 + q3q4); |
rctaduio | 0:80a695ae3cc3 | 987 | vz = q1q1 - q2q2 - q3q3 + q4q4; |
rctaduio | 0:80a695ae3cc3 | 988 | wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); |
rctaduio | 0:80a695ae3cc3 | 989 | wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); |
rctaduio | 0:80a695ae3cc3 | 990 | wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); |
rctaduio | 0:80a695ae3cc3 | 991 | |
rctaduio | 0:80a695ae3cc3 | 992 | // Error is cross product between estimated direction and measured direction of gravity |
rctaduio | 0:80a695ae3cc3 | 993 | ex = (ay * vz - az * vy) + (my * wz - mz * wy); |
rctaduio | 0:80a695ae3cc3 | 994 | ey = (az * vx - ax * vz) + (mz * wx - mx * wz); |
rctaduio | 0:80a695ae3cc3 | 995 | ez = (ax * vy - ay * vx) + (mx * wy - my * wx); |
rctaduio | 0:80a695ae3cc3 | 996 | if (Ki > 0.0f) { |
rctaduio | 0:80a695ae3cc3 | 997 | eInt[0] += ex; // accumulate integral error |
rctaduio | 0:80a695ae3cc3 | 998 | eInt[1] += ey; |
rctaduio | 0:80a695ae3cc3 | 999 | eInt[2] += ez; |
rctaduio | 0:80a695ae3cc3 | 1000 | } else { |
rctaduio | 0:80a695ae3cc3 | 1001 | eInt[0] = 0.0f; // prevent integral wind up |
rctaduio | 0:80a695ae3cc3 | 1002 | eInt[1] = 0.0f; |
rctaduio | 0:80a695ae3cc3 | 1003 | eInt[2] = 0.0f; |
rctaduio | 0:80a695ae3cc3 | 1004 | } |
rctaduio | 0:80a695ae3cc3 | 1005 | |
rctaduio | 0:80a695ae3cc3 | 1006 | // Apply feedback terms |
rctaduio | 0:80a695ae3cc3 | 1007 | gx = gx + Kp * ex + Ki * eInt[0]; |
rctaduio | 0:80a695ae3cc3 | 1008 | gy = gy + Kp * ey + Ki * eInt[1]; |
rctaduio | 0:80a695ae3cc3 | 1009 | gz = gz + Kp * ez + Ki * eInt[2]; |
rctaduio | 0:80a695ae3cc3 | 1010 | |
rctaduio | 0:80a695ae3cc3 | 1011 | // Integrate rate of change of quaternion |
rctaduio | 0:80a695ae3cc3 | 1012 | pa = q2; |
rctaduio | 0:80a695ae3cc3 | 1013 | pb = q3; |
rctaduio | 0:80a695ae3cc3 | 1014 | pc = q4; |
rctaduio | 0:80a695ae3cc3 | 1015 | q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); |
rctaduio | 0:80a695ae3cc3 | 1016 | q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); |
rctaduio | 0:80a695ae3cc3 | 1017 | q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); |
rctaduio | 0:80a695ae3cc3 | 1018 | q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); |
rctaduio | 0:80a695ae3cc3 | 1019 | |
rctaduio | 0:80a695ae3cc3 | 1020 | // Normalise quaternion |
rctaduio | 0:80a695ae3cc3 | 1021 | norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); |
rctaduio | 0:80a695ae3cc3 | 1022 | norm = 1.0f / norm; |
rctaduio | 0:80a695ae3cc3 | 1023 | q[0] = q1 * norm; |
rctaduio | 0:80a695ae3cc3 | 1024 | q[1] = q2 * norm; |
rctaduio | 0:80a695ae3cc3 | 1025 | q[2] = q3 * norm; |
rctaduio | 0:80a695ae3cc3 | 1026 | q[3] = q4 * norm; |
rctaduio | 0:80a695ae3cc3 | 1027 | |
rctaduio | 0:80a695ae3cc3 | 1028 | } |
rctaduio | 0:80a695ae3cc3 | 1029 | }; |
rctaduio | 0:80a695ae3cc3 | 1030 | #endif |