Fork of the official mbed C/C SDK provides the software platform and libraries to build your applications for RenBED.
Dependents: 1-RenBuggyTimed RenBED_RGB RenBED_RGB_PWM RenBED_RGB
Fork of mbed by
TARGET_NUCLEO_F070RB/stm32f0xx_hal_rcc.h
- Committer:
- Kojto
- Date:
- 2015-10-02
- Revision:
- 108:34e6b704fe68
- Parent:
- 93:e188a91d3eaa
File content as of revision 108:34e6b704fe68:
/** ****************************************************************************** * @file stm32f0xx_hal_rcc.h * @author MCD Application Team * @version V1.3.0 * @date 26-June-2015 * @brief Header file of RCC HAL module. ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F0xx_HAL_RCC_H #define __STM32F0xx_HAL_RCC_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f0xx_hal_def.h" /** @addtogroup STM32F0xx_HAL_Driver * @{ */ /** @addtogroup RCC * @{ */ /** @addtogroup RCC_Private_Constants * @{ */ /** @defgroup RCC_Timeout RCC Timeout * @{ */ /* Disable Backup domain write protection state change timeout */ #define RCC_DBP_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */ /* LSE state change timeout */ #define RCC_LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT #define CLOCKSWITCH_TIMEOUT_VALUE ((uint32_t)5000) /* 5 s */ #define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT #define HSI_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */ #define LSI_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */ #define PLL_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */ #define HSI14_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */ #define HSI48_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */ /** * @} */ /** @defgroup RCC_Register_Offset Register offsets * @{ */ #define RCC_OFFSET (RCC_BASE - PERIPH_BASE) #define RCC_CR_OFFSET 0x00 #define RCC_CFGR_OFFSET 0x04 #define RCC_CIR_OFFSET 0x08 #define RCC_BDCR_OFFSET 0x20 #define RCC_CSR_OFFSET 0x24 /** * @} */ /* CR register byte 2 (Bits[23:16]) base address */ #define RCC_CR_BYTE2_ADDRESS ((uint32_t)(RCC_BASE + RCC_CR_OFFSET + 0x02)) /* CIR register byte 1 (Bits[15:8]) base address */ #define RCC_CIR_BYTE1_ADDRESS ((uint32_t)(RCC_BASE + RCC_CIR_OFFSET + 0x01)) /* CIR register byte 2 (Bits[23:16]) base address */ #define RCC_CIR_BYTE2_ADDRESS ((uint32_t)(RCC_BASE + RCC_CIR_OFFSET + 0x02)) /* Defines used for Flags */ #define CR_REG_INDEX ((uint8_t)1) #define CR2_REG_INDEX 2 #define BDCR_REG_INDEX 3 #define CSR_REG_INDEX 4 /* Flags in the CFGR register */ #define RCC_CFGR_PLLMUL_BITNUMBER 18 #define RCC_CFGR_HPRE_BITNUMBER 4 #define RCC_CFGR_PPRE_BITNUMBER 8 /* Flags in the CFGR2 register */ #define RCC_CFGR2_PREDIV_BITNUMBER 0 /* Flags in the CR register */ #define RCC_CR_HSIRDY_BitNumber 1 #define RCC_CR_HSERDY_BitNumber 17 #define RCC_CR_PLLRDY_BitNumber 25 /* Flags in the CR2 register */ #define RCC_CR2_HSI14RDY_BitNumber 1 #define RCC_CR2_HSI48RDY_BitNumber 16 /* Flags in the BDCR register */ #define RCC_BDCR_LSERDY_BitNumber 1 /* Flags in the CSR register */ #define RCC_CSR_LSIRDY_BitNumber 1 #define RCC_CSR_V18PWRRSTF_BitNumber 23 #define RCC_CSR_RMVF_BitNumber 24 #define RCC_CSR_OBLRSTF_BitNumber 25 #define RCC_CSR_PINRSTF_BitNumber 26 #define RCC_CSR_PORRSTF_BitNumber 27 #define RCC_CSR_SFTRSTF_BitNumber 28 #define RCC_CSR_IWDGRSTF_BitNumber 29 #define RCC_CSR_WWDGRSTF_BitNumber 30 #define RCC_CSR_LPWRRSTF_BitNumber 31 /* Flags in the HSITRIM register */ #define RCC_CR_HSITRIM_BitNumber 3 #define RCC_FLAG_MASK ((uint8_t)0x1F) /** * @} */ /** @addtogroup RCC_Private_Macros * @{ */ #define IS_RCC_HSE(__HSE__) (((__HSE__) == RCC_HSE_OFF) || ((__HSE__) == RCC_HSE_ON) || \ ((__HSE__) == RCC_HSE_BYPASS)) #define IS_RCC_LSE(__LSE__) (((__LSE__) == RCC_LSE_OFF) || ((__LSE__) == RCC_LSE_ON) || \ ((__LSE__) == RCC_LSE_BYPASS)) #define IS_RCC_HSI(__HSI__) (((__HSI__) == RCC_HSI_OFF) || ((__HSI__) == RCC_HSI_ON)) #define IS_RCC_HSI14(__HSI14__) (((__HSI14__) == RCC_HSI14_OFF) || ((__HSI14__) == RCC_HSI14_ON) || ((__HSI14__) == RCC_HSI14_ADC_CONTROL)) #define IS_RCC_CALIBRATION_VALUE(__VALUE__) ((__VALUE__) <= 0x1F) #define IS_RCC_LSI(__LSI__) (((__LSI__) == RCC_LSI_OFF) || ((__LSI__) == RCC_LSI_ON)) #define IS_RCC_PLL(__PLL__) (((__PLL__) == RCC_PLL_NONE) || ((__PLL__) == RCC_PLL_OFF) || \ ((__PLL__) == RCC_PLL_ON)) #define IS_RCC_PREDIV(__PREDIV__) (((__PREDIV__) == RCC_PREDIV_DIV1) || ((__PREDIV__) == RCC_PREDIV_DIV2) || \ ((__PREDIV__) == RCC_PREDIV_DIV3) || ((__PREDIV__) == RCC_PREDIV_DIV4) || \ ((__PREDIV__) == RCC_PREDIV_DIV5) || ((__PREDIV__) == RCC_PREDIV_DIV6) || \ ((__PREDIV__) == RCC_PREDIV_DIV7) || ((__PREDIV__) == RCC_PREDIV_DIV8) || \ ((__PREDIV__) == RCC_PREDIV_DIV9) || ((__PREDIV__) == RCC_PREDIV_DIV10) || \ ((__PREDIV__) == RCC_PREDIV_DIV11) || ((__PREDIV__) == RCC_PREDIV_DIV12) || \ ((__PREDIV__) == RCC_PREDIV_DIV13) || ((__PREDIV__) == RCC_PREDIV_DIV14) || \ ((__PREDIV__) == RCC_PREDIV_DIV15) || ((__PREDIV__) == RCC_PREDIV_DIV16)) #define IS_RCC_PLL_MUL(__MUL__) (((__MUL__) == RCC_PLL_MUL2) || ((__MUL__) == RCC_PLL_MUL3) || \ ((__MUL__) == RCC_PLL_MUL4) || ((__MUL__) == RCC_PLL_MUL5) || \ ((__MUL__) == RCC_PLL_MUL6) || ((__MUL__) == RCC_PLL_MUL7) || \ ((__MUL__) == RCC_PLL_MUL8) || ((__MUL__) == RCC_PLL_MUL9) || \ ((__MUL__) == RCC_PLL_MUL10) || ((__MUL__) == RCC_PLL_MUL11) || \ ((__MUL__) == RCC_PLL_MUL12) || ((__MUL__) == RCC_PLL_MUL13) || \ ((__MUL__) == RCC_PLL_MUL14) || ((__MUL__) == RCC_PLL_MUL15) || \ ((__MUL__) == RCC_PLL_MUL16)) #define IS_RCC_CLOCKTYPE(__CLK__) ((((__CLK__) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) || \ (((__CLK__) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) || \ (((__CLK__) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)) #define IS_RCC_HCLK(__HCLK__) (((__HCLK__) == RCC_SYSCLK_DIV1) || ((__HCLK__) == RCC_SYSCLK_DIV2) || \ ((__HCLK__) == RCC_SYSCLK_DIV4) || ((__HCLK__) == RCC_SYSCLK_DIV8) || \ ((__HCLK__) == RCC_SYSCLK_DIV16) || ((__HCLK__) == RCC_SYSCLK_DIV64) || \ ((__HCLK__) == RCC_SYSCLK_DIV128) || ((__HCLK__) == RCC_SYSCLK_DIV256) || \ ((__HCLK__) == RCC_SYSCLK_DIV512)) #define IS_RCC_PCLK(__PCLK__) (((__PCLK__) == RCC_HCLK_DIV1) || ((__PCLK__) == RCC_HCLK_DIV2) || \ ((__PCLK__) == RCC_HCLK_DIV4) || ((__PCLK__) == RCC_HCLK_DIV8) || \ ((__PCLK__) == RCC_HCLK_DIV16)) #define IS_RCC_MCO(__MCO__) (((__MCO__) == RCC_MCO)) #define IS_RCC_RTCCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_RTCCLKSOURCE_NO_CLK) || \ ((__SOURCE__) == RCC_RTCCLKSOURCE_LSE) || \ ((__SOURCE__) == RCC_RTCCLKSOURCE_LSI) || \ ((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV32)) #define IS_RCC_USART1CLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_USART1CLKSOURCE_PCLK1) || \ ((__SOURCE__) == RCC_USART1CLKSOURCE_SYSCLK) || \ ((__SOURCE__) == RCC_USART1CLKSOURCE_LSE) || \ ((__SOURCE__) == RCC_USART1CLKSOURCE_HSI)) #define IS_RCC_I2C1CLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_I2C1CLKSOURCE_HSI) || \ ((__SOURCE__) == RCC_I2C1CLKSOURCE_SYSCLK)) /** * @} */ /* Exported types ------------------------------------------------------------*/ /** @defgroup RCC_Exported_Types RCC Exported Types * @{ */ /** * @brief RCC PLL configuration structure definition */ typedef struct { uint32_t PLLState; /*!< The new state of the PLL. This parameter can be a value of @ref RCC_PLL_Config */ uint32_t PLLSource; /*!< PLLSource: PLL entry clock source. This parameter must be a value of @ref RCC_PLL_Clock_Source */ uint32_t PLLMUL; /*!< PLLMUL: Multiplication factor for PLL VCO input clock This parameter must be a value of @ref RCC_PLL_Multiplication_Factor*/ uint32_t PREDIV; /*!< PREDIV: Predivision factor for PLL VCO input clock This parameter must be a value of @ref RCC_PLL_Prediv_Factor */ } RCC_PLLInitTypeDef; /** * @brief RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition */ typedef struct { uint32_t OscillatorType; /*!< The oscillators to be configured. This parameter can be a value of @ref RCC_Oscillator_Type */ uint32_t HSEState; /*!< The new state of the HSE. This parameter can be a value of @ref RCC_HSE_Config */ uint32_t LSEState; /*!< The new state of the LSE. This parameter can be a value of @ref RCC_LSE_Config */ uint32_t HSIState; /*!< The new state of the HSI. This parameter can be a value of @ref RCC_HSI_Config */ uint32_t HSICalibrationValue; /*!< The HSI calibration trimming value (default is RCC_HSICALIBRATION_DEFAULT). This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x1F */ uint32_t HSI14State; /*!< The new state of the HSI14. This parameter can be a value of @ref RCC_HSI14_Config */ uint32_t HSI14CalibrationValue; /*!< The HSI14 calibration trimming value (default is RCC_HSI14CALIBRATION_DEFAULT). This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x1F */ uint32_t HSI48State; /*!< The new state of the HSI48 (only applicable to STM32F07x, STM32F0x2 and STM32F09x devices). This parameter can be a value of @ref RCCEx_HSI48_Config */ uint32_t LSIState; /*!< The new state of the LSI. This parameter can be a value of @ref RCC_LSI_Config */ RCC_PLLInitTypeDef PLL; /*!< PLL structure parameters */ } RCC_OscInitTypeDef; /** * @brief RCC System, AHB and APB busses clock configuration structure definition */ typedef struct { uint32_t ClockType; /*!< The clock to be configured. This parameter can be a value of @ref RCC_System_Clock_Type */ uint32_t SYSCLKSource; /*!< The clock source (SYSCLKS) used as system clock. This parameter can be a value of @ref RCC_System_Clock_Source */ uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK). This parameter can be a value of @ref RCC_AHB_Clock_Source */ uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK). This parameter can be a value of @ref RCC_APB1_Clock_Source */ } RCC_ClkInitTypeDef; /** * @} */ /* Exported constants --------------------------------------------------------*/ /** @defgroup RCC_Exported_Constants RCC Exported Constants * @{ */ /** @defgroup RCC_PLL_Clock_Source PLL Clock Source * @{ */ #define RCC_PLLSOURCE_HSE RCC_CFGR_PLLSRC_HSE_PREDIV /*!< HSE clock selected as PLL entry clock source */ /** * @} */ /** @defgroup RCC_Oscillator_Type Oscillator Type * @{ */ #define RCC_OSCILLATORTYPE_NONE ((uint32_t)0x00000000) #define RCC_OSCILLATORTYPE_HSE ((uint32_t)0x00000001) #define RCC_OSCILLATORTYPE_HSI ((uint32_t)0x00000002) #define RCC_OSCILLATORTYPE_LSE ((uint32_t)0x00000004) #define RCC_OSCILLATORTYPE_LSI ((uint32_t)0x00000008) #define RCC_OSCILLATORTYPE_HSI14 ((uint32_t)0x00000010) /** * @} */ /** @defgroup RCC_HSE_Config HSE Config * @{ */ #define RCC_HSE_OFF ((uint32_t)0x00000000) /*!< HSE clock deactivation */ #define RCC_HSE_ON ((uint32_t)0x00000001) /*!< HSE clock activation */ #define RCC_HSE_BYPASS ((uint32_t)0x00000005) /*!< External clock source for HSE clock */ /** * @} */ /** @defgroup RCC_LSE_Config LSE Config * @{ */ #define RCC_LSE_OFF ((uint32_t)0x00000000) /*!< LSE clock deactivation */ #define RCC_LSE_ON ((uint32_t)0x00000001) /*!< LSE clock activation */ #define RCC_LSE_BYPASS ((uint32_t)0x00000005) /*!< External clock source for LSE clock */ /** * @} */ /** @defgroup RCC_HSI_Config HSI Config * @{ */ #define RCC_HSI_OFF ((uint32_t)0x00000000) /*!< HSI clock deactivation */ #define RCC_HSI_ON RCC_CR_HSION /*!< HSI clock activation */ #define RCC_HSICALIBRATION_DEFAULT ((uint32_t)0x10) /* Default HSI calibration trimming value */ /** * @} */ /** @defgroup RCC_HSI14_Config RCC HSI14 Config * @{ */ #define RCC_HSI14_OFF ((uint32_t)0x00) #define RCC_HSI14_ON RCC_CR2_HSI14ON #define RCC_HSI14_ADC_CONTROL (~RCC_CR2_HSI14DIS) #define RCC_HSI14CALIBRATION_DEFAULT ((uint32_t)0x10) /* Default HSI14 calibration trimming value */ /** * @} */ /** @defgroup RCC_LSI_Config LSI Config * @{ */ #define RCC_LSI_OFF ((uint32_t)0x00000000) /*!< LSI clock deactivation */ #define RCC_LSI_ON RCC_CSR_LSION /*!< LSI clock activation */ /** * @} */ /** @defgroup RCC_PLL_Config PLL Config * @{ */ #define RCC_PLL_NONE ((uint32_t)0x00000000) /*!< PLL is not configured */ #define RCC_PLL_OFF ((uint32_t)0x00000001) /*!< PLL deactivation */ #define RCC_PLL_ON ((uint32_t)0x00000002) /*!< PLL activation */ /** * @} */ /** @defgroup RCC_System_Clock_Type System Clock Type * @{ */ #define RCC_CLOCKTYPE_SYSCLK ((uint32_t)0x00000001) /*!< SYSCLK to configure */ #define RCC_CLOCKTYPE_HCLK ((uint32_t)0x00000002) /*!< HCLK to configure */ #define RCC_CLOCKTYPE_PCLK1 ((uint32_t)0x00000004) /*!< PCLK1 to configure */ /** * @} */ /** @defgroup RCC_System_Clock_Source System Clock Source * @{ */ #define RCC_SYSCLKSOURCE_HSI ((uint32_t)RCC_CFGR_SW_HSI) /*!< HSI selected as system clock */ #define RCC_SYSCLKSOURCE_HSE ((uint32_t)RCC_CFGR_SW_HSE) /*!< HSE selected as system clock */ #define RCC_SYSCLKSOURCE_PLLCLK ((uint32_t)RCC_CFGR_SW_PLL) /*!< PLL selected as system clock */ /** * @} */ /** @defgroup RCC_System_Clock_Source_Status System Clock Source Status * @{ */ #define RCC_SYSCLKSOURCE_STATUS_HSI RCC_CFGR_SWS_HSI /*!< HSI used as system clock */ #define RCC_SYSCLKSOURCE_STATUS_HSE RCC_CFGR_SWS_HSE /*!< HSE used as system clock */ #define RCC_SYSCLKSOURCE_STATUS_PLLCLK RCC_CFGR_SWS_PLL /*!< PLL used as system clock */ /** * @} */ /** @defgroup RCC_AHB_Clock_Source AHB Clock Source * @{ */ #define RCC_SYSCLK_DIV1 ((uint32_t)RCC_CFGR_HPRE_DIV1) #define RCC_SYSCLK_DIV2 ((uint32_t)RCC_CFGR_HPRE_DIV2) #define RCC_SYSCLK_DIV4 ((uint32_t)RCC_CFGR_HPRE_DIV4) #define RCC_SYSCLK_DIV8 ((uint32_t)RCC_CFGR_HPRE_DIV8) #define RCC_SYSCLK_DIV16 ((uint32_t)RCC_CFGR_HPRE_DIV16) #define RCC_SYSCLK_DIV64 ((uint32_t)RCC_CFGR_HPRE_DIV64) #define RCC_SYSCLK_DIV128 ((uint32_t)RCC_CFGR_HPRE_DIV128) #define RCC_SYSCLK_DIV256 ((uint32_t)RCC_CFGR_HPRE_DIV256) #define RCC_SYSCLK_DIV512 ((uint32_t)RCC_CFGR_HPRE_DIV512) /** * @} */ /** @defgroup RCC_APB1_Clock_Source RCC APB1 Clock Source * @{ */ #define RCC_HCLK_DIV1 RCC_CFGR_PPRE_DIV1 #define RCC_HCLK_DIV2 RCC_CFGR_PPRE_DIV2 #define RCC_HCLK_DIV4 RCC_CFGR_PPRE_DIV4 #define RCC_HCLK_DIV8 RCC_CFGR_PPRE_DIV8 #define RCC_HCLK_DIV16 RCC_CFGR_PPRE_DIV16 /** * @} */ /** @defgroup RCC_RTC_Clock_Source RTC Clock Source * @{ */ #define RCC_RTCCLKSOURCE_NO_CLK ((uint32_t)0x00000000) /*!< No clock */ #define RCC_RTCCLKSOURCE_LSE ((uint32_t)RCC_BDCR_RTCSEL_LSE) /*!< LSE oscillator clock used as RTC clock */ #define RCC_RTCCLKSOURCE_LSI ((uint32_t)RCC_BDCR_RTCSEL_LSI) /*!< LSI oscillator clock used as RTC clock */ #define RCC_RTCCLKSOURCE_HSE_DIV32 ((uint32_t)RCC_BDCR_RTCSEL_HSE) /*!< HSE oscillator clock divided by 32 used as RTC clock */ /** * @} */ /** @defgroup RCC_PLL_Prediv_Factor RCC PLL Prediv Factor * @{ */ #define RCC_PREDIV_DIV1 RCC_CFGR2_PREDIV_DIV1 #define RCC_PREDIV_DIV2 RCC_CFGR2_PREDIV_DIV2 #define RCC_PREDIV_DIV3 RCC_CFGR2_PREDIV_DIV3 #define RCC_PREDIV_DIV4 RCC_CFGR2_PREDIV_DIV4 #define RCC_PREDIV_DIV5 RCC_CFGR2_PREDIV_DIV5 #define RCC_PREDIV_DIV6 RCC_CFGR2_PREDIV_DIV6 #define RCC_PREDIV_DIV7 RCC_CFGR2_PREDIV_DIV7 #define RCC_PREDIV_DIV8 RCC_CFGR2_PREDIV_DIV8 #define RCC_PREDIV_DIV9 RCC_CFGR2_PREDIV_DIV9 #define RCC_PREDIV_DIV10 RCC_CFGR2_PREDIV_DIV10 #define RCC_PREDIV_DIV11 RCC_CFGR2_PREDIV_DIV11 #define RCC_PREDIV_DIV12 RCC_CFGR2_PREDIV_DIV12 #define RCC_PREDIV_DIV13 RCC_CFGR2_PREDIV_DIV13 #define RCC_PREDIV_DIV14 RCC_CFGR2_PREDIV_DIV14 #define RCC_PREDIV_DIV15 RCC_CFGR2_PREDIV_DIV15 #define RCC_PREDIV_DIV16 RCC_CFGR2_PREDIV_DIV16 /** * @} */ /** @defgroup RCC_PLL_Multiplication_Factor RCC PLL Multiplication Factor * @{ */ #define RCC_PLL_MUL2 RCC_CFGR_PLLMUL2 #define RCC_PLL_MUL3 RCC_CFGR_PLLMUL3 #define RCC_PLL_MUL4 RCC_CFGR_PLLMUL4 #define RCC_PLL_MUL5 RCC_CFGR_PLLMUL5 #define RCC_PLL_MUL6 RCC_CFGR_PLLMUL6 #define RCC_PLL_MUL7 RCC_CFGR_PLLMUL7 #define RCC_PLL_MUL8 RCC_CFGR_PLLMUL8 #define RCC_PLL_MUL9 RCC_CFGR_PLLMUL9 #define RCC_PLL_MUL10 RCC_CFGR_PLLMUL10 #define RCC_PLL_MUL11 RCC_CFGR_PLLMUL11 #define RCC_PLL_MUL12 RCC_CFGR_PLLMUL12 #define RCC_PLL_MUL13 RCC_CFGR_PLLMUL13 #define RCC_PLL_MUL14 RCC_CFGR_PLLMUL14 #define RCC_PLL_MUL15 RCC_CFGR_PLLMUL15 #define RCC_PLL_MUL16 RCC_CFGR_PLLMUL16 /** * @} */ /** @defgroup RCC_USART1_Clock_Source RCC USART1 Clock Source * @{ */ #define RCC_USART1CLKSOURCE_PCLK1 RCC_CFGR3_USART1SW_PCLK #define RCC_USART1CLKSOURCE_SYSCLK RCC_CFGR3_USART1SW_SYSCLK #define RCC_USART1CLKSOURCE_LSE RCC_CFGR3_USART1SW_LSE #define RCC_USART1CLKSOURCE_HSI RCC_CFGR3_USART1SW_HSI /** * @} */ /** @defgroup RCC_I2C1_Clock_Source RCC I2C1 Clock Source * @{ */ #define RCC_I2C1CLKSOURCE_HSI RCC_CFGR3_I2C1SW_HSI #define RCC_I2C1CLKSOURCE_SYSCLK RCC_CFGR3_I2C1SW_SYSCLK /** * @} */ /** @defgroup RCC_MCO_Index MCO Index * @{ */ #define RCC_MCO1 ((uint32_t)0x00000000) #define RCC_MCO RCC_MCO1 /*!< MCO1 to be compliant with other families with 2 MCOs*/ /** * @} */ /** @defgroup RCC_MCO_Clock_Source RCC MCO Clock Source * @{ */ #define RCC_MCOSOURCE_NONE RCC_CFGR_MCO_NOCLOCK #define RCC_MCOSOURCE_LSI RCC_CFGR_MCO_LSI #define RCC_MCOSOURCE_LSE RCC_CFGR_MCO_LSE #define RCC_MCOSOURCE_SYSCLK RCC_CFGR_MCO_SYSCLK #define RCC_MCOSOURCE_HSI RCC_CFGR_MCO_HSI #define RCC_MCOSOURCE_HSE RCC_CFGR_MCO_HSE #define RCC_MCOSOURCE_PLLCLK_DIV2 RCC_CFGR_MCO_PLL #define RCC_MCOSOURCE_HSI14 RCC_CFGR_MCO_HSI14 /** * @} */ /** @defgroup RCC_Interrupt Interrupts * @{ */ #define RCC_IT_LSIRDY ((uint8_t)RCC_CIR_LSIRDYF) /*!< LSI Ready Interrupt flag */ #define RCC_IT_LSERDY ((uint8_t)RCC_CIR_LSERDYF) /*!< LSE Ready Interrupt flag */ #define RCC_IT_HSIRDY ((uint8_t)RCC_CIR_HSIRDYF) /*!< HSI Ready Interrupt flag */ #define RCC_IT_HSERDY ((uint8_t)RCC_CIR_HSERDYF) /*!< HSE Ready Interrupt flag */ #define RCC_IT_PLLRDY ((uint8_t)RCC_CIR_PLLRDYF) /*!< PLL Ready Interrupt flag */ #define RCC_IT_HSI14 ((uint8_t)RCC_CIR_HSI14RDYF) /*!< HSI14 Ready Interrupt flag */ #define RCC_IT_CSS ((uint8_t)RCC_CIR_CSSF) /*!< Clock Security System Interrupt flag */ /** * @} */ /** @defgroup RCC_Flag Flags * Elements values convention: XXXYYYYYb * - YYYYY : Flag position in the register * - XXX : Register index * - 001: CR register * - 010: CR2 register * - 011: BDCR register * - 0100: CSR register * @{ */ /* Flags in the CR register */ #define RCC_FLAG_HSIRDY ((uint8_t)((CR_REG_INDEX << 5) | RCC_CR_HSIRDY_BitNumber)) #define RCC_FLAG_HSERDY ((uint8_t)((CR_REG_INDEX << 5) | RCC_CR_HSERDY_BitNumber)) #define RCC_FLAG_PLLRDY ((uint8_t)((CR_REG_INDEX << 5) | RCC_CR_PLLRDY_BitNumber)) /* Flags in the CR2 register */ #define RCC_FLAG_HSI14RDY ((uint8_t)((CR2_REG_INDEX << 5) | RCC_CR2_HSI14RDY_BitNumber)) /* Flags in the CSR register */ #define RCC_FLAG_LSIRDY ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_LSIRDY_BitNumber)) #define RCC_FLAG_V18PWRRST ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_LSIRDY_BitNumber)) #define RCC_FLAG_RMV ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_RMVF_BitNumber)) #define RCC_FLAG_OBLRST ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_OBLRSTF_BitNumber)) #define RCC_FLAG_PINRST ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_PINRSTF_BitNumber)) #define RCC_FLAG_PORRST ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_PORRSTF_BitNumber)) #define RCC_FLAG_SFTRST ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_SFTRSTF_BitNumber)) #define RCC_FLAG_IWDGRST ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_IWDGRSTF_BitNumber)) #define RCC_FLAG_WWDGRST ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_WWDGRSTF_BitNumber)) #define RCC_FLAG_LPWRRST ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_LPWRRSTF_BitNumber)) /* Flags in the BDCR register */ #define RCC_FLAG_LSERDY ((uint8_t)((BDCR_REG_INDEX << 5) | RCC_BDCR_LSERDY_BitNumber)) /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup RCC_Exported_Macros RCC Exported Macros * @{ */ /** @defgroup RCC_AHB_Clock_Enable_Disable RCC AHB Clock Enable Disable * @brief Enable or disable the AHB peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_GPIOA_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_GPIOAEN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_GPIOAEN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_GPIOB_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_GPIOBEN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_GPIOBEN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_GPIOC_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_GPIOCEN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_GPIOCEN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_GPIOF_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_GPIOFEN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_GPIOFEN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_CRC_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_DMA1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_SRAM_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_FLITF_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->AHBENR, RCC_AHBENR_FLITFEN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FLITFEN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_GPIOA_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_GPIOAEN)) #define __HAL_RCC_GPIOB_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_GPIOBEN)) #define __HAL_RCC_GPIOC_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_GPIOCEN)) #define __HAL_RCC_GPIOF_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_GPIOFEN)) #define __HAL_RCC_CRC_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_CRCEN)) #define __HAL_RCC_DMA1_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_DMA1EN)) #define __HAL_RCC_SRAM_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_SRAMEN)) #define __HAL_RCC_FLITF_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_FLITFEN)) /** * @} */ /** @defgroup RCC_AHB_Peripheral_Clock_Enable_Disable_Status AHB Peripheral Clock Enable Disable Status * @brief Get the enable or disable status of the AHB peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_GPIOA_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_GPIOAEN)) != RESET) #define __HAL_RCC_GPIOB_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_GPIOBEN)) != RESET) #define __HAL_RCC_GPIOC_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_GPIOCEN)) != RESET) #define __HAL_RCC_GPIOF_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_GPIOFEN)) != RESET) #define __HAL_RCC_CRC_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_CRCEN)) != RESET) #define __HAL_RCC_DMA1_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_DMA1EN)) != RESET) #define __HAL_RCC_SRAM_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_SRAMEN)) != RESET) #define __HAL_RCC_FLITF_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_FLITFEN)) != RESET) #define __HAL_RCC_GPIOA_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_GPIOAEN)) == RESET) #define __HAL_RCC_GPIOB_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_GPIOBEN)) == RESET) #define __HAL_RCC_GPIOC_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_GPIOCEN)) == RESET) #define __HAL_RCC_GPIOF_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_GPIOFEN)) == RESET) #define __HAL_RCC_CRC_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_CRCEN)) == RESET) #define __HAL_RCC_DMA1_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_DMA1EN)) == RESET) #define __HAL_RCC_SRAM_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_SRAMEN)) == RESET) #define __HAL_RCC_FLITF_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_FLITFEN)) == RESET) /** * @} */ /** @defgroup RCC_APB1_Clock_Enable_Disable RCC APB1 Clock Enable Disable * @brief Enable or disable the Low Speed APB (APB1) peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_TIM3_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM3EN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM3EN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_TIM14_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM14EN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM14EN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_WWDG_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_WWDGEN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_WWDGEN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_I2C1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C1EN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C1EN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_PWR_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_PWREN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_PWREN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_TIM3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM3EN)) #define __HAL_RCC_TIM14_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM14EN)) #define __HAL_RCC_WWDG_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_WWDGEN)) #define __HAL_RCC_I2C1_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_I2C1EN)) #define __HAL_RCC_PWR_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_PWREN)) /** * @} */ /** @defgroup RCC_APB1_Peripheral_Clock_Enable_Disable_Status APB1 Peripheral Clock Enable Disable Status * @brief Get the enable or disable status of the APB1 peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_TIM3_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM3EN)) != RESET) #define __HAL_RCC_TIM14_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM14EN)) != RESET) #define __HAL_RCC_WWDG_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_WWDGEN)) != RESET) #define __HAL_RCC_I2C1_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C1EN)) != RESET) #define __HAL_RCC_PWR_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_PWREN)) != RESET) #define __HAL_RCC_TIM3_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM3EN)) == RESET) #define __HAL_RCC_TIM14_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM14EN)) == RESET) #define __HAL_RCC_WWDG_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_WWDGEN)) == RESET) #define __HAL_RCC_I2C1_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C1EN)) == RESET) #define __HAL_RCC_PWR_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_PWREN)) == RESET) /** * @} */ /** @defgroup RCC_APB2_Clock_Enable_Disable RCC APB2 Clock Enable Disable * @brief Enable or disable the High Speed APB (APB2) peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_SYSCFG_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_ADC1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC1EN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC1EN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_TIM1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_SPI1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_TIM16_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM16EN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM16EN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_TIM17_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM17EN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM17EN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_USART1_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_DBGMCU_CLK_ENABLE() do { \ __IO uint32_t tmpreg; \ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_DBGMCUEN);\ /* Delay after an RCC peripheral clock enabling */ \ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_DBGMCUEN);\ UNUSED(tmpreg); \ } while(0) #define __HAL_RCC_SYSCFG_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SYSCFGEN)) #define __HAL_RCC_ADC1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_ADC1EN)) #define __HAL_RCC_TIM1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM1EN)) #define __HAL_RCC_SPI1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SPI1EN)) #define __HAL_RCC_TIM16_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM16EN)) #define __HAL_RCC_TIM17_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM17EN)) #define __HAL_RCC_USART1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_USART1EN)) #define __HAL_RCC_DBGMCU_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_DBGMCUEN)) /** * @} */ /** @defgroup RCC_APB2_Peripheral_Clock_Enable_Disable_Status APB2 Peripheral Clock Enable Disable Status * @brief Get the enable or disable status of the APB2 peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. * @{ */ #define __HAL_RCC_SYSCFG_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SYSCFGEN)) != RESET) #define __HAL_RCC_ADC1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC1EN)) != RESET) #define __HAL_RCC_TIM1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM1EN)) != RESET) #define __HAL_RCC_SPI1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI1EN)) != RESET) #define __HAL_RCC_TIM16_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM16EN)) != RESET) #define __HAL_RCC_TIM17_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM17EN)) != RESET) #define __HAL_RCC_USART1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_USART1EN)) != RESET) #define __HAL_RCC_DBGMCU_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_DBGMCUEN)) != RESET) #define __HAL_RCC_SYSCFG_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SYSCFGEN)) == RESET) #define __HAL_RCC_ADC1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC1EN)) == RESET) #define __HAL_RCC_TIM1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM1EN)) == RESET) #define __HAL_RCC_SPI1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI1EN)) == RESET) #define __HAL_RCC_TIM16_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM16EN)) == RESET) #define __HAL_RCC_TIM17_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM17EN)) == RESET) #define __HAL_RCC_USART1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_USART1EN)) == RESET) #define __HAL_RCC_DBGMCU_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_DBGMCUEN)) == RESET) /** * @} */ /** @defgroup RCC_AHB_Force_Release_Reset RCC AHB Force Release Reset * @brief Force or release AHB peripheral reset. * @{ */ #define __HAL_RCC_AHB_FORCE_RESET() (RCC->AHBRSTR = 0xFFFFFFFF) #define __HAL_RCC_GPIOA_FORCE_RESET() (RCC->AHBRSTR |= (RCC_AHBRSTR_GPIOARST)) #define __HAL_RCC_GPIOB_FORCE_RESET() (RCC->AHBRSTR |= (RCC_AHBRSTR_GPIOBRST)) #define __HAL_RCC_GPIOC_FORCE_RESET() (RCC->AHBRSTR |= (RCC_AHBRSTR_GPIOCRST)) #define __HAL_RCC_GPIOF_FORCE_RESET() (RCC->AHBRSTR |= (RCC_AHBRSTR_GPIOFRST)) #define __HAL_RCC_AHB_RELEASE_RESET() (RCC->AHBRSTR = 0x00) #define __HAL_RCC_GPIOA_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_GPIOARST)) #define __HAL_RCC_GPIOB_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_GPIOBRST)) #define __HAL_RCC_GPIOC_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_GPIOCRST)) #define __HAL_RCC_GPIOF_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_GPIOFRST)) /** * @} */ /** @defgroup RCC_APB1_Force_Release_Reset RCC APB1 Force Release Reset * @brief Force or release APB1 peripheral reset. * @{ */ #define __HAL_RCC_APB1_FORCE_RESET() (RCC->APB1RSTR = 0xFFFFFFFF) #define __HAL_RCC_TIM3_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM3RST)) #define __HAL_RCC_TIM14_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM14RST)) #define __HAL_RCC_WWDG_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_WWDGRST)) #define __HAL_RCC_I2C1_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_I2C1RST)) #define __HAL_RCC_PWR_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_PWRRST)) #define __HAL_RCC_APB1_RELEASE_RESET() (RCC->APB1RSTR = 0x00) #define __HAL_RCC_TIM3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM3RST)) #define __HAL_RCC_TIM14_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM14RST)) #define __HAL_RCC_WWDG_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_WWDGRST)) #define __HAL_RCC_I2C1_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C1RST)) #define __HAL_RCC_PWR_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_PWRRST)) /** * @} */ /** @defgroup RCC_APB2_Force_Release_Reset RCC APB2 Force Release Reset * @brief Force or release APB2 peripheral reset. * @{ */ #define __HAL_RCC_APB2_FORCE_RESET() (RCC->APB2RSTR = 0xFFFFFFFF) #define __HAL_RCC_SYSCFG_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SYSCFGRST)) #define __HAL_RCC_ADC1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_ADC1RST)) #define __HAL_RCC_TIM1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM1RST)) #define __HAL_RCC_SPI1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SPI1RST)) #define __HAL_RCC_USART1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_USART1RST)) #define __HAL_RCC_TIM16_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM16RST)) #define __HAL_RCC_TIM17_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM17RST)) #define __HAL_RCC_DBGMCU_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_DBGMCURST)) #define __HAL_RCC_APB2_RELEASE_RESET() (RCC->APB2RSTR = 0x00) #define __HAL_RCC_SYSCFG_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SYSCFGRST)) #define __HAL_RCC_ADC1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_ADC1RST)) #define __HAL_RCC_TIM1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM1RST)) #define __HAL_RCC_SPI1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SPI1RST)) #define __HAL_RCC_USART1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_USART1RST)) #define __HAL_RCC_TIM16_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM16RST)) #define __HAL_RCC_TIM17_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM17RST)) #define __HAL_RCC_DBGMCU_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_DBGMCURST)) /** * @} */ /** @defgroup RCC_HSI_Configuration HSI Configuration * @{ */ /** @brief Macros to enable or disable the Internal High Speed oscillator (HSI). * @note The HSI is stopped by hardware when entering STOP and STANDBY modes. * @note HSI can not be stopped if it is used as system clock source. In this case, * you have to select another source of the system clock then stop the HSI. * @note After enabling the HSI, the application software should wait on HSIRDY * flag to be set indicating that HSI clock is stable and can be used as * system clock source. * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator * clock cycles. */ #define __HAL_RCC_HSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSION) #define __HAL_RCC_HSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSION) /** @brief macro to adjust the Internal High Speed oscillator (HSI) calibration value. * @note The calibration is used to compensate for the variations in voltage * and temperature that influence the frequency of the internal HSI RC. * @param _HSICALIBRATIONVALUE_: specifies the calibration trimming value. * (default is RCC_HSICALIBRATION_DEFAULT). * This parameter must be a number between 0 and 0x1F. */ #define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(_HSICALIBRATIONVALUE_) \ MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, (uint32_t)(_HSICALIBRATIONVALUE_) << RCC_CR_HSITRIM_BitNumber) /** * @} */ /** @defgroup RCC_LSI_Configuration LSI Configuration * @{ */ /** @brief Macros to enable or disable the Internal Low Speed oscillator (LSI). * @note After enabling the LSI, the application software should wait on * LSIRDY flag to be set indicating that LSI clock is stable and can * be used to clock the IWDG and/or the RTC. * @note LSI can not be disabled if the IWDG is running. * @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator * clock cycles. */ #define __HAL_RCC_LSI_ENABLE() SET_BIT(RCC->CSR, RCC_CSR_LSION) #define __HAL_RCC_LSI_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_LSION) /** * @} */ /** @defgroup RCC_HSE_Configuration HSE Configuration * @{ */ /** * @brief Macro to configure the External High Speed oscillator (HSE). * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not * supported by this macro. User should request a transition to HSE Off * first and then HSE On or HSE Bypass. * @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application * software should wait on HSERDY flag to be set indicating that HSE clock * is stable and can be used to clock the PLL and/or system clock. * @note HSE state can not be changed if it is used directly or through the * PLL as system clock. In this case, you have to select another source * of the system clock then change the HSE state (ex. disable it). * @note The HSE is stopped by hardware when entering STOP and STANDBY modes. * @note This function reset the CSSON bit, so if the Clock security system(CSS) * was previously enabled you have to enable it again after calling this * function. * @param __STATE__: specifies the new state of the HSE. * This parameter can be one of the following values: * @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after * 6 HSE oscillator clock cycles. * @arg RCC_HSE_ON: turn ON the HSE oscillator * @arg RCC_HSE_BYPASS: HSE oscillator bypassed with external clock */ #define __HAL_RCC_HSE_CONFIG(__STATE__) \ do{ \ if ((__STATE__) == RCC_HSE_ON) \ { \ SET_BIT(RCC->CR, RCC_CR_HSEON); \ } \ else if ((__STATE__) == RCC_HSE_OFF) \ { \ CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \ CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \ } \ else if ((__STATE__) == RCC_HSE_BYPASS) \ { \ SET_BIT(RCC->CR, RCC_CR_HSEBYP); \ SET_BIT(RCC->CR, RCC_CR_HSEON); \ } \ else \ { \ CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \ CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \ } \ }while(0) /** * @brief Macro to configure the External High Speed oscillator (HSE) Predivision factor for PLL. * @note Predivision factor can not be changed if PLL is used as system clock * In this case, you have to select another source of the system clock, disable the PLL and * then change the HSE predivision factor. * @param __HSE_PREDIV_VALUE__: specifies the division value applied to HSE. * This parameter must be a number between RCC_HSE_PREDIV_DIV1 and RCC_HSE_PREDIV_DIV16. */ #define __HAL_RCC_HSE_PREDIV_CONFIG(__HSE_PREDIV_VALUE__) \ MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV, (uint32_t)(__HSE_PREDIV_VALUE__)) /** * @} */ /** @defgroup RCC_LSE_Configuration LSE Configuration * @{ */ /** * @brief Macro to configure the External Low Speed oscillator (LSE). * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not supported by this macro. * @note As the LSE is in the Backup domain and write access is denied to * this domain after reset, you have to enable write access using * HAL_PWR_EnableBkUpAccess() function before to configure the LSE * (to be done once after reset). * @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application * software should wait on LSERDY flag to be set indicating that LSE clock * is stable and can be used to clock the RTC. * @param __STATE__: specifies the new state of the LSE. * This parameter can be one of the following values: * @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after * 6 LSE oscillator clock cycles. * @arg RCC_LSE_ON: turn ON the LSE oscillator. * @arg RCC_LSE_BYPASS: LSE oscillator bypassed with external clock. */ #define __HAL_RCC_LSE_CONFIG(__STATE__) \ do{ \ if ((__STATE__) == RCC_LSE_ON) \ { \ SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ } \ else if ((__STATE__) == RCC_LSE_OFF) \ { \ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \ } \ else if ((__STATE__) == RCC_LSE_BYPASS) \ { \ SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \ SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ } \ else \ { \ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \ } \ }while(0) /** * @} */ /** @defgroup RCC_HSI14_Configuration RCC_HSI14_Configuration * @{ */ /** @brief Macros to enable or disable the Internal 14Mhz High Speed oscillator (HSI14). * @note The HSI14 is stopped by hardware when entering STOP and STANDBY modes. * @note HSI14 can not be stopped if it is used as system clock source. In this case, * you have to select another source of the system clock then stop the HSI14. * @note After enabling the HSI14 with __HAL_RCC_HSI14_ENABLE(), the application software * should wait on HSI14RDY flag to be set indicating that HSI clock is stable and can be * used as system clock source. This is not necessary if HAL_RCC_OscConfig() is used. * @note When the HSI14 is stopped, HSI14RDY flag goes low after 6 HSI14 oscillator * clock cycles. */ #define __HAL_RCC_HSI14_ENABLE() SET_BIT(RCC->CR2, RCC_CR2_HSI14ON) #define __HAL_RCC_HSI14_DISABLE() CLEAR_BIT(RCC->CR2, RCC_CR2_HSI14ON) /** @brief macros to Enable or Disable the Internal 14Mhz High Speed oscillator (HSI14) usage by ADC. */ #define __HAL_RCC_HSI14ADC_ENABLE() CLEAR_BIT(RCC->CR2, RCC_CR2_HSI14DIS) #define __HAL_RCC_HSI14ADC_DISABLE() SET_BIT(RCC->CR2, RCC_CR2_HSI14DIS) /** @brief Macro to adjust the Internal 14Mhz High Speed oscillator (HSI) calibration value. * @note The calibration is used to compensate for the variations in voltage * and temperature that influence the frequency of the internal HSI14 RC. * @param __HSI14CalibrationValue__: specifies the calibration trimming value * (default is RCC_HSI14CALIBRATION_DEFAULT). * This parameter must be a number between 0 and 0x1F. */ #define RCC_CR2_HSI14TRIM_BitNumber 3 #define __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(__HSI14CalibrationValue__) \ MODIFY_REG(RCC->CR2, RCC_CR2_HSI14TRIM, (uint32_t)(__HSI14CalibrationValue__) << RCC_CR2_HSI14TRIM_BitNumber) /** * @} */ /** @defgroup RCC_USARTx_Clock_Config RCC USARTx Clock Config * @{ */ /** @brief Macro to configure the USART1 clock (USART1CLK). * @param __USART1CLKSource__: specifies the USART1 clock source. * This parameter can be one of the following values: * @arg RCC_USART1CLKSOURCE_PCLK1: PCLK1 selected as USART1 clock * @arg RCC_USART1CLKSOURCE_HSI: HSI selected as USART1 clock * @arg RCC_USART1CLKSOURCE_SYSCLK: System Clock selected as USART1 clock * @arg RCC_USART1CLKSOURCE_LSE: LSE selected as USART1 clock */ #define __HAL_RCC_USART1_CONFIG(__USART1CLKSource__) \ MODIFY_REG(RCC->CFGR3, RCC_CFGR3_USART1SW, (uint32_t)(__USART1CLKSource__)) /** @brief Macro to get the USART1 clock source. * @retval The clock source can be one of the following values: * @arg RCC_USART1CLKSOURCE_PCLK1: PCLK1 selected as USART1 clock * @arg RCC_USART1CLKSOURCE_HSI: HSI selected as USART1 clock * @arg RCC_USART1CLKSOURCE_SYSCLK: System Clock selected as USART1 clock * @arg RCC_USART1CLKSOURCE_LSE: LSE selected as USART1 clock */ #define __HAL_RCC_GET_USART1_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR3, RCC_CFGR3_USART1SW))) /** * @} */ /** @defgroup RCC_I2Cx_Clock_Config RCC I2Cx Clock Config * @{ */ /** @brief Macro to configure the I2C1 clock (I2C1CLK). * @param __I2C1CLKSource__: specifies the I2C1 clock source. * This parameter can be one of the following values: * @arg RCC_I2C1CLKSOURCE_HSI: HSI selected as I2C1 clock * @arg RCC_I2C1CLKSOURCE_SYSCLK: System Clock selected as I2C1 clock */ #define __HAL_RCC_I2C1_CONFIG(__I2C1CLKSource__) \ MODIFY_REG(RCC->CFGR3, RCC_CFGR3_I2C1SW, (uint32_t)(__I2C1CLKSource__)) /** @brief Macro to get the I2C1 clock source. * @retval The clock source can be one of the following values: * @arg RCC_I2C1CLKSOURCE_HSI: HSI selected as I2C1 clock * @arg RCC_I2C1CLKSOURCE_SYSCLK: System Clock selected as I2C1 clock */ #define __HAL_RCC_GET_I2C1_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR3, RCC_CFGR3_I2C1SW))) /** * @} */ /** @defgroup RCC_PLL_Configuration PLL Configuration * @{ */ /** @brief Macros to enable the main PLL. * @note After enabling the main PLL, the application software should wait on * PLLRDY flag to be set indicating that PLL clock is stable and can * be used as system clock source. * @note The main PLL is disabled by hardware when entering STOP and STANDBY modes. */ #define __HAL_RCC_PLL_ENABLE() SET_BIT(RCC->CR, RCC_CR_PLLON) /** @brief Macros to disable the main PLL. * @note The main PLL can not be disabled if it is used as system clock source */ #define __HAL_RCC_PLL_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_PLLON) /** @brief Macro to configure the PLL clock source, multiplication and division factors. * @note This function must be used only when the main PLL is disabled. * * @param __RCC_PLLSOURCE__: specifies the PLL entry clock source. * This parameter can be one of the following values: * @arg RCC_PLLSOURCE_HSI: HSI oscillator clock selected as PLL clock entry * @arg RCC_PLLSOURCE_HSE: HSE oscillator clock selected as PLL clock entry * @param __PLLMUL__: specifies the multiplication factor for PLL VCO output clock * This parameter can be one of the following values: * This parameter must be a number between RCC_PLL_MUL2 and RCC_PLL_MUL16. * @param __PREDIV__: specifies the predivider factor for PLL VCO input clock * This parameter must be a number between RCC_PREDIV_DIV1 and RCC_PREDIV_DIV16. * */ #define __HAL_RCC_PLL_CONFIG(__RCC_PLLSOURCE__ , __PREDIV__, __PLLMUL__) \ do { \ MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV, (__PREDIV__)); \ MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLMUL | RCC_CFGR_PLLSRC, (uint32_t)((__PLLMUL__)|(__RCC_PLLSOURCE__))); \ } while(0) /** @brief Get oscillator clock selected as PLL input clock * @retval The clock source used for PLL entry. The returned value can be one * of the following: * @arg RCC_PLLSOURCE_HSE: HSE oscillator clock selected as PLL input clock */ #define __HAL_RCC_GET_PLL_OSCSOURCE() ((RCC->CFGR & RCC_CFGR_PLLSRC)) /** * @} */ /** @defgroup RCC_Get_Clock_source Get Clock source * @{ */ /** * @brief Macro to configure the system clock source. * @param __RCC_SYSCLKSOURCE__: specifies the system clock source. * This parameter can be one of the following values: * - RCC_SYSCLKSOURCE_MSI: MSI oscillator is used as system clock source. * - RCC_SYSCLKSOURCE_HSI: HSI oscillator is used as system clock source. * - RCC_SYSCLKSOURCE_HSE: HSE oscillator is used as system clock source. * - RCC_SYSCLKSOURCE_PLLCLK: PLL output is used as system clock source. */ #define __HAL_RCC_SYSCLK_CONFIG(__RCC_SYSCLKSOURCE__) \ MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, (__RCC_SYSCLKSOURCE__)) /** @brief Macro to get the clock source used as system clock. * @retval The clock source used as system clock. The returned value can be one * of the following: * @arg RCC_SYSCLKSOURCE_STATUS_HSI: HSI used as system clock * @arg RCC_SYSCLKSOURCE_STATUS_HSE: HSE used as system clock * @arg RCC_SYSCLKSOURCE_STATUS_PLLCLK: PLL used as system clock */ #define __HAL_RCC_GET_SYSCLK_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR,RCC_CFGR_SWS))) /** * @} */ /** @defgroup RCC_RTC_Clock_Configuration RCC RTC Clock Configuration * @{ */ /** @brief Macro to configures the RTC clock (RTCCLK). * @note As the RTC clock configuration bits are in the Backup domain and write * access is denied to this domain after reset, you have to enable write * access using the Power Backup Access macro before to configure * the RTC clock source (to be done once after reset). * @note Once the RTC clock is configured it can't be changed unless the * Backup domain is reset using __HAL_RCC_BACKUPRESET_FORCE() macro, or by * a Power On Reset (POR). * * @param __RTC_CLKSOURCE__: specifies the RTC clock source. * This parameter can be one of the following values: * @arg RCC_RTCCLKSOURCE_NO_CLK: No clock selected as RTC clock * @arg RCC_RTCCLKSOURCE_LSE: LSE selected as RTC clock * @arg RCC_RTCCLKSOURCE_LSI: LSI selected as RTC clock * @arg RCC_RTCCLKSOURCE_HSE_DIV32: HSE clock divided by 32 * @note If the LSE or LSI is used as RTC clock source, the RTC continues to * work in STOP and STANDBY modes, and can be used as wakeup source. * However, when the LSI clock and HSE clock divided by 32 is used as RTC clock source, * the RTC cannot be used in STOP and STANDBY modes. * @note The system must always be configured so as to get a PCLK frequency greater than or * equal to the RTCCLK frequency for a proper operation of the RTC. */ #define __HAL_RCC_RTC_CONFIG(__RTC_CLKSOURCE__) MODIFY_REG(RCC->BDCR, RCC_BDCR_RTCSEL, (__RTC_CLKSOURCE__)) /** @brief macros to get the RTC clock source. * @retval The clock source can be one of the following values: * @arg RCC_RTCCLKSOURCE_NO_CLK: No clock selected as RTC clock * @arg RCC_RTCCLKSOURCE_LSE: LSE selected as RTC clock * @arg RCC_RTCCLKSOURCE_LSI: LSI selected as RTC clock * @arg RCC_RTCCLKSOURCE_HSE_DIV32: HSE clock divided by 32 */ #define __HAL_RCC_GET_RTC_SOURCE() (READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL)) /** @brief Macros to enable the the RTC clock. * @note These macros must be used only after the RTC clock source was selected. */ #define __HAL_RCC_RTC_ENABLE() SET_BIT(RCC->BDCR, RCC_BDCR_RTCEN) /** @brief Macros to disable the the RTC clock. * @note These macros must be used only after the RTC clock source was selected. */ #define __HAL_RCC_RTC_DISABLE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_RTCEN) /** @brief Macros to force the Backup domain reset. * @note This function resets the RTC peripheral (including the backup registers) * and the RTC clock source selection in RCC_BDCR register. */ #define __HAL_RCC_BACKUPRESET_FORCE() SET_BIT(RCC->BDCR, RCC_BDCR_BDRST) /** @brief Macros to release the Backup domain reset. */ #define __HAL_RCC_BACKUPRESET_RELEASE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_BDRST) /** * @} */ /** @defgroup RCC_Flags_Interrupts_Management Flags Interrupts Management * @brief macros to manage the specified RCC Flags and interrupts. * @{ */ /** @brief Enable RCC interrupt. * @param __INTERRUPT__: specifies the RCC interrupt sources to be enabled. * This parameter can be any combination of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: main PLL ready interrupt * @arg RCC_IT_HSI14RDY: HSI14 ready interrupt enable * @arg RCC_IT_HSI48RDY: HSI48 ready interrupt enable (only applicable to STM32F0X2 USB devices) */ #define __HAL_RCC_ENABLE_IT(__INTERRUPT__) (*(__IO uint8_t *) RCC_CIR_BYTE1_ADDRESS |= (__INTERRUPT__)) /** @brief Disable RCC interrupt. * @param __INTERRUPT__: specifies the RCC interrupt sources to be disabled. * This parameter can be any combination of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: main PLL ready interrupt * @arg RCC_IT_HSI14RDY: HSI14 ready interrupt enable * @arg RCC_IT_HSI48RDY: HSI48 ready interrupt enable (only applicable to STM32F0X2 USB devices) */ #define __HAL_RCC_DISABLE_IT(__INTERRUPT__) (*(__IO uint8_t *) RCC_CIR_BYTE1_ADDRESS &= ~(__INTERRUPT__)) /** @brief Clear the RCC's interrupt pending bits. * @param __INTERRUPT__: specifies the interrupt pending bit to clear. * This parameter can be any combination of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt. * @arg RCC_IT_LSERDY: LSE ready interrupt. * @arg RCC_IT_HSIRDY: HSI ready interrupt. * @arg RCC_IT_HSERDY: HSE ready interrupt. * @arg RCC_IT_PLLRDY: Main PLL ready interrupt. * @arg RCC_IT_CSS: Clock Security System interrupt * @arg RCC_IT_HSI14RDY: HSI14 ready interrupt enable * @arg RCC_IT_HSI48RDY: HSI48 ready interrupt enable (only applicable to STM32F0X2 USB devices) */ #define __HAL_RCC_CLEAR_IT(__INTERRUPT__) (*(__IO uint8_t *) RCC_CIR_BYTE2_ADDRESS = (__INTERRUPT__)) /** @brief Check the RCC's interrupt has occurred or not. * @param __INTERRUPT__: specifies the RCC interrupt source to check. * This parameter can be one of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt. * @arg RCC_IT_LSERDY: LSE ready interrupt. * @arg RCC_IT_HSIRDY: HSI ready interrupt. * @arg RCC_IT_HSERDY: HSE ready interrupt. * @arg RCC_IT_PLLRDY: Main PLL ready interrupt. * @arg RCC_IT_CSS: Clock Security System interrupt * @arg RCC_IT_HSI14RDY: HSI14 ready interrupt enable * @arg RCC_IT_HSI48RDY: HSI48 ready interrupt enable (only applicable to STM32F0X2 USB devices) * @retval The new state of __INTERRUPT__ (TRUE or FALSE). */ #define __HAL_RCC_GET_IT(__INTERRUPT__) ((RCC->CIR & (__INTERRUPT__)) == (__INTERRUPT__)) /** @brief Set RMVF bit to clear the reset flags. * The reset flags are: RCC_FLAG_PINRST, RCC_FLAG_PORRST, RCC_FLAG_SFTRST, * RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST */ #define __HAL_RCC_CLEAR_RESET_FLAGS() (RCC->CSR |= RCC_CSR_RMVF) /** @brief Check RCC flag is set or not. * @param __FLAG__: specifies the flag to check. * This parameter can be one of the following values: * @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready. * @arg RCC_FLAG_HSERDY: HSE oscillator clock ready. * @arg RCC_FLAG_PLLRDY: Main PLL clock ready. * @arg RCC_FLAG_HSI14RDY: HSI14 oscillator clock ready * @arg RCC_FLAG_HSI48RDY: HSI48 oscillator clock ready (only applicable to STM32F0X2 USB devices) * @arg RCC_FLAG_LSERDY: LSE oscillator clock ready. * @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready. * @arg RCC_FLAG_OBLRST: Option Byte Load reset * @arg RCC_FLAG_PINRST: Pin reset. * @arg RCC_FLAG_PORRST: POR/PDR reset. * @arg RCC_FLAG_SFTRST: Software reset. * @arg RCC_FLAG_IWDGRST: Independent Watchdog reset. * @arg RCC_FLAG_WWDGRST: Window Watchdog reset. * @arg RCC_FLAG_LPWRRST: Low Power reset. * @retval The new state of __FLAG__ (TRUE or FALSE). */ #define __HAL_RCC_GET_FLAG(__FLAG__) (((((__FLAG__) >> 5) == CR_REG_INDEX)? RCC->CR : \ (((__FLAG__) >> 5) == CR2_REG_INDEX)? RCC->CR2 : \ (((__FLAG__) >> 5) == BDCR_REG_INDEX) ? RCC->BDCR : \ RCC->CSR) & ((uint32_t)1 << ((__FLAG__) & RCC_FLAG_MASK))) /** * @} */ /** * @} */ /* Include RCC HAL Extension module */ #include "stm32f0xx_hal_rcc_ex.h" /* Exported functions --------------------------------------------------------*/ /** @addtogroup RCC_Exported_Functions * @{ */ /** @addtogroup RCC_Exported_Functions_Group1 * @{ */ /* Initialization and de-initialization functions ******************************/ void HAL_RCC_DeInit(void); HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct); HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency); /** * @} */ /** @addtogroup RCC_Exported_Functions_Group2 * @{ */ /* Peripheral Control functions ************************************************/ void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv); void HAL_RCC_EnableCSS(void); void HAL_RCC_DisableCSS(void); uint32_t HAL_RCC_GetSysClockFreq(void); uint32_t HAL_RCC_GetHCLKFreq(void); uint32_t HAL_RCC_GetPCLK1Freq(void); void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct); void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency); /* CSS NMI IRQ handler */ void HAL_RCC_NMI_IRQHandler(void); /* User Callbacks in non blocking mode (IT mode) */ void HAL_RCC_CSSCallback(void); /** * @} */ /** * @} */ /** * @} */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __STM32F0xx_HAL_RCC_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/