test
targets/TARGET_Maxim/TARGET_MAX32630/mxc/uart.c@2:4364577b5ad8, 2020-11-09 (annotated)
- Committer:
- elijahsj
- Date:
- Mon Nov 09 00:33:19 2020 -0500
- Revision:
- 2:4364577b5ad8
- Parent:
- 1:8a094db1347f
copied mbed library
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
elijahsj | 1:8a094db1347f | 1 | /** |
elijahsj | 1:8a094db1347f | 2 | * @file |
elijahsj | 1:8a094db1347f | 3 | * @brief This file contains the function implementations for the UART |
elijahsj | 1:8a094db1347f | 4 | * serial communications peripheral module. |
elijahsj | 1:8a094db1347f | 5 | */ |
elijahsj | 1:8a094db1347f | 6 | /* ***************************************************************************** |
elijahsj | 1:8a094db1347f | 7 | * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. |
elijahsj | 1:8a094db1347f | 8 | * |
elijahsj | 1:8a094db1347f | 9 | * Permission is hereby granted, free of charge, to any person obtaining a |
elijahsj | 1:8a094db1347f | 10 | * copy of this software and associated documentation files (the "Software"), |
elijahsj | 1:8a094db1347f | 11 | * to deal in the Software without restriction, including without limitation |
elijahsj | 1:8a094db1347f | 12 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
elijahsj | 1:8a094db1347f | 13 | * and/or sell copies of the Software, and to permit persons to whom the |
elijahsj | 1:8a094db1347f | 14 | * Software is furnished to do so, subject to the following conditions: |
elijahsj | 1:8a094db1347f | 15 | * |
elijahsj | 1:8a094db1347f | 16 | * The above copyright notice and this permission notice shall be included |
elijahsj | 1:8a094db1347f | 17 | * in all copies or substantial portions of the Software. |
elijahsj | 1:8a094db1347f | 18 | * |
elijahsj | 1:8a094db1347f | 19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
elijahsj | 1:8a094db1347f | 20 | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
elijahsj | 1:8a094db1347f | 21 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
elijahsj | 1:8a094db1347f | 22 | * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES |
elijahsj | 1:8a094db1347f | 23 | * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
elijahsj | 1:8a094db1347f | 24 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
elijahsj | 1:8a094db1347f | 25 | * OTHER DEALINGS IN THE SOFTWARE. |
elijahsj | 1:8a094db1347f | 26 | * |
elijahsj | 1:8a094db1347f | 27 | * Except as contained in this notice, the name of Maxim Integrated |
elijahsj | 1:8a094db1347f | 28 | * Products, Inc. shall not be used except as stated in the Maxim Integrated |
elijahsj | 1:8a094db1347f | 29 | * Products, Inc. Branding Policy. |
elijahsj | 1:8a094db1347f | 30 | * |
elijahsj | 1:8a094db1347f | 31 | * The mere transfer of this software does not imply any licenses |
elijahsj | 1:8a094db1347f | 32 | * of trade secrets, proprietary technology, copyrights, patents, |
elijahsj | 1:8a094db1347f | 33 | * trademarks, maskwork rights, or any other form of intellectual |
elijahsj | 1:8a094db1347f | 34 | * property whatsoever. Maxim Integrated Products, Inc. retains all |
elijahsj | 1:8a094db1347f | 35 | * ownership rights. |
elijahsj | 1:8a094db1347f | 36 | * |
elijahsj | 1:8a094db1347f | 37 | * $Date: 2016-09-08 17:00:36 -0500 (Thu, 08 Sep 2016) $ |
elijahsj | 1:8a094db1347f | 38 | * $Revision: 24319 $ |
elijahsj | 1:8a094db1347f | 39 | * |
elijahsj | 1:8a094db1347f | 40 | **************************************************************************** */ |
elijahsj | 1:8a094db1347f | 41 | |
elijahsj | 1:8a094db1347f | 42 | /* **** Includes **** */ |
elijahsj | 1:8a094db1347f | 43 | #include <string.h> |
elijahsj | 1:8a094db1347f | 44 | #include "mxc_config.h" |
elijahsj | 1:8a094db1347f | 45 | #include "mxc_assert.h" |
elijahsj | 1:8a094db1347f | 46 | #include "mxc_lock.h" |
elijahsj | 1:8a094db1347f | 47 | #include "mxc_sys.h" |
elijahsj | 1:8a094db1347f | 48 | #include "uart.h" |
elijahsj | 1:8a094db1347f | 49 | |
elijahsj | 1:8a094db1347f | 50 | /** |
elijahsj | 1:8a094db1347f | 51 | * @ingroup uart_comm |
elijahsj | 1:8a094db1347f | 52 | * @{ |
elijahsj | 1:8a094db1347f | 53 | */ |
elijahsj | 1:8a094db1347f | 54 | /* **** Definitions **** */ |
elijahsj | 1:8a094db1347f | 55 | ///@cond |
elijahsj | 1:8a094db1347f | 56 | #define UART_ERRORS (MXC_F_UART_INTEN_RX_FIFO_OVERFLOW | \ |
elijahsj | 1:8a094db1347f | 57 | MXC_F_UART_INTEN_RX_FRAMING_ERR | \ |
elijahsj | 1:8a094db1347f | 58 | MXC_F_UART_INTEN_RX_PARITY_ERR) |
elijahsj | 1:8a094db1347f | 59 | |
elijahsj | 1:8a094db1347f | 60 | #define UART_READ_INTS (MXC_F_UART_INTEN_RX_FIFO_AF | \ |
elijahsj | 1:8a094db1347f | 61 | MXC_F_UART_INTEN_RX_FIFO_NOT_EMPTY | \ |
elijahsj | 1:8a094db1347f | 62 | MXC_F_UART_INTEN_RX_STALLED | \ |
elijahsj | 1:8a094db1347f | 63 | UART_ERRORS) |
elijahsj | 1:8a094db1347f | 64 | |
elijahsj | 1:8a094db1347f | 65 | #define UART_WRITE_INTS (MXC_F_UART_INTEN_TX_UNSTALLED | \ |
elijahsj | 1:8a094db1347f | 66 | MXC_F_UART_INTEN_TX_FIFO_AE) |
elijahsj | 1:8a094db1347f | 67 | |
elijahsj | 1:8a094db1347f | 68 | #define UART_RXFIFO_USABLE (MXC_UART_FIFO_DEPTH-3) |
elijahsj | 1:8a094db1347f | 69 | ///@endcond |
elijahsj | 1:8a094db1347f | 70 | // |
elijahsj | 1:8a094db1347f | 71 | /* **** Globals **** */ |
elijahsj | 1:8a094db1347f | 72 | |
elijahsj | 1:8a094db1347f | 73 | // Saves the state of the non-blocking read requests |
elijahsj | 1:8a094db1347f | 74 | static uart_req_t *rx_states[MXC_CFG_UART_INSTANCES]; |
elijahsj | 1:8a094db1347f | 75 | |
elijahsj | 1:8a094db1347f | 76 | // Saves the state of the non-blocking write requests |
elijahsj | 1:8a094db1347f | 77 | static uart_req_t *tx_states[MXC_CFG_UART_INSTANCES]; |
elijahsj | 1:8a094db1347f | 78 | |
elijahsj | 1:8a094db1347f | 79 | /* **** Functions **** */ |
elijahsj | 1:8a094db1347f | 80 | static void UART_WriteHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num); |
elijahsj | 1:8a094db1347f | 81 | static void UART_ReadHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num, |
elijahsj | 1:8a094db1347f | 82 | uint32_t flags); |
elijahsj | 1:8a094db1347f | 83 | |
elijahsj | 1:8a094db1347f | 84 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 85 | int UART_Init(mxc_uart_regs_t *uart, const uart_cfg_t *cfg, const sys_cfg_uart_t *sys_cfg) |
elijahsj | 1:8a094db1347f | 86 | { |
elijahsj | 1:8a094db1347f | 87 | int err; |
elijahsj | 1:8a094db1347f | 88 | int uart_num; |
elijahsj | 1:8a094db1347f | 89 | uint32_t uart_clk; |
elijahsj | 1:8a094db1347f | 90 | uint8_t baud_shift; |
elijahsj | 1:8a094db1347f | 91 | uint16_t baud_div; |
elijahsj | 1:8a094db1347f | 92 | uint32_t baud, diff_baud; |
elijahsj | 1:8a094db1347f | 93 | uint32_t baud_1, diff_baud_1; |
elijahsj | 1:8a094db1347f | 94 | |
elijahsj | 1:8a094db1347f | 95 | // Check the input parameters |
elijahsj | 1:8a094db1347f | 96 | uart_num = MXC_UART_GET_IDX(uart); |
elijahsj | 1:8a094db1347f | 97 | MXC_ASSERT(uart_num >= 0); |
elijahsj | 1:8a094db1347f | 98 | |
elijahsj | 1:8a094db1347f | 99 | // Set system level configurations |
elijahsj | 1:8a094db1347f | 100 | if(sys_cfg != NULL) { |
elijahsj | 1:8a094db1347f | 101 | if ((err = SYS_UART_Init(uart, cfg, sys_cfg)) != E_NO_ERROR) { |
elijahsj | 1:8a094db1347f | 102 | return err; |
elijahsj | 1:8a094db1347f | 103 | } |
elijahsj | 1:8a094db1347f | 104 | } |
elijahsj | 1:8a094db1347f | 105 | |
elijahsj | 1:8a094db1347f | 106 | // Initialize state pointers |
elijahsj | 1:8a094db1347f | 107 | rx_states[uart_num] = NULL; |
elijahsj | 1:8a094db1347f | 108 | tx_states[uart_num] = NULL; |
elijahsj | 1:8a094db1347f | 109 | |
elijahsj | 1:8a094db1347f | 110 | // Drain FIFOs and enable UART |
elijahsj | 1:8a094db1347f | 111 | uart->ctrl = 0; |
elijahsj | 1:8a094db1347f | 112 | uart->ctrl = (MXC_F_UART_CTRL_UART_EN | MXC_F_UART_CTRL_TX_FIFO_EN | |
elijahsj | 1:8a094db1347f | 113 | MXC_F_UART_CTRL_RX_FIFO_EN | |
elijahsj | 1:8a094db1347f | 114 | (UART_RXFIFO_USABLE << MXC_F_UART_CTRL_RTS_LEVEL_POS)); |
elijahsj | 1:8a094db1347f | 115 | |
elijahsj | 1:8a094db1347f | 116 | // Configure data size, stop bit, parity, cts, and rts |
elijahsj | 1:8a094db1347f | 117 | uart->ctrl |= ((cfg->size << MXC_F_UART_CTRL_DATA_SIZE_POS) | |
elijahsj | 1:8a094db1347f | 118 | (cfg->extra_stop << MXC_F_UART_CTRL_EXTRA_STOP_POS) | |
elijahsj | 1:8a094db1347f | 119 | (cfg->parity << MXC_F_UART_CTRL_PARITY_POS) | |
elijahsj | 1:8a094db1347f | 120 | (cfg->cts << MXC_F_UART_CTRL_CTS_EN_POS) | |
elijahsj | 1:8a094db1347f | 121 | (cfg->rts << MXC_F_UART_CTRL_RTS_EN_POS)); |
elijahsj | 1:8a094db1347f | 122 | |
elijahsj | 1:8a094db1347f | 123 | // Configure the baud rate and divisor |
elijahsj | 1:8a094db1347f | 124 | uart_clk = SYS_UART_GetFreq(uart); |
elijahsj | 1:8a094db1347f | 125 | MXC_ASSERT(uart_clk > 0); |
elijahsj | 1:8a094db1347f | 126 | |
elijahsj | 1:8a094db1347f | 127 | baud_shift = 2; |
elijahsj | 1:8a094db1347f | 128 | baud_div = (uart_clk / (cfg->baud * 4)); |
elijahsj | 1:8a094db1347f | 129 | |
elijahsj | 1:8a094db1347f | 130 | // Can not support higher frequencies |
elijahsj | 1:8a094db1347f | 131 | if(!baud_div) { |
elijahsj | 1:8a094db1347f | 132 | return E_NOT_SUPPORTED; |
elijahsj | 1:8a094db1347f | 133 | } |
elijahsj | 1:8a094db1347f | 134 | |
elijahsj | 1:8a094db1347f | 135 | // Decrease the divisor if baud_div is overflowing |
elijahsj | 1:8a094db1347f | 136 | while(baud_div > 0xFF) { |
elijahsj | 1:8a094db1347f | 137 | if(baud_shift == 0) { |
elijahsj | 1:8a094db1347f | 138 | return E_NOT_SUPPORTED; |
elijahsj | 1:8a094db1347f | 139 | } |
elijahsj | 1:8a094db1347f | 140 | baud_shift--; |
elijahsj | 1:8a094db1347f | 141 | baud_div = (uart_clk / (cfg->baud * (16 >> baud_shift))); |
elijahsj | 1:8a094db1347f | 142 | } |
elijahsj | 1:8a094db1347f | 143 | |
elijahsj | 1:8a094db1347f | 144 | // Adjust baud_div so we don't overflow with the calculations below |
elijahsj | 1:8a094db1347f | 145 | if(baud_div == 0xFF) { |
elijahsj | 1:8a094db1347f | 146 | baud_div = 0xFE; |
elijahsj | 1:8a094db1347f | 147 | } |
elijahsj | 1:8a094db1347f | 148 | if(baud_div == 0) { |
elijahsj | 1:8a094db1347f | 149 | baud_div = 1; |
elijahsj | 1:8a094db1347f | 150 | } |
elijahsj | 1:8a094db1347f | 151 | |
elijahsj | 1:8a094db1347f | 152 | // Figure out if the truncation increased the error |
elijahsj | 1:8a094db1347f | 153 | baud = (uart_clk / (baud_div * (16 >> baud_shift))); |
elijahsj | 1:8a094db1347f | 154 | baud_1 = (uart_clk / ((baud_div+1) * (16 >> baud_shift))); |
elijahsj | 1:8a094db1347f | 155 | |
elijahsj | 1:8a094db1347f | 156 | if(cfg->baud > baud) { |
elijahsj | 1:8a094db1347f | 157 | diff_baud = cfg->baud - baud; |
elijahsj | 1:8a094db1347f | 158 | } else { |
elijahsj | 1:8a094db1347f | 159 | diff_baud = baud - cfg->baud; |
elijahsj | 1:8a094db1347f | 160 | } |
elijahsj | 1:8a094db1347f | 161 | |
elijahsj | 1:8a094db1347f | 162 | if(cfg->baud > baud_1) { |
elijahsj | 1:8a094db1347f | 163 | diff_baud_1 = cfg->baud - baud_1; |
elijahsj | 1:8a094db1347f | 164 | } else { |
elijahsj | 1:8a094db1347f | 165 | diff_baud_1 = baud_1 - cfg->baud; |
elijahsj | 1:8a094db1347f | 166 | } |
elijahsj | 1:8a094db1347f | 167 | |
elijahsj | 1:8a094db1347f | 168 | if(diff_baud < diff_baud_1) { |
elijahsj | 1:8a094db1347f | 169 | uart->baud = ((baud_div & MXC_F_UART_BAUD_BAUD_DIVISOR) | |
elijahsj | 1:8a094db1347f | 170 | (baud_shift << MXC_F_UART_BAUD_BAUD_MODE_POS)); |
elijahsj | 1:8a094db1347f | 171 | } else { |
elijahsj | 1:8a094db1347f | 172 | uart->baud = (((baud_div+1) & MXC_F_UART_BAUD_BAUD_DIVISOR) | |
elijahsj | 1:8a094db1347f | 173 | (baud_shift << MXC_F_UART_BAUD_BAUD_MODE_POS)); |
elijahsj | 1:8a094db1347f | 174 | } |
elijahsj | 1:8a094db1347f | 175 | |
elijahsj | 1:8a094db1347f | 176 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 177 | } |
elijahsj | 1:8a094db1347f | 178 | |
elijahsj | 1:8a094db1347f | 179 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 180 | int UART_Shutdown(mxc_uart_regs_t *uart) |
elijahsj | 1:8a094db1347f | 181 | { |
elijahsj | 1:8a094db1347f | 182 | int uart_num, err; |
elijahsj | 1:8a094db1347f | 183 | uart_req_t *temp_req; |
elijahsj | 1:8a094db1347f | 184 | |
elijahsj | 1:8a094db1347f | 185 | uart_num = MXC_UART_GET_IDX(uart); |
elijahsj | 1:8a094db1347f | 186 | MXC_ASSERT(uart_num >= 0); |
elijahsj | 1:8a094db1347f | 187 | |
elijahsj | 1:8a094db1347f | 188 | // Disable and clear interrupts |
elijahsj | 1:8a094db1347f | 189 | uart->inten = 0; |
elijahsj | 1:8a094db1347f | 190 | uart->intfl = uart->intfl; |
elijahsj | 1:8a094db1347f | 191 | |
elijahsj | 1:8a094db1347f | 192 | // Disable UART and FIFOS |
elijahsj | 1:8a094db1347f | 193 | uart->ctrl &= ~(MXC_F_UART_CTRL_UART_EN | MXC_F_UART_CTRL_TX_FIFO_EN | |
elijahsj | 1:8a094db1347f | 194 | MXC_F_UART_CTRL_RX_FIFO_EN); |
elijahsj | 1:8a094db1347f | 195 | |
elijahsj | 1:8a094db1347f | 196 | // Call all of the pending callbacks for this UART |
elijahsj | 1:8a094db1347f | 197 | if(rx_states[uart_num] != NULL) { |
elijahsj | 1:8a094db1347f | 198 | |
elijahsj | 1:8a094db1347f | 199 | // Save the request |
elijahsj | 1:8a094db1347f | 200 | temp_req = rx_states[uart_num]; |
elijahsj | 1:8a094db1347f | 201 | |
elijahsj | 1:8a094db1347f | 202 | // Unlock this UART to read |
elijahsj | 1:8a094db1347f | 203 | mxc_free_lock((uint32_t*)&rx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 204 | |
elijahsj | 1:8a094db1347f | 205 | // Callback if not NULL |
elijahsj | 1:8a094db1347f | 206 | if(temp_req->callback != NULL) { |
elijahsj | 1:8a094db1347f | 207 | temp_req->callback(temp_req, E_SHUTDOWN); |
elijahsj | 1:8a094db1347f | 208 | } |
elijahsj | 1:8a094db1347f | 209 | } |
elijahsj | 1:8a094db1347f | 210 | |
elijahsj | 1:8a094db1347f | 211 | if(tx_states[uart_num] != NULL) { |
elijahsj | 1:8a094db1347f | 212 | |
elijahsj | 1:8a094db1347f | 213 | // Save the request |
elijahsj | 1:8a094db1347f | 214 | temp_req = tx_states[uart_num]; |
elijahsj | 1:8a094db1347f | 215 | |
elijahsj | 1:8a094db1347f | 216 | // Unlock this UART to write |
elijahsj | 1:8a094db1347f | 217 | mxc_free_lock((uint32_t*)&tx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 218 | |
elijahsj | 1:8a094db1347f | 219 | // Callback if not NULL |
elijahsj | 1:8a094db1347f | 220 | if(temp_req->callback != NULL) { |
elijahsj | 1:8a094db1347f | 221 | temp_req->callback(temp_req, E_SHUTDOWN); |
elijahsj | 1:8a094db1347f | 222 | } |
elijahsj | 1:8a094db1347f | 223 | } |
elijahsj | 1:8a094db1347f | 224 | |
elijahsj | 1:8a094db1347f | 225 | // Clears system level configurations |
elijahsj | 1:8a094db1347f | 226 | if ((err = SYS_UART_Shutdown(uart)) != E_NO_ERROR) { |
elijahsj | 1:8a094db1347f | 227 | return err; |
elijahsj | 1:8a094db1347f | 228 | } |
elijahsj | 1:8a094db1347f | 229 | |
elijahsj | 1:8a094db1347f | 230 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 231 | } |
elijahsj | 1:8a094db1347f | 232 | |
elijahsj | 1:8a094db1347f | 233 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 234 | int UART_Write(mxc_uart_regs_t *uart, uint8_t* data, int len) |
elijahsj | 1:8a094db1347f | 235 | { |
elijahsj | 1:8a094db1347f | 236 | int num, uart_num; |
elijahsj | 1:8a094db1347f | 237 | mxc_uart_fifo_regs_t *fifo; |
elijahsj | 1:8a094db1347f | 238 | |
elijahsj | 1:8a094db1347f | 239 | uart_num = MXC_UART_GET_IDX(uart); |
elijahsj | 1:8a094db1347f | 240 | MXC_ASSERT(uart_num >= 0); |
elijahsj | 1:8a094db1347f | 241 | |
elijahsj | 1:8a094db1347f | 242 | if(data == NULL) { |
elijahsj | 1:8a094db1347f | 243 | return E_NULL_PTR; |
elijahsj | 1:8a094db1347f | 244 | } |
elijahsj | 1:8a094db1347f | 245 | |
elijahsj | 1:8a094db1347f | 246 | // Make sure the UART has been initialized |
elijahsj | 1:8a094db1347f | 247 | if(!(uart->ctrl & MXC_F_UART_CTRL_UART_EN)) { |
elijahsj | 1:8a094db1347f | 248 | return E_UNINITIALIZED; |
elijahsj | 1:8a094db1347f | 249 | } |
elijahsj | 1:8a094db1347f | 250 | |
elijahsj | 1:8a094db1347f | 251 | if(!(len > 0)) { |
elijahsj | 1:8a094db1347f | 252 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 253 | } |
elijahsj | 1:8a094db1347f | 254 | |
elijahsj | 1:8a094db1347f | 255 | // Lock this UART from writing |
elijahsj | 1:8a094db1347f | 256 | while(mxc_get_lock((uint32_t*)&tx_states[uart_num], 1) != E_NO_ERROR) {} |
elijahsj | 1:8a094db1347f | 257 | |
elijahsj | 1:8a094db1347f | 258 | // Get the FIFO for this UART |
elijahsj | 1:8a094db1347f | 259 | fifo = MXC_UART_GET_FIFO(uart_num); |
elijahsj | 1:8a094db1347f | 260 | |
elijahsj | 1:8a094db1347f | 261 | num = 0; |
elijahsj | 1:8a094db1347f | 262 | |
elijahsj | 1:8a094db1347f | 263 | while(num < len) { |
elijahsj | 1:8a094db1347f | 264 | |
elijahsj | 1:8a094db1347f | 265 | // Wait for TXFIFO to not be full |
elijahsj | 1:8a094db1347f | 266 | while((uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY) == |
elijahsj | 1:8a094db1347f | 267 | MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY) {} |
elijahsj | 1:8a094db1347f | 268 | |
elijahsj | 1:8a094db1347f | 269 | // Write the data to the FIFO |
elijahsj | 1:8a094db1347f | 270 | #if(MXC_UART_REV == 0) |
elijahsj | 1:8a094db1347f | 271 | uart->intfl = MXC_F_UART_INTFL_TX_DONE; |
elijahsj | 1:8a094db1347f | 272 | #endif |
elijahsj | 1:8a094db1347f | 273 | fifo->tx = data[num++]; |
elijahsj | 1:8a094db1347f | 274 | } |
elijahsj | 1:8a094db1347f | 275 | |
elijahsj | 1:8a094db1347f | 276 | // Unlock this UART to write |
elijahsj | 1:8a094db1347f | 277 | mxc_free_lock((uint32_t*)&tx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 278 | |
elijahsj | 1:8a094db1347f | 279 | return num; |
elijahsj | 1:8a094db1347f | 280 | } |
elijahsj | 1:8a094db1347f | 281 | |
elijahsj | 1:8a094db1347f | 282 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 283 | int UART_Read(mxc_uart_regs_t *uart, uint8_t* data, int len, int *num) |
elijahsj | 1:8a094db1347f | 284 | { |
elijahsj | 1:8a094db1347f | 285 | int num_local, remain, uart_num; |
elijahsj | 1:8a094db1347f | 286 | mxc_uart_fifo_regs_t *fifo; |
elijahsj | 1:8a094db1347f | 287 | |
elijahsj | 1:8a094db1347f | 288 | uart_num = MXC_UART_GET_IDX(uart); |
elijahsj | 1:8a094db1347f | 289 | MXC_ASSERT(uart_num >= 0); |
elijahsj | 1:8a094db1347f | 290 | |
elijahsj | 1:8a094db1347f | 291 | if(data == NULL) { |
elijahsj | 1:8a094db1347f | 292 | return E_NULL_PTR; |
elijahsj | 1:8a094db1347f | 293 | } |
elijahsj | 1:8a094db1347f | 294 | |
elijahsj | 1:8a094db1347f | 295 | // Make sure the UART has been initialized |
elijahsj | 1:8a094db1347f | 296 | if(!(uart->ctrl & MXC_F_UART_CTRL_UART_EN)) { |
elijahsj | 1:8a094db1347f | 297 | return E_UNINITIALIZED; |
elijahsj | 1:8a094db1347f | 298 | } |
elijahsj | 1:8a094db1347f | 299 | |
elijahsj | 1:8a094db1347f | 300 | if(!(len > 0)) { |
elijahsj | 1:8a094db1347f | 301 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 302 | } |
elijahsj | 1:8a094db1347f | 303 | |
elijahsj | 1:8a094db1347f | 304 | // Lock this UART from reading |
elijahsj | 1:8a094db1347f | 305 | while(mxc_get_lock((uint32_t*)&rx_states[uart_num], 1) != E_NO_ERROR) {} |
elijahsj | 1:8a094db1347f | 306 | |
elijahsj | 1:8a094db1347f | 307 | // Get the FIFO for this UART |
elijahsj | 1:8a094db1347f | 308 | fifo = MXC_UART_GET_FIFO(uart_num); |
elijahsj | 1:8a094db1347f | 309 | |
elijahsj | 1:8a094db1347f | 310 | num_local = 0; |
elijahsj | 1:8a094db1347f | 311 | remain = len; |
elijahsj | 1:8a094db1347f | 312 | while(remain) { |
elijahsj | 1:8a094db1347f | 313 | |
elijahsj | 1:8a094db1347f | 314 | // Save the data in the FIFO |
elijahsj | 1:8a094db1347f | 315 | while((uart->rx_fifo_ctrl & MXC_F_UART_RX_FIFO_CTRL_FIFO_ENTRY) && remain) { |
elijahsj | 1:8a094db1347f | 316 | data[num_local] = fifo->rx; |
elijahsj | 1:8a094db1347f | 317 | num_local++; |
elijahsj | 1:8a094db1347f | 318 | remain--; |
elijahsj | 1:8a094db1347f | 319 | } |
elijahsj | 1:8a094db1347f | 320 | |
elijahsj | 1:8a094db1347f | 321 | // Break if there is an error |
elijahsj | 1:8a094db1347f | 322 | if(uart->intfl & UART_ERRORS) { |
elijahsj | 1:8a094db1347f | 323 | break; |
elijahsj | 1:8a094db1347f | 324 | } |
elijahsj | 1:8a094db1347f | 325 | } |
elijahsj | 1:8a094db1347f | 326 | |
elijahsj | 1:8a094db1347f | 327 | // Save the number of bytes read if pointer is valid |
elijahsj | 1:8a094db1347f | 328 | if(num != NULL) { |
elijahsj | 1:8a094db1347f | 329 | *num = num_local; |
elijahsj | 1:8a094db1347f | 330 | } |
elijahsj | 1:8a094db1347f | 331 | |
elijahsj | 1:8a094db1347f | 332 | // Check for errors |
elijahsj | 1:8a094db1347f | 333 | if(uart->intfl & MXC_F_UART_INTFL_RX_FIFO_OVERFLOW) { |
elijahsj | 1:8a094db1347f | 334 | |
elijahsj | 1:8a094db1347f | 335 | // Clear errors and return error code |
elijahsj | 1:8a094db1347f | 336 | uart->intfl = UART_ERRORS; |
elijahsj | 1:8a094db1347f | 337 | |
elijahsj | 1:8a094db1347f | 338 | |
elijahsj | 1:8a094db1347f | 339 | // Unlock this UART to read |
elijahsj | 1:8a094db1347f | 340 | mxc_free_lock((uint32_t*)&rx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 341 | |
elijahsj | 1:8a094db1347f | 342 | return E_OVERFLOW; |
elijahsj | 1:8a094db1347f | 343 | |
elijahsj | 1:8a094db1347f | 344 | } else if(uart->intfl & (MXC_F_UART_INTFL_RX_FRAMING_ERR | |
elijahsj | 1:8a094db1347f | 345 | MXC_F_UART_INTFL_RX_PARITY_ERR)) { |
elijahsj | 1:8a094db1347f | 346 | |
elijahsj | 1:8a094db1347f | 347 | // Clear errors and return error code |
elijahsj | 1:8a094db1347f | 348 | uart->intfl = UART_ERRORS; |
elijahsj | 1:8a094db1347f | 349 | |
elijahsj | 1:8a094db1347f | 350 | |
elijahsj | 1:8a094db1347f | 351 | // Unlock this UART to read |
elijahsj | 1:8a094db1347f | 352 | mxc_free_lock((uint32_t*)&rx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 353 | |
elijahsj | 1:8a094db1347f | 354 | return E_COMM_ERR; |
elijahsj | 1:8a094db1347f | 355 | } |
elijahsj | 1:8a094db1347f | 356 | |
elijahsj | 1:8a094db1347f | 357 | // Unlock this UART to read |
elijahsj | 1:8a094db1347f | 358 | mxc_free_lock((uint32_t*)&rx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 359 | |
elijahsj | 1:8a094db1347f | 360 | return num_local; |
elijahsj | 1:8a094db1347f | 361 | } |
elijahsj | 1:8a094db1347f | 362 | |
elijahsj | 1:8a094db1347f | 363 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 364 | int UART_WriteAsync(mxc_uart_regs_t *uart, uart_req_t *req) |
elijahsj | 1:8a094db1347f | 365 | { |
elijahsj | 1:8a094db1347f | 366 | int uart_num = MXC_UART_GET_IDX(uart); |
elijahsj | 1:8a094db1347f | 367 | MXC_ASSERT(uart_num >= 0); |
elijahsj | 1:8a094db1347f | 368 | |
elijahsj | 1:8a094db1347f | 369 | // Check the input parameters |
elijahsj | 1:8a094db1347f | 370 | if(req->data == NULL) { |
elijahsj | 1:8a094db1347f | 371 | return E_NULL_PTR; |
elijahsj | 1:8a094db1347f | 372 | } |
elijahsj | 1:8a094db1347f | 373 | |
elijahsj | 1:8a094db1347f | 374 | // Make sure the UART has been initialized |
elijahsj | 1:8a094db1347f | 375 | if(!(uart->ctrl & MXC_F_UART_CTRL_UART_EN)) { |
elijahsj | 1:8a094db1347f | 376 | return E_UNINITIALIZED; |
elijahsj | 1:8a094db1347f | 377 | } |
elijahsj | 1:8a094db1347f | 378 | |
elijahsj | 1:8a094db1347f | 379 | if(!(req->len > 0)) { |
elijahsj | 1:8a094db1347f | 380 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 381 | } |
elijahsj | 1:8a094db1347f | 382 | |
elijahsj | 1:8a094db1347f | 383 | // Attempt to register this write request |
elijahsj | 1:8a094db1347f | 384 | if(mxc_get_lock((uint32_t*)&tx_states[uart_num], (uint32_t)req) != E_NO_ERROR) { |
elijahsj | 1:8a094db1347f | 385 | return E_BUSY; |
elijahsj | 1:8a094db1347f | 386 | } |
elijahsj | 1:8a094db1347f | 387 | |
elijahsj | 1:8a094db1347f | 388 | // Clear the number of bytes counter |
elijahsj | 1:8a094db1347f | 389 | req->num = 0; |
elijahsj | 1:8a094db1347f | 390 | |
elijahsj | 1:8a094db1347f | 391 | // Start the write |
elijahsj | 1:8a094db1347f | 392 | UART_WriteHandler(uart, req, uart_num); |
elijahsj | 1:8a094db1347f | 393 | |
elijahsj | 1:8a094db1347f | 394 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 395 | } |
elijahsj | 1:8a094db1347f | 396 | |
elijahsj | 1:8a094db1347f | 397 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 398 | int UART_ReadAsync(mxc_uart_regs_t *uart, uart_req_t *req) |
elijahsj | 1:8a094db1347f | 399 | { |
elijahsj | 1:8a094db1347f | 400 | int uart_num; |
elijahsj | 1:8a094db1347f | 401 | uint32_t flags; |
elijahsj | 1:8a094db1347f | 402 | |
elijahsj | 1:8a094db1347f | 403 | uart_num = MXC_UART_GET_IDX(uart); |
elijahsj | 1:8a094db1347f | 404 | MXC_ASSERT(uart_num >= 0); |
elijahsj | 1:8a094db1347f | 405 | |
elijahsj | 1:8a094db1347f | 406 | if(req->data == NULL) { |
elijahsj | 1:8a094db1347f | 407 | return E_NULL_PTR; |
elijahsj | 1:8a094db1347f | 408 | } |
elijahsj | 1:8a094db1347f | 409 | |
elijahsj | 1:8a094db1347f | 410 | // Make sure the UART has been initialized |
elijahsj | 1:8a094db1347f | 411 | if(!(uart->ctrl & MXC_F_UART_CTRL_UART_EN)) { |
elijahsj | 1:8a094db1347f | 412 | return E_UNINITIALIZED; |
elijahsj | 1:8a094db1347f | 413 | } |
elijahsj | 1:8a094db1347f | 414 | |
elijahsj | 1:8a094db1347f | 415 | if(!(req->len > 0)) { |
elijahsj | 1:8a094db1347f | 416 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 417 | } |
elijahsj | 1:8a094db1347f | 418 | |
elijahsj | 1:8a094db1347f | 419 | // Attempt to register this write request |
elijahsj | 1:8a094db1347f | 420 | if(mxc_get_lock((uint32_t*)&rx_states[uart_num], (uint32_t)req) != E_NO_ERROR) { |
elijahsj | 1:8a094db1347f | 421 | return E_BUSY; |
elijahsj | 1:8a094db1347f | 422 | } |
elijahsj | 1:8a094db1347f | 423 | |
elijahsj | 1:8a094db1347f | 424 | // Clear the number of bytes counter |
elijahsj | 1:8a094db1347f | 425 | req->num = 0; |
elijahsj | 1:8a094db1347f | 426 | |
elijahsj | 1:8a094db1347f | 427 | // Start the read |
elijahsj | 1:8a094db1347f | 428 | flags = uart->intfl; |
elijahsj | 1:8a094db1347f | 429 | uart->intfl = flags; |
elijahsj | 1:8a094db1347f | 430 | UART_ReadHandler(uart, req, uart_num, flags); |
elijahsj | 1:8a094db1347f | 431 | |
elijahsj | 1:8a094db1347f | 432 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 433 | } |
elijahsj | 1:8a094db1347f | 434 | |
elijahsj | 1:8a094db1347f | 435 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 436 | int UART_AbortAsync(uart_req_t *req) |
elijahsj | 1:8a094db1347f | 437 | { |
elijahsj | 1:8a094db1347f | 438 | int uart_num; |
elijahsj | 1:8a094db1347f | 439 | |
elijahsj | 1:8a094db1347f | 440 | // Figure out if this was a read or write request, find the request, set to NULL |
elijahsj | 1:8a094db1347f | 441 | for(uart_num = 0; uart_num < MXC_CFG_UART_INSTANCES; uart_num++) { |
elijahsj | 1:8a094db1347f | 442 | if(req == rx_states[uart_num]) { |
elijahsj | 1:8a094db1347f | 443 | |
elijahsj | 1:8a094db1347f | 444 | // Disable read interrupts, clear flags. |
elijahsj | 1:8a094db1347f | 445 | MXC_UART_GET_UART(uart_num)->inten &= ~UART_READ_INTS; |
elijahsj | 1:8a094db1347f | 446 | MXC_UART_GET_UART(uart_num)->intfl = UART_READ_INTS; |
elijahsj | 1:8a094db1347f | 447 | |
elijahsj | 1:8a094db1347f | 448 | // Unlock this UART to read |
elijahsj | 1:8a094db1347f | 449 | mxc_free_lock((uint32_t*)&rx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 450 | |
elijahsj | 1:8a094db1347f | 451 | // Callback if not NULL |
elijahsj | 1:8a094db1347f | 452 | if(req->callback != NULL) { |
elijahsj | 1:8a094db1347f | 453 | req->callback(req, E_ABORT); |
elijahsj | 1:8a094db1347f | 454 | } |
elijahsj | 1:8a094db1347f | 455 | |
elijahsj | 1:8a094db1347f | 456 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 457 | } |
elijahsj | 1:8a094db1347f | 458 | |
elijahsj | 1:8a094db1347f | 459 | if(req == tx_states[uart_num]) { |
elijahsj | 1:8a094db1347f | 460 | |
elijahsj | 1:8a094db1347f | 461 | // Disable write interrupts, clear flags. |
elijahsj | 1:8a094db1347f | 462 | MXC_UART_GET_UART(uart_num)->inten &= ~(UART_WRITE_INTS); |
elijahsj | 1:8a094db1347f | 463 | MXC_UART_GET_UART(uart_num)->intfl = UART_WRITE_INTS; |
elijahsj | 1:8a094db1347f | 464 | |
elijahsj | 1:8a094db1347f | 465 | // Unlock this UART to write |
elijahsj | 1:8a094db1347f | 466 | mxc_free_lock((uint32_t*)&tx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 467 | |
elijahsj | 1:8a094db1347f | 468 | // Callback if not NULL |
elijahsj | 1:8a094db1347f | 469 | if(req->callback != NULL) { |
elijahsj | 1:8a094db1347f | 470 | req->callback(req, E_ABORT); |
elijahsj | 1:8a094db1347f | 471 | } |
elijahsj | 1:8a094db1347f | 472 | |
elijahsj | 1:8a094db1347f | 473 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 474 | } |
elijahsj | 1:8a094db1347f | 475 | } |
elijahsj | 1:8a094db1347f | 476 | |
elijahsj | 1:8a094db1347f | 477 | return E_BAD_PARAM; |
elijahsj | 1:8a094db1347f | 478 | } |
elijahsj | 1:8a094db1347f | 479 | |
elijahsj | 1:8a094db1347f | 480 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 481 | void UART_Handler(mxc_uart_regs_t *uart) |
elijahsj | 1:8a094db1347f | 482 | { |
elijahsj | 1:8a094db1347f | 483 | int uart_num; |
elijahsj | 1:8a094db1347f | 484 | uint32_t flags; |
elijahsj | 1:8a094db1347f | 485 | |
elijahsj | 1:8a094db1347f | 486 | uart_num = MXC_UART_GET_IDX(uart); |
elijahsj | 1:8a094db1347f | 487 | MXC_ASSERT(uart_num >= 0); |
elijahsj | 1:8a094db1347f | 488 | |
elijahsj | 1:8a094db1347f | 489 | flags = uart->intfl; |
elijahsj | 1:8a094db1347f | 490 | uart->intfl = flags; |
elijahsj | 1:8a094db1347f | 491 | |
elijahsj | 1:8a094db1347f | 492 | // Figure out if this UART has an active Read request |
elijahsj | 1:8a094db1347f | 493 | if((rx_states[uart_num] != NULL) && (flags & UART_READ_INTS)) { |
elijahsj | 1:8a094db1347f | 494 | UART_ReadHandler(uart, rx_states[uart_num], uart_num, flags); |
elijahsj | 1:8a094db1347f | 495 | } |
elijahsj | 1:8a094db1347f | 496 | |
elijahsj | 1:8a094db1347f | 497 | // Figure out if this UART has an active Write request |
elijahsj | 1:8a094db1347f | 498 | if((tx_states[uart_num] != NULL) && (flags & (UART_WRITE_INTS))) { |
elijahsj | 1:8a094db1347f | 499 | |
elijahsj | 1:8a094db1347f | 500 | UART_WriteHandler(uart, tx_states[uart_num], uart_num); |
elijahsj | 1:8a094db1347f | 501 | } |
elijahsj | 1:8a094db1347f | 502 | } |
elijahsj | 1:8a094db1347f | 503 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 504 | int UART_Busy(mxc_uart_regs_t *uart) |
elijahsj | 1:8a094db1347f | 505 | { |
elijahsj | 1:8a094db1347f | 506 | int uart_num = MXC_UART_GET_IDX(uart); |
elijahsj | 1:8a094db1347f | 507 | MXC_ASSERT(uart_num >= 0); |
elijahsj | 1:8a094db1347f | 508 | |
elijahsj | 1:8a094db1347f | 509 | // Check to see if there are any ongoing transactions or if the UART is disabled |
elijahsj | 1:8a094db1347f | 510 | if(((tx_states[uart_num] == NULL) && |
elijahsj | 1:8a094db1347f | 511 | !(uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY) && |
elijahsj | 1:8a094db1347f | 512 | #if(MXC_UART_REV == 0) |
elijahsj | 1:8a094db1347f | 513 | (uart->intfl & MXC_F_UART_INTFL_TX_DONE)) || |
elijahsj | 1:8a094db1347f | 514 | #else |
elijahsj | 1:8a094db1347f | 515 | (uart->idle & MXC_F_UART_IDLE_TX_RX_IDLE)) || |
elijahsj | 1:8a094db1347f | 516 | #endif |
elijahsj | 1:8a094db1347f | 517 | !(uart->ctrl & MXC_F_UART_CTRL_UART_EN)) { |
elijahsj | 1:8a094db1347f | 518 | |
elijahsj | 1:8a094db1347f | 519 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 520 | } |
elijahsj | 1:8a094db1347f | 521 | |
elijahsj | 1:8a094db1347f | 522 | return E_BUSY; |
elijahsj | 1:8a094db1347f | 523 | } |
elijahsj | 1:8a094db1347f | 524 | |
elijahsj | 1:8a094db1347f | 525 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 526 | int UART_PrepForSleep(mxc_uart_regs_t *uart) |
elijahsj | 1:8a094db1347f | 527 | { |
elijahsj | 1:8a094db1347f | 528 | if(UART_Busy(uart) != E_NO_ERROR) { |
elijahsj | 1:8a094db1347f | 529 | return E_BUSY; |
elijahsj | 1:8a094db1347f | 530 | } |
elijahsj | 1:8a094db1347f | 531 | |
elijahsj | 1:8a094db1347f | 532 | // Leave read interrupts enabled, if already enabled |
elijahsj | 1:8a094db1347f | 533 | uart->inten &= UART_READ_INTS; |
elijahsj | 1:8a094db1347f | 534 | |
elijahsj | 1:8a094db1347f | 535 | return E_NO_ERROR; |
elijahsj | 1:8a094db1347f | 536 | } |
elijahsj | 1:8a094db1347f | 537 | |
elijahsj | 1:8a094db1347f | 538 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 539 | static void UART_WriteHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num) |
elijahsj | 1:8a094db1347f | 540 | { |
elijahsj | 1:8a094db1347f | 541 | int avail, remain; |
elijahsj | 1:8a094db1347f | 542 | mxc_uart_fifo_regs_t *fifo; |
elijahsj | 1:8a094db1347f | 543 | |
elijahsj | 1:8a094db1347f | 544 | // Disable write interrupts |
elijahsj | 1:8a094db1347f | 545 | uart->inten &= ~(UART_WRITE_INTS); |
elijahsj | 1:8a094db1347f | 546 | |
elijahsj | 1:8a094db1347f | 547 | // Get the FIFO for this UART |
elijahsj | 1:8a094db1347f | 548 | fifo = MXC_UART_GET_FIFO(uart_num); |
elijahsj | 1:8a094db1347f | 549 | |
elijahsj | 1:8a094db1347f | 550 | // Refill the TX FIFO |
elijahsj | 1:8a094db1347f | 551 | avail = UART_NumWriteAvail(uart); |
elijahsj | 1:8a094db1347f | 552 | remain = req->len - req->num; |
elijahsj | 1:8a094db1347f | 553 | |
elijahsj | 1:8a094db1347f | 554 | while(avail && remain) { |
elijahsj | 1:8a094db1347f | 555 | |
elijahsj | 1:8a094db1347f | 556 | // Write the data to the FIFO |
elijahsj | 1:8a094db1347f | 557 | #if(MXC_UART_REV == 0) |
elijahsj | 1:8a094db1347f | 558 | uart->intfl = MXC_F_UART_INTFL_TX_DONE; |
elijahsj | 1:8a094db1347f | 559 | #endif |
elijahsj | 1:8a094db1347f | 560 | fifo->tx = req->data[req->num++]; |
elijahsj | 1:8a094db1347f | 561 | remain--; |
elijahsj | 1:8a094db1347f | 562 | avail--; |
elijahsj | 1:8a094db1347f | 563 | } |
elijahsj | 1:8a094db1347f | 564 | |
elijahsj | 1:8a094db1347f | 565 | // All of the bytes have been written to the FIFO |
elijahsj | 1:8a094db1347f | 566 | if(!remain) { |
elijahsj | 1:8a094db1347f | 567 | |
elijahsj | 1:8a094db1347f | 568 | // Unlock this UART to write |
elijahsj | 1:8a094db1347f | 569 | mxc_free_lock((uint32_t*)&tx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 570 | |
elijahsj | 1:8a094db1347f | 571 | if(req->callback != NULL) { |
elijahsj | 1:8a094db1347f | 572 | req->callback(req, E_NO_ERROR); |
elijahsj | 1:8a094db1347f | 573 | } |
elijahsj | 1:8a094db1347f | 574 | |
elijahsj | 1:8a094db1347f | 575 | } else { |
elijahsj | 1:8a094db1347f | 576 | |
elijahsj | 1:8a094db1347f | 577 | // Interrupt when there is one byte left in the TXFIFO |
elijahsj | 1:8a094db1347f | 578 | uart->tx_fifo_ctrl = ((MXC_UART_FIFO_DEPTH - 1) << MXC_F_UART_TX_FIFO_CTRL_FIFO_AE_LVL_POS); |
elijahsj | 1:8a094db1347f | 579 | |
elijahsj | 1:8a094db1347f | 580 | // Enable almost empty interrupt |
elijahsj | 1:8a094db1347f | 581 | uart->inten |= (MXC_F_UART_INTEN_TX_FIFO_AE); |
elijahsj | 1:8a094db1347f | 582 | } |
elijahsj | 1:8a094db1347f | 583 | } |
elijahsj | 1:8a094db1347f | 584 | |
elijahsj | 1:8a094db1347f | 585 | /* ************************************************************************* */ |
elijahsj | 1:8a094db1347f | 586 | static void UART_ReadHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num, |
elijahsj | 1:8a094db1347f | 587 | uint32_t flags) |
elijahsj | 1:8a094db1347f | 588 | { |
elijahsj | 1:8a094db1347f | 589 | int avail, remain; |
elijahsj | 1:8a094db1347f | 590 | mxc_uart_fifo_regs_t *fifo; |
elijahsj | 1:8a094db1347f | 591 | |
elijahsj | 1:8a094db1347f | 592 | // Disable interrupts |
elijahsj | 1:8a094db1347f | 593 | uart->inten &= ~UART_READ_INTS; |
elijahsj | 1:8a094db1347f | 594 | |
elijahsj | 1:8a094db1347f | 595 | // Get the FIFO for this UART, uart_num |
elijahsj | 1:8a094db1347f | 596 | fifo = MXC_UART_GET_FIFO(uart_num); |
elijahsj | 1:8a094db1347f | 597 | |
elijahsj | 1:8a094db1347f | 598 | // Save the data in the FIFO while we still need data |
elijahsj | 1:8a094db1347f | 599 | avail = UART_NumReadAvail(uart); |
elijahsj | 1:8a094db1347f | 600 | remain = req->len - req->num; |
elijahsj | 1:8a094db1347f | 601 | while(avail && remain) { |
elijahsj | 1:8a094db1347f | 602 | req->data[req->num++] = fifo->rx; |
elijahsj | 1:8a094db1347f | 603 | remain--; |
elijahsj | 1:8a094db1347f | 604 | avail--; |
elijahsj | 1:8a094db1347f | 605 | } |
elijahsj | 1:8a094db1347f | 606 | |
elijahsj | 1:8a094db1347f | 607 | // Check for errors |
elijahsj | 1:8a094db1347f | 608 | if(flags & MXC_F_UART_INTFL_RX_FIFO_OVERFLOW) { |
elijahsj | 1:8a094db1347f | 609 | |
elijahsj | 1:8a094db1347f | 610 | // Unlock this UART to read |
elijahsj | 1:8a094db1347f | 611 | mxc_free_lock((uint32_t*)&rx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 612 | |
elijahsj | 1:8a094db1347f | 613 | if(req->callback != NULL) { |
elijahsj | 1:8a094db1347f | 614 | req->callback(req, E_OVERFLOW); |
elijahsj | 1:8a094db1347f | 615 | } |
elijahsj | 1:8a094db1347f | 616 | |
elijahsj | 1:8a094db1347f | 617 | return; |
elijahsj | 1:8a094db1347f | 618 | } |
elijahsj | 1:8a094db1347f | 619 | |
elijahsj | 1:8a094db1347f | 620 | if(flags & (MXC_F_UART_INTFL_RX_FRAMING_ERR | |
elijahsj | 1:8a094db1347f | 621 | MXC_F_UART_INTFL_RX_PARITY_ERR)) { |
elijahsj | 1:8a094db1347f | 622 | |
elijahsj | 1:8a094db1347f | 623 | // Unlock this UART to read |
elijahsj | 1:8a094db1347f | 624 | mxc_free_lock((uint32_t*)&rx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 625 | |
elijahsj | 1:8a094db1347f | 626 | if(req->callback != NULL) { |
elijahsj | 1:8a094db1347f | 627 | req->callback(req, E_COMM_ERR); |
elijahsj | 1:8a094db1347f | 628 | } |
elijahsj | 1:8a094db1347f | 629 | |
elijahsj | 1:8a094db1347f | 630 | return; |
elijahsj | 1:8a094db1347f | 631 | } |
elijahsj | 1:8a094db1347f | 632 | |
elijahsj | 1:8a094db1347f | 633 | // Check to see if we're done receiving |
elijahsj | 1:8a094db1347f | 634 | if(remain == 0) { |
elijahsj | 1:8a094db1347f | 635 | |
elijahsj | 1:8a094db1347f | 636 | // Unlock this UART to read |
elijahsj | 1:8a094db1347f | 637 | mxc_free_lock((uint32_t*)&rx_states[uart_num]); |
elijahsj | 1:8a094db1347f | 638 | |
elijahsj | 1:8a094db1347f | 639 | if(req->callback != NULL) { |
elijahsj | 1:8a094db1347f | 640 | req->callback(req, E_NO_ERROR); |
elijahsj | 1:8a094db1347f | 641 | } |
elijahsj | 1:8a094db1347f | 642 | |
elijahsj | 1:8a094db1347f | 643 | return; |
elijahsj | 1:8a094db1347f | 644 | } |
elijahsj | 1:8a094db1347f | 645 | |
elijahsj | 1:8a094db1347f | 646 | if(remain == 1) { |
elijahsj | 1:8a094db1347f | 647 | uart->inten |= (MXC_F_UART_INTEN_RX_FIFO_NOT_EMPTY | UART_ERRORS); |
elijahsj | 1:8a094db1347f | 648 | |
elijahsj | 1:8a094db1347f | 649 | } else { |
elijahsj | 1:8a094db1347f | 650 | // Set the RX FIFO AF threshold |
elijahsj | 1:8a094db1347f | 651 | if(remain < UART_RXFIFO_USABLE) { |
elijahsj | 1:8a094db1347f | 652 | uart->rx_fifo_ctrl = ((remain - 1) << |
elijahsj | 1:8a094db1347f | 653 | MXC_F_UART_RX_FIFO_CTRL_FIFO_AF_LVL_POS); |
elijahsj | 1:8a094db1347f | 654 | } else { |
elijahsj | 1:8a094db1347f | 655 | uart->rx_fifo_ctrl = (UART_RXFIFO_USABLE << |
elijahsj | 1:8a094db1347f | 656 | MXC_F_UART_RX_FIFO_CTRL_FIFO_AF_LVL_POS); |
elijahsj | 1:8a094db1347f | 657 | } |
elijahsj | 1:8a094db1347f | 658 | uart->inten |= (MXC_F_UART_INTEN_RX_FIFO_AF | UART_ERRORS); |
elijahsj | 1:8a094db1347f | 659 | } |
elijahsj | 1:8a094db1347f | 660 | } |
elijahsj | 1:8a094db1347f | 661 | /**@} end of ingroup uart_comm */ |