Fork of the official mbed C/C SDK provides the software platform and libraries to build your applications for RenBED.
Dependents: 1-RenBuggyTimed RenBED_RGB RenBED_RGB_PWM RenBED_RGB
Fork of mbed by
TARGET_SAMD21G18A/compiler.h
- Committer:
- Kojto
- Date:
- 2015-12-15
- Revision:
- 111:4336505e4b1c
- Child:
- 114:252557024ec3
File content as of revision 111:4336505e4b1c:
#ifndef UTILS_COMPILER_H_INCLUDED #define UTILS_COMPILER_H_INCLUDED /** * \defgroup group_sam0_utils Compiler abstraction layer and code utilities * * Compiler abstraction layer and code utilities for Cortex-M0+ based Atmel SAM devices. * This module provides various abstraction layers and utilities to make code compatible between different compilers. * * @{ */ #if (defined __ICCARM__) # include <intrinsics.h> #endif #include <stddef.h> #include <parts.h> #include <status_codes.h> #include <preprocessor.h> #include <io.h> #ifndef __ASSEMBLY__ #include <stdio.h> #include <stdbool.h> #include <stdint.h> #include <stdlib.h> /** * \def UNUSED * \brief Marking \a v as a unused parameter or value. */ #define UNUSED(v) (void)(v) /** * \def barrier * \brief Memory barrier */ #ifdef __GNUC__ # define barrier() asm volatile("" ::: "memory") #else # define barrier() asm ("") #endif /** * \brief Emit the compiler pragma \a arg. * * \param[in] arg The pragma directive as it would appear after \e \#pragma * (i.e. not stringified). */ #define COMPILER_PRAGMA(arg) _Pragma(#arg) /** * \def COMPILER_PACK_SET(alignment) * \brief Set maximum alignment for subsequent struct and union definitions to \a alignment. */ #define COMPILER_PACK_SET(alignment) COMPILER_PRAGMA(pack(alignment)) /** * \def COMPILER_PACK_RESET() * \brief Set default alignment for subsequent struct and union definitions. */ #define COMPILER_PACK_RESET() COMPILER_PRAGMA(pack()) /** * \brief Set aligned boundary. */ #if (defined __GNUC__) || (defined __CC_ARM) # define COMPILER_ALIGNED(a) __attribute__((__aligned__(a))) #elif (defined __ICCARM__) # define COMPILER_ALIGNED(a) COMPILER_PRAGMA(data_alignment = a) #endif /** * \brief Set word-aligned boundary. */ #if (defined __GNUC__) || defined(__CC_ARM) #define COMPILER_WORD_ALIGNED __attribute__((__aligned__(4))) #elif (defined __ICCARM__) #define COMPILER_WORD_ALIGNED COMPILER_PRAGMA(data_alignment = 4) #endif /** * \def __always_inline * \brief The function should always be inlined. * * This annotation instructs the compiler to ignore its inlining * heuristics and inline the function no matter how big it thinks it * becomes. */ #if defined(__CC_ARM) # define __always_inline __forceinline #elif (defined __GNUC__) # define __always_inline __attribute__((__always_inline__)) #elif (defined __ICCARM__) # define __always_inline _Pragma("inline=forced") #endif /** * \def __no_inline * \brief The function should never be inlined * * This annotation instructs the compiler to ignore its inlining * heuristics and not inline the function no matter how small it thinks it * becomes. */ #if defined(__CC_ARM) # define __no_inline __attribute__((noinline)) #elif (defined __GNUC__) # define __no_inline __attribute__((noinline)) #elif (defined __ICCARM__) # define __no_inline _Pragma("inline=never") #endif /** \brief This macro is used to test fatal errors. * * The macro tests if the expression is false. If it is, a fatal error is * detected and the application hangs up. If \c TEST_SUITE_DEFINE_ASSERT_MACRO * is defined, a unit test version of the macro is used, to allow execution * of further tests after a false expression. * * \param[in] expr Expression to evaluate and supposed to be nonzero. */ #if defined(_ASSERT_ENABLE_) # if defined(TEST_SUITE_DEFINE_ASSERT_MACRO) # include "unit_test/suite.h" # else # undef TEST_SUITE_DEFINE_ASSERT_MACRO # define Assert(expr) \ {\ if (!(expr)) asm("BKPT #0");\ } # endif #else # define Assert(expr) ((void) 0) #endif /* Define WEAK attribute */ #if defined ( __CC_ARM ) # define WEAK __attribute__ ((weak)) #elif defined ( __ICCARM__ ) # define WEAK __weak #elif defined ( __GNUC__ ) # define WEAK __attribute__ ((weak)) #endif /* Define NO_INIT attribute */ #if defined ( __CC_ARM ) # define NO_INIT __attribute__((zero_init)) #elif defined ( __ICCARM__ ) # define NO_INIT __no_init #elif defined ( __GNUC__ ) # define NO_INIT __attribute__((section(".no_init"))) #endif #include "interrupt.h" /** \name Usual Types * @{ */ #ifndef __cplusplus # if !defined(__bool_true_false_are_defined) typedef unsigned char bool; # endif #endif typedef uint16_t le16_t; typedef uint16_t be16_t; typedef uint32_t le32_t; typedef uint32_t be32_t; typedef uint32_t iram_size_t; /** @} */ /** \name Aliasing Aggregate Types * @{ */ /** 16-bit union. */ typedef union { int16_t s16; uint16_t u16; int8_t s8[2]; uint8_t u8[2]; } Union16; /** 32-bit union. */ typedef union { int32_t s32; uint32_t u32; int16_t s16[2]; uint16_t u16[2]; int8_t s8[4]; uint8_t u8[4]; } Union32; /** 64-bit union. */ typedef union { int64_t s64; uint64_t u64; int32_t s32[2]; uint32_t u32[2]; int16_t s16[4]; uint16_t u16[4]; int8_t s8[8]; uint8_t u8[8]; } Union64; /** Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */ typedef union { int64_t *s64ptr; uint64_t *u64ptr; int32_t *s32ptr; uint32_t *u32ptr; int16_t *s16ptr; uint16_t *u16ptr; int8_t *s8ptr; uint8_t *u8ptr; } UnionPtr; /** Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. */ typedef union { volatile int64_t *s64ptr; volatile uint64_t *u64ptr; volatile int32_t *s32ptr; volatile uint32_t *u32ptr; volatile int16_t *s16ptr; volatile uint16_t *u16ptr; volatile int8_t *s8ptr; volatile uint8_t *u8ptr; } UnionVPtr; /** Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. */ typedef union { const int64_t *s64ptr; const uint64_t *u64ptr; const int32_t *s32ptr; const uint32_t *u32ptr; const int16_t *s16ptr; const uint16_t *u16ptr; const int8_t *s8ptr; const uint8_t *u8ptr; } UnionCPtr; /** Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. */ typedef union { const volatile int64_t *s64ptr; const volatile uint64_t *u64ptr; const volatile int32_t *s32ptr; const volatile uint32_t *u32ptr; const volatile int16_t *s16ptr; const volatile uint16_t *u16ptr; const volatile int8_t *s8ptr; const volatile uint8_t *u8ptr; } UnionCVPtr; /** Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */ typedef struct { int64_t *s64ptr; uint64_t *u64ptr; int32_t *s32ptr; uint32_t *u32ptr; int16_t *s16ptr; uint16_t *u16ptr; int8_t *s8ptr; uint8_t *u8ptr; } StructPtr; /** Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. */ typedef struct { volatile int64_t *s64ptr; volatile uint64_t *u64ptr; volatile int32_t *s32ptr; volatile uint32_t *u32ptr; volatile int16_t *s16ptr; volatile uint16_t *u16ptr; volatile int8_t *s8ptr; volatile uint8_t *u8ptr; } StructVPtr; /** Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. */ typedef struct { const int64_t *s64ptr; const uint64_t *u64ptr; const int32_t *s32ptr; const uint32_t *u32ptr; const int16_t *s16ptr; const uint16_t *u16ptr; const int8_t *s8ptr; const uint8_t *u8ptr; } StructCPtr; /** Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. */ typedef struct { const volatile int64_t *s64ptr; const volatile uint64_t *u64ptr; const volatile int32_t *s32ptr; const volatile uint32_t *u32ptr; const volatile int16_t *s16ptr; const volatile uint16_t *u16ptr; const volatile int8_t *s8ptr; const volatile uint8_t *u8ptr; } StructCVPtr; /** @} */ #endif /* #ifndef __ASSEMBLY__ */ /** \name Usual Constants * @{ */ #define DISABLE 0 #define ENABLE 1 #ifndef __cplusplus # if !defined(__bool_true_false_are_defined) # define false 0 # define true 1 # endif #endif /** @} */ #ifndef __ASSEMBLY__ /** \name Optimization Control * @{ */ /** * \def likely(exp) * \brief The expression \a exp is likely to be true */ #if !defined(likely) || defined(__DOXYGEN__) # define likely(exp) (exp) #endif /** * \def unlikely(exp) * \brief The expression \a exp is unlikely to be true */ #if !defined(unlikely) || defined(__DOXYGEN__) # define unlikely(exp) (exp) #endif /** * \def is_constant(exp) * \brief Determine if an expression evaluates to a constant value. * * \param[in] exp Any expression * * \return true if \a exp is constant, false otherwise. */ #if (defined __GNUC__) || (defined __CC_ARM) # define is_constant(exp) __builtin_constant_p(exp) #else # define is_constant(exp) (0) #endif /** @} */ /** \name Bit-Field Handling * @{ */ /** \brief Reads the bits of a value specified by a given bit-mask. * * \param[in] value Value to read bits from. * \param[in] mask Bit-mask indicating bits to read. * * \return Read bits. */ #define Rd_bits( value, mask) ((value) & (mask)) /** \brief Writes the bits of a C lvalue specified by a given bit-mask. * * \param[in] lvalue C lvalue to write bits to. * \param[in] mask Bit-mask indicating bits to write. * \param[in] bits Bits to write. * * \return Resulting value with written bits. */ #define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\ ((bits ) & (mask))) /** \brief Tests the bits of a value specified by a given bit-mask. * * \param[in] value Value of which to test bits. * \param[in] mask Bit-mask indicating bits to test. * * \return \c 1 if at least one of the tested bits is set, else \c 0. */ #define Tst_bits( value, mask) (Rd_bits(value, mask) != 0) /** \brief Clears the bits of a C lvalue specified by a given bit-mask. * * \param[in] lvalue C lvalue of which to clear bits. * \param[in] mask Bit-mask indicating bits to clear. * * \return Resulting value with cleared bits. */ #define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask)) /** \brief Sets the bits of a C lvalue specified by a given bit-mask. * * \param[in] lvalue C lvalue of which to set bits. * \param[in] mask Bit-mask indicating bits to set. * * \return Resulting value with set bits. */ #define Set_bits(lvalue, mask) ((lvalue) |= (mask)) /** \brief Toggles the bits of a C lvalue specified by a given bit-mask. * * \param[in] lvalue C lvalue of which to toggle bits. * \param[in] mask Bit-mask indicating bits to toggle. * * \return Resulting value with toggled bits. */ #define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask)) /** \brief Reads the bit-field of a value specified by a given bit-mask. * * \param[in] value Value to read a bit-field from. * \param[in] mask Bit-mask indicating the bit-field to read. * * \return Read bit-field. */ #define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask)) /** \brief Writes the bit-field of a C lvalue specified by a given bit-mask. * * \param[in] lvalue C lvalue to write a bit-field to. * \param[in] mask Bit-mask indicating the bit-field to write. * \param[in] bitfield Bit-field to write. * * \return Resulting value with written bit-field. */ #define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (uint32_t)(bitfield) << ctz(mask))) /** @} */ /** \name Zero-Bit Counting * * Under GCC, __builtin_clz and __builtin_ctz behave like macros when * applied to constant expressions (values known at compile time), so they are * more optimized than the use of the corresponding assembly instructions and * they can be used as constant expressions e.g. to initialize objects having * static storage duration, and like the corresponding assembly instructions * when applied to non-constant expressions (values unknown at compile time), so * they are more optimized than an assembly periphrasis. Hence, clz and ctz * ensure a possible and optimized behavior for both constant and non-constant * expressions. * * @{ */ /** \brief Counts the leading zero bits of the given value considered as a 32-bit integer. * * \param[in] u Value of which to count the leading zero bits. * * \return The count of leading zero bits in \a u. */ #if (defined __GNUC__) || (defined __CC_ARM) # define clz(u) __builtin_clz(u) #else # define clz(u) (((u) == 0) ? 32 : \ ((u) & (1ul << 31)) ? 0 : \ ((u) & (1ul << 30)) ? 1 : \ ((u) & (1ul << 29)) ? 2 : \ ((u) & (1ul << 28)) ? 3 : \ ((u) & (1ul << 27)) ? 4 : \ ((u) & (1ul << 26)) ? 5 : \ ((u) & (1ul << 25)) ? 6 : \ ((u) & (1ul << 24)) ? 7 : \ ((u) & (1ul << 23)) ? 8 : \ ((u) & (1ul << 22)) ? 9 : \ ((u) & (1ul << 21)) ? 10 : \ ((u) & (1ul << 20)) ? 11 : \ ((u) & (1ul << 19)) ? 12 : \ ((u) & (1ul << 18)) ? 13 : \ ((u) & (1ul << 17)) ? 14 : \ ((u) & (1ul << 16)) ? 15 : \ ((u) & (1ul << 15)) ? 16 : \ ((u) & (1ul << 14)) ? 17 : \ ((u) & (1ul << 13)) ? 18 : \ ((u) & (1ul << 12)) ? 19 : \ ((u) & (1ul << 11)) ? 20 : \ ((u) & (1ul << 10)) ? 21 : \ ((u) & (1ul << 9)) ? 22 : \ ((u) & (1ul << 8)) ? 23 : \ ((u) & (1ul << 7)) ? 24 : \ ((u) & (1ul << 6)) ? 25 : \ ((u) & (1ul << 5)) ? 26 : \ ((u) & (1ul << 4)) ? 27 : \ ((u) & (1ul << 3)) ? 28 : \ ((u) & (1ul << 2)) ? 29 : \ ((u) & (1ul << 1)) ? 30 : \ 31) #endif /** \brief Counts the trailing zero bits of the given value considered as a 32-bit integer. * * \param[in] u Value of which to count the trailing zero bits. * * \return The count of trailing zero bits in \a u. */ #if (defined __GNUC__) || (defined __CC_ARM) # define ctz(u) __builtin_ctz(u) #else # define ctz(u) ((u) & (1ul << 0) ? 0 : \ (u) & (1ul << 1) ? 1 : \ (u) & (1ul << 2) ? 2 : \ (u) & (1ul << 3) ? 3 : \ (u) & (1ul << 4) ? 4 : \ (u) & (1ul << 5) ? 5 : \ (u) & (1ul << 6) ? 6 : \ (u) & (1ul << 7) ? 7 : \ (u) & (1ul << 8) ? 8 : \ (u) & (1ul << 9) ? 9 : \ (u) & (1ul << 10) ? 10 : \ (u) & (1ul << 11) ? 11 : \ (u) & (1ul << 12) ? 12 : \ (u) & (1ul << 13) ? 13 : \ (u) & (1ul << 14) ? 14 : \ (u) & (1ul << 15) ? 15 : \ (u) & (1ul << 16) ? 16 : \ (u) & (1ul << 17) ? 17 : \ (u) & (1ul << 18) ? 18 : \ (u) & (1ul << 19) ? 19 : \ (u) & (1ul << 20) ? 20 : \ (u) & (1ul << 21) ? 21 : \ (u) & (1ul << 22) ? 22 : \ (u) & (1ul << 23) ? 23 : \ (u) & (1ul << 24) ? 24 : \ (u) & (1ul << 25) ? 25 : \ (u) & (1ul << 26) ? 26 : \ (u) & (1ul << 27) ? 27 : \ (u) & (1ul << 28) ? 28 : \ (u) & (1ul << 29) ? 29 : \ (u) & (1ul << 30) ? 30 : \ (u) & (1ul << 31) ? 31 : \ 32) #endif /** @} */ /** \name Bit Reversing * @{ */ /** \brief Reverses the bits of \a u8. * * \param[in] u8 U8 of which to reverse the bits. * * \return Value resulting from \a u8 with reversed bits. */ #define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24)) /** \brief Reverses the bits of \a u16. * * \param[in] u16 U16 of which to reverse the bits. * * \return Value resulting from \a u16 with reversed bits. */ #define bit_reverse16(u16) ((uint16_t)(bit_reverse32((uint16_t)(u16)) >> 16)) /** \brief Reverses the bits of \a u32. * * \param[in] u32 U32 of which to reverse the bits. * * \return Value resulting from \a u32 with reversed bits. */ #define bit_reverse32(u32) __RBIT(u32) /** \brief Reverses the bits of \a u64. * * \param[in] u64 U64 of which to reverse the bits. * * \return Value resulting from \a u64 with reversed bits. */ #define bit_reverse64(u64) ((uint64_t)(((uint64_t)bit_reverse32((uint64_t)(u64) >> 32)) |\ ((uint64_t)bit_reverse32((uint64_t)(u64)) << 32))) /** @} */ /** \name Alignment * @{ */ /** \brief Tests alignment of the number \a val with the \a n boundary. * * \param[in] val Input value. * \param[in] n Boundary. * * \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0. */ #define Test_align(val, n) (!Tst_bits( val, (n) - 1 ) ) /** \brief Gets alignment of the number \a val with respect to the \a n boundary. * * \param[in] val Input value. * \param[in] n Boundary. * * \return Alignment of the number \a val with respect to the \a n boundary. */ #define Get_align(val, n) ( Rd_bits( val, (n) - 1 ) ) /** \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary. * * \param[in] lval Input/output lvalue. * \param[in] n Boundary. * \param[in] alg Alignment. * * \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary. */ #define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) ) /** \brief Aligns the number \a val with the upper \a n boundary. * * \param[in] val Input value. * \param[in] n Boundary. * * \return Value resulting from the number \a val aligned with the upper \a n boundary. */ #define Align_up( val, n) (((val) + ((n) - 1)) & ~((n) - 1)) /** \brief Aligns the number \a val with the lower \a n boundary. * * \param[in] val Input value. * \param[in] n Boundary. * * \return Value resulting from the number \a val aligned with the lower \a n boundary. */ #define Align_down(val, n) ( (val) & ~((n) - 1)) /** @} */ /** \name Mathematics * * The same considerations as for clz and ctz apply here but GCC does not * provide built-in functions to access the assembly instructions abs, min and * max and it does not produce them by itself in most cases, so two sets of * macros are defined here: * - Abs, Min and Max to apply to constant expressions (values known at * compile time); * - abs, min and max to apply to non-constant expressions (values unknown at * compile time), abs is found in stdlib.h. * * @{ */ /** \brief Takes the absolute value of \a a. * * \param[in] a Input value. * * \return Absolute value of \a a. * * \note More optimized if only used with values known at compile time. */ #define Abs(a) (((a) < 0 ) ? -(a) : (a)) /** \brief Takes the minimal value of \a a and \a b. * * \param[in] a Input value. * \param[in] b Input value. * * \return Minimal value of \a a and \a b. * * \note More optimized if only used with values known at compile time. */ #define Min(a, b) (((a) < (b)) ? (a) : (b)) /** \brief Takes the maximal value of \a a and \a b. * * \param[in] a Input value. * \param[in] b Input value. * * \return Maximal value of \a a and \a b. * * \note More optimized if only used with values known at compile time. */ #define Max(a, b) (((a) > (b)) ? (a) : (b)) /** \brief Takes the minimal value of \a a and \a b. * * \param[in] a Input value. * \param[in] b Input value. * * \return Minimal value of \a a and \a b. * * \note More optimized if only used with values unknown at compile time. */ #define min(a, b) Min(a, b) /** \brief Takes the maximal value of \a a and \a b. * * \param[in] a Input value. * \param[in] b Input value. * * \return Maximal value of \a a and \a b. * * \note More optimized if only used with values unknown at compile time. */ #define max(a, b) Max(a, b) /** @} */ /** \brief Calls the routine at address \a addr. * * It generates a long call opcode. * * For example, `Long_call(0x80000000)' generates a software reset on a UC3 if * it is invoked from the CPU supervisor mode. * * \param[in] addr Address of the routine to call. * * \note It may be used as a long jump opcode in some special cases. */ #define Long_call(addr) ((*(void (*)(void))(addr))()) /** \name MCU Endianism Handling * ARM is MCU little endian. * * @{ */ #define BE16(x) Swap16(x) #define LE16(x) (x) #define le16_to_cpu(x) (x) #define cpu_to_le16(x) (x) #define LE16_TO_CPU(x) (x) #define CPU_TO_LE16(x) (x) #define be16_to_cpu(x) Swap16(x) #define cpu_to_be16(x) Swap16(x) #define BE16_TO_CPU(x) Swap16(x) #define CPU_TO_BE16(x) Swap16(x) #define le32_to_cpu(x) (x) #define cpu_to_le32(x) (x) #define LE32_TO_CPU(x) (x) #define CPU_TO_LE32(x) (x) #define be32_to_cpu(x) swap32(x) #define cpu_to_be32(x) swap32(x) #define BE32_TO_CPU(x) swap32(x) #define CPU_TO_BE32(x) swap32(x) /** @} */ /** \name Endianism Conversion * * The same considerations as for clz and ctz apply here but GCC's * __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when * applied to constant expressions, so two sets of macros are defined here: * - Swap16, Swap32 and Swap64 to apply to constant expressions (values known * at compile time); * - swap16, swap32 and swap64 to apply to non-constant expressions (values * unknown at compile time). * * @{ */ /** \brief Toggles the endianism of \a u16 (by swapping its bytes). * * \param[in] u16 U16 of which to toggle the endianism. * * \return Value resulting from \a u16 with toggled endianism. * * \note More optimized if only used with values known at compile time. */ #define Swap16(u16) ((uint16_t)(((uint16_t)(u16) >> 8) |\ ((uint16_t)(u16) << 8))) /** \brief Toggles the endianism of \a u32 (by swapping its bytes). * * \param[in] u32 U32 of which to toggle the endianism. * * \return Value resulting from \a u32 with toggled endianism. * * \note More optimized if only used with values known at compile time. */ #define Swap32(u32) ((uint32_t)(((uint32_t)Swap16((uint32_t)(u32) >> 16)) |\ ((uint32_t)Swap16((uint32_t)(u32)) << 16))) /** \brief Toggles the endianism of \a u64 (by swapping its bytes). * * \param[in] u64 U64 of which to toggle the endianism. * * \return Value resulting from \a u64 with toggled endianism. * * \note More optimized if only used with values known at compile time. */ #define Swap64(u64) ((uint64_t)(((uint64_t)Swap32((uint64_t)(u64) >> 32)) |\ ((uint64_t)Swap32((uint64_t)(u64)) << 32))) /** \brief Toggles the endianism of \a u16 (by swapping its bytes). * * \param[in] u16 U16 of which to toggle the endianism. * * \return Value resulting from \a u16 with toggled endianism. * * \note More optimized if only used with values unknown at compile time. */ #define swap16(u16) Swap16(u16) /** \brief Toggles the endianism of \a u32 (by swapping its bytes). * * \param[in] u32 U32 of which to toggle the endianism. * * \return Value resulting from \a u32 with toggled endianism. * * \note More optimized if only used with values unknown at compile time. */ #if (defined __GNUC__) # define swap32(u32) ((uint32_t)__builtin_bswap32((uint32_t)(u32))) #else # define swap32(u32) Swap32(u32) #endif /** \brief Toggles the endianism of \a u64 (by swapping its bytes). * * \param[in] u64 U64 of which to toggle the endianism. * * \return Value resulting from \a u64 with toggled endianism. * * \note More optimized if only used with values unknown at compile time. */ #if (defined __GNUC__) # define swap64(u64) ((uint64_t)__builtin_bswap64((uint64_t)(u64))) #else # define swap64(u64) ((uint64_t)(((uint64_t)swap32((uint64_t)(u64) >> 32)) |\ ((uint64_t)swap32((uint64_t)(u64)) << 32))) #endif /** @} */ /** \name Target Abstraction * * @{ */ #define _GLOBEXT_ extern /**< extern storage-class specifier. */ #define _CONST_TYPE_ const /**< const type qualifier. */ #define _MEM_TYPE_SLOW_ /**< Slow memory type. */ #define _MEM_TYPE_MEDFAST_ /**< Fairly fast memory type. */ #define _MEM_TYPE_FAST_ /**< Fast memory type. */ #define memcmp_ram2ram memcmp /**< Target-specific memcmp of RAM to RAM. */ #define memcmp_code2ram memcmp /**< Target-specific memcmp of RAM to NVRAM. */ #define memcpy_ram2ram memcpy /**< Target-specific memcpy from RAM to RAM. */ #define memcpy_code2ram memcpy /**< Target-specific memcpy from NVRAM to RAM. */ /** @} */ /** * \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using * integer arithmetic. * * \param[in] a An integer * \param[in] b Another integer * * \return (\a a / \a b) rounded up to the nearest integer. */ #define div_ceil(a, b) (((a) + (b) - 1) / (b)) #endif /* #ifndef __ASSEMBLY__ */ #ifdef __ICCARM__ /** \name Compiler Keywords * * Port of some keywords from GCC to IAR Embedded Workbench. * * @{ */ #define __asm__ asm #define __inline__ inline #define __volatile__ /** @} */ #endif #define FUNC_PTR void * /** * \def unused * \brief Marking \a v as a unused parameter or value. */ #define unused(v) do { (void)(v); } while(0) /* Define RAMFUNC attribute */ #if defined ( __CC_ARM ) /* Keil uVision 4 */ # define RAMFUNC __attribute__ ((section(".ramfunc"))) #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ # define RAMFUNC __ramfunc #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ # define RAMFUNC __attribute__ ((section(".ramfunc"))) #endif /* Define OPTIMIZE_HIGH attribute */ #if defined ( __CC_ARM ) /* Keil uVision 4 */ # define OPTIMIZE_HIGH _Pragma("O3") #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ # define OPTIMIZE_HIGH _Pragma("optimize=high") #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ # define OPTIMIZE_HIGH __attribute__((optimize(s))) #endif #define PASS 0 #define FAIL 1 #define LOW 0 #define HIGH 1 typedef int8_t S8 ; //!< 8-bit signed integer. typedef uint8_t U8 ; //!< 8-bit unsigned integer. typedef int16_t S16; //!< 16-bit signed integer. typedef uint16_t U16; //!< 16-bit unsigned integer. typedef int32_t S32; //!< 32-bit signed integer. typedef uint32_t U32; //!< 32-bit unsigned integer. typedef int64_t S64; //!< 64-bit signed integer. typedef uint64_t U64; //!< 64-bit unsigned integer. typedef float F32; //!< 32-bit floating-point number. typedef double F64; //!< 64-bit floating-point number. #define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16. #define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16. #define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32. #define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32. #define MSB0W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32. #define MSB1W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32. #define MSB2W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32. #define MSB3W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32. #define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32. #define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32. #define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32. #define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32. #define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64. #define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64. #define MSH0(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64. #define MSH1(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64. #define MSH2(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64. #define MSH3(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64. #define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64. #define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64. #define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64. #define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64. #define MSB0D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64. #define MSB1D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64. #define MSB2D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64. #define MSB3D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64. #define MSB4D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64. #define MSB5D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64. #define MSB6D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64. #define MSB7D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64. #define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64. #define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64. #define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64. #define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64. #define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64. #define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64. #define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64. #define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64. #define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32. #define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32. #define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32. #define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32. #define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32. #define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32. #define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32. #define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32. #if defined(__ICCARM__) #define SHORTENUM __packed #elif defined(__GNUC__) #define SHORTENUM __attribute__((packed)) #endif /* No operation */ #if defined(__ICCARM__) #define nop() __no_operation() #elif defined(__GNUC__) #define nop() (__NOP()) #endif #define FLASH_DECLARE(x) const x #define FLASH_EXTERN(x) extern const x #define PGM_READ_BYTE(x) *(x) #define PGM_READ_WORD(x) *(x) #define MEMCPY_ENDIAN memcpy #define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len)) /*Defines the Flash Storage for the request and response of MAC*/ #define CMD_ID_OCTET (0) /* Converting of values from CPU endian to little endian. */ #define CPU_ENDIAN_TO_LE16(x) (x) #define CPU_ENDIAN_TO_LE32(x) (x) #define CPU_ENDIAN_TO_LE64(x) (x) /* Converting of values from little endian to CPU endian. */ #define LE16_TO_CPU_ENDIAN(x) (x) #define LE32_TO_CPU_ENDIAN(x) (x) #define LE64_TO_CPU_ENDIAN(x) (x) /* Converting of constants from little endian to CPU endian. */ #define CLE16_TO_CPU_ENDIAN(x) (x) #define CLE32_TO_CPU_ENDIAN(x) (x) #define CLE64_TO_CPU_ENDIAN(x) (x) /* Converting of constants from CPU endian to little endian. */ #define CCPU_ENDIAN_TO_LE16(x) (x) #define CCPU_ENDIAN_TO_LE32(x) (x) #define CCPU_ENDIAN_TO_LE64(x) (x) #define ADDR_COPY_DST_SRC_16(dst, src) ((dst) = (src)) #define ADDR_COPY_DST_SRC_64(dst, src) ((dst) = (src)) /** * @brief Converts a 64-Bit value into a 8 Byte array * * @param[in] value 64-Bit value * @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value * @ingroup apiPalApi */ static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data) { uint8_t index = 0; while (index < 8) { data[index++] = value & 0xFF; value = value >> 8; } } /** * @brief Converts a 16-Bit value into a 2 Byte array * * @param[in] value 16-Bit value * @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value * @ingroup apiPalApi */ static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data) { data[0] = value & 0xFF; data[1] = (value >> 8) & 0xFF; } /* Converts a 16-Bit value into a 2 Byte array */ static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data) { data[0] = value & 0xFF; data[1] = (value >> 8) & 0xFF; } /* Converts a 16-Bit value into a 2 Byte array */ static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data) { data[0] = value & 0xFF; data[1] = (value >> 8) & 0xFF; } /* * @brief Converts a 2 Byte array into a 16-Bit value * * @param data Specifies the pointer to the 2 Byte array * * @return 16-Bit value * @ingroup apiPalApi */ static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data) { return (data[0] | ((uint16_t)data[1] << 8)); } /* Converts a 4 Byte array into a 32-Bit value */ static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data) { union { uint32_t u32; uint8_t u8[4]; } long_addr; uint8_t index; for (index = 0; index < 4; index++) { long_addr.u8[index] = *data++; } return long_addr.u32; } /** * @brief Converts a 8 Byte array into a 64-Bit value * * @param data Specifies the pointer to the 8 Byte array * * @return 64-Bit value * @ingroup apiPalApi */ static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data) { union { uint64_t u64; uint8_t u8[8]; } long_addr; uint8_t index; for (index = 0; index < 8; index++) { long_addr.u8[index] = *data++; } return long_addr.u64; } /** @} */ #endif /* UTILS_COMPILER_H_INCLUDED */