Fork of the official mbed C/C SDK provides the software platform and libraries to build your applications for RenBED.
Dependents: 1-RenBuggyTimed RenBED_RGB RenBED_RGB_PWM RenBED_RGB
Fork of mbed by
Diff: TARGET_WALLBOT_BLE/arm_math.h
- Revision:
- 110:165afa46840b
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/TARGET_WALLBOT_BLE/arm_math.h Wed Nov 25 13:21:40 2015 +0000 @@ -0,0 +1,7556 @@ +/* ---------------------------------------------------------------------- +* Copyright (C) 2010-2015 ARM Limited. All rights reserved. +* +* $Date: 19. March 2015 +* $Revision: V.1.4.5 +* +* Project: CMSIS DSP Library +* Title: arm_math.h +* +* Description: Public header file for CMSIS DSP Library +* +* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 +* +* Redistribution and use in source and binary forms, with or without +* modification, are permitted provided that the following conditions +* are met: +* - Redistributions of source code must retain the above copyright +* notice, this list of conditions and the following disclaimer. +* - Redistributions in binary form must reproduce the above copyright +* notice, this list of conditions and the following disclaimer in +* the documentation and/or other materials provided with the +* distribution. +* - Neither the name of ARM LIMITED nor the names of its contributors +* may be used to endorse or promote products derived from this +* software without specific prior written permission. +* +* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +* POSSIBILITY OF SUCH DAMAGE. + * -------------------------------------------------------------------- */ + +/** + \mainpage CMSIS DSP Software Library + * + * Introduction + * ------------ + * + * This user manual describes the CMSIS DSP software library, + * a suite of common signal processing functions for use on Cortex-M processor based devices. + * + * The library is divided into a number of functions each covering a specific category: + * - Basic math functions + * - Fast math functions + * - Complex math functions + * - Filters + * - Matrix functions + * - Transforms + * - Motor control functions + * - Statistical functions + * - Support functions + * - Interpolation functions + * + * The library has separate functions for operating on 8-bit integers, 16-bit integers, + * 32-bit integer and 32-bit floating-point values. + * + * Using the Library + * ------------ + * + * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. + * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7) + * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7) + * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7) + * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7) + * - arm_cortexM7l_math.lib (Little endian on Cortex-M7) + * - arm_cortexM7b_math.lib (Big endian on Cortex-M7) + * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) + * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) + * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) + * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) + * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) + * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) + * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+) + * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+) + * + * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. + * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single + * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. + * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or + * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. + * + * Examples + * -------- + * + * The library ships with a number of examples which demonstrate how to use the library functions. + * + * Toolchain Support + * ------------ + * + * The library has been developed and tested with MDK-ARM version 5.14.0.0 + * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. + * + * Building the Library + * ------------ + * + * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. + * - arm_cortexM_math.uvprojx + * + * + * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above. + * + * Pre-processor Macros + * ------------ + * + * Each library project have differant pre-processor macros. + * + * - UNALIGNED_SUPPORT_DISABLE: + * + * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access + * + * - ARM_MATH_BIG_ENDIAN: + * + * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. + * + * - ARM_MATH_MATRIX_CHECK: + * + * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices + * + * - ARM_MATH_ROUNDING: + * + * Define macro ARM_MATH_ROUNDING for rounding on support functions + * + * - ARM_MATH_CMx: + * + * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target + * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and + * ARM_MATH_CM7 for building the library on cortex-M7. + * + * - __FPU_PRESENT: + * + * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries + * + * <hr> + * CMSIS-DSP in ARM::CMSIS Pack + * ----------------------------- + * + * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: + * |File/Folder |Content | + * |------------------------------|------------------------------------------------------------------------| + * |\b CMSIS\\Documentation\\DSP | This documentation | + * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | + * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | + * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | + * + * <hr> + * Revision History of CMSIS-DSP + * ------------ + * Please refer to \ref ChangeLog_pg. + * + * Copyright Notice + * ------------ + * + * Copyright (C) 2010-2015 ARM Limited. All rights reserved. + */ + + +/** + * @defgroup groupMath Basic Math Functions + */ + +/** + * @defgroup groupFastMath Fast Math Functions + * This set of functions provides a fast approximation to sine, cosine, and square root. + * As compared to most of the other functions in the CMSIS math library, the fast math functions + * operate on individual values and not arrays. + * There are separate functions for Q15, Q31, and floating-point data. + * + */ + +/** + * @defgroup groupCmplxMath Complex Math Functions + * This set of functions operates on complex data vectors. + * The data in the complex arrays is stored in an interleaved fashion + * (real, imag, real, imag, ...). + * In the API functions, the number of samples in a complex array refers + * to the number of complex values; the array contains twice this number of + * real values. + */ + +/** + * @defgroup groupFilters Filtering Functions + */ + +/** + * @defgroup groupMatrix Matrix Functions + * + * This set of functions provides basic matrix math operations. + * The functions operate on matrix data structures. For example, + * the type + * definition for the floating-point matrix structure is shown + * below: + * <pre> + * typedef struct + * { + * uint16_t numRows; // number of rows of the matrix. + * uint16_t numCols; // number of columns of the matrix. + * float32_t *pData; // points to the data of the matrix. + * } arm_matrix_instance_f32; + * </pre> + * There are similar definitions for Q15 and Q31 data types. + * + * The structure specifies the size of the matrix and then points to + * an array of data. The array is of size <code>numRows X numCols</code> + * and the values are arranged in row order. That is, the + * matrix element (i, j) is stored at: + * <pre> + * pData[i*numCols + j] + * </pre> + * + * \par Init Functions + * There is an associated initialization function for each type of matrix + * data structure. + * The initialization function sets the values of the internal structure fields. + * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> + * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. + * + * \par + * Use of the initialization function is optional. However, if initialization function is used + * then the instance structure cannot be placed into a const data section. + * To place the instance structure in a const data + * section, manually initialize the data structure. For example: + * <pre> + * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> + * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> + * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> + * </pre> + * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> + * specifies the number of columns, and <code>pData</code> points to the + * data array. + * + * \par Size Checking + * By default all of the matrix functions perform size checking on the input and + * output matrices. For example, the matrix addition function verifies that the + * two input matrices and the output matrix all have the same number of rows and + * columns. If the size check fails the functions return: + * <pre> + * ARM_MATH_SIZE_MISMATCH + * </pre> + * Otherwise the functions return + * <pre> + * ARM_MATH_SUCCESS + * </pre> + * There is some overhead associated with this matrix size checking. + * The matrix size checking is enabled via the \#define + * <pre> + * ARM_MATH_MATRIX_CHECK + * </pre> + * within the library project settings. By default this macro is defined + * and size checking is enabled. By changing the project settings and + * undefining this macro size checking is eliminated and the functions + * run a bit faster. With size checking disabled the functions always + * return <code>ARM_MATH_SUCCESS</code>. + */ + +/** + * @defgroup groupTransforms Transform Functions + */ + +/** + * @defgroup groupController Controller Functions + */ + +/** + * @defgroup groupStats Statistics Functions + */ +/** + * @defgroup groupSupport Support Functions + */ + +/** + * @defgroup groupInterpolation Interpolation Functions + * These functions perform 1- and 2-dimensional interpolation of data. + * Linear interpolation is used for 1-dimensional data and + * bilinear interpolation is used for 2-dimensional data. + */ + +/** + * @defgroup groupExamples Examples + */ +#ifndef _ARM_MATH_H +#define _ARM_MATH_H + +#define __CMSIS_GENERIC /* disable NVIC and Systick functions */ + +#if defined(ARM_MATH_CM7) + #include "core_cm7.h" +#elif defined (ARM_MATH_CM4) + #include "core_cm4.h" +#elif defined (ARM_MATH_CM3) + #include "core_cm3.h" +#elif defined (ARM_MATH_CM0) + #include "core_cm0.h" +#define ARM_MATH_CM0_FAMILY + #elif defined (ARM_MATH_CM0PLUS) +#include "core_cm0plus.h" + #define ARM_MATH_CM0_FAMILY +#else + #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0" +#endif + +#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ +#include "string.h" +#include "math.h" +#ifdef __cplusplus +extern "C" +{ +#endif + + + /** + * @brief Macros required for reciprocal calculation in Normalized LMS + */ + +#define DELTA_Q31 (0x100) +#define DELTA_Q15 0x5 +#define INDEX_MASK 0x0000003F +#ifndef PI +#define PI 3.14159265358979f +#endif + + /** + * @brief Macros required for SINE and COSINE Fast math approximations + */ + +#define FAST_MATH_TABLE_SIZE 512 +#define FAST_MATH_Q31_SHIFT (32 - 10) +#define FAST_MATH_Q15_SHIFT (16 - 10) +#define CONTROLLER_Q31_SHIFT (32 - 9) +#define TABLE_SIZE 256 +#define TABLE_SPACING_Q31 0x400000 +#define TABLE_SPACING_Q15 0x80 + + /** + * @brief Macros required for SINE and COSINE Controller functions + */ + /* 1.31(q31) Fixed value of 2/360 */ + /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ +#define INPUT_SPACING 0xB60B61 + + /** + * @brief Macro for Unaligned Support + */ +#ifndef UNALIGNED_SUPPORT_DISABLE + #define ALIGN4 +#else + #if defined (__GNUC__) + #define ALIGN4 __attribute__((aligned(4))) + #else + #define ALIGN4 __align(4) + #endif +#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ + + /** + * @brief Error status returned by some functions in the library. + */ + + typedef enum + { + ARM_MATH_SUCCESS = 0, /**< No error */ + ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ + ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ + ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ + ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ + ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ + ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ + } arm_status; + + /** + * @brief 8-bit fractional data type in 1.7 format. + */ + typedef int8_t q7_t; + + /** + * @brief 16-bit fractional data type in 1.15 format. + */ + typedef int16_t q15_t; + + /** + * @brief 32-bit fractional data type in 1.31 format. + */ + typedef int32_t q31_t; + + /** + * @brief 64-bit fractional data type in 1.63 format. + */ + typedef int64_t q63_t; + + /** + * @brief 32-bit floating-point type definition. + */ + typedef float float32_t; + + /** + * @brief 64-bit floating-point type definition. + */ + typedef double float64_t; + + /** + * @brief definition to read/write two 16 bit values. + */ +#if defined __CC_ARM + #define __SIMD32_TYPE int32_t __packed + #define CMSIS_UNUSED __attribute__((unused)) +#elif defined __ICCARM__ + #define __SIMD32_TYPE int32_t __packed + #define CMSIS_UNUSED +#elif defined __GNUC__ + #define __SIMD32_TYPE int32_t + #define CMSIS_UNUSED __attribute__((unused)) +#elif defined __CSMC__ /* Cosmic */ + #define __SIMD32_TYPE int32_t + #define CMSIS_UNUSED +#elif defined __TASKING__ + #define __SIMD32_TYPE __unaligned int32_t + #define CMSIS_UNUSED +#else + #error Unknown compiler +#endif + +#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) +#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) + +#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) + +#define __SIMD64(addr) (*(int64_t **) & (addr)) + +#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) + /** + * @brief definition to pack two 16 bit values. + */ +#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ + (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) +#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ + (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) + +#endif + + + /** + * @brief definition to pack four 8 bit values. + */ +#ifndef ARM_MATH_BIG_ENDIAN + +#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ + (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ + (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ + (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) +#else + +#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ + (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ + (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ + (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) + +#endif + + + /** + * @brief Clips Q63 to Q31 values. + */ + static __INLINE q31_t clip_q63_to_q31( + q63_t x) + { + return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? + ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; + } + + /** + * @brief Clips Q63 to Q15 values. + */ + static __INLINE q15_t clip_q63_to_q15( + q63_t x) + { + return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? + ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); + } + + /** + * @brief Clips Q31 to Q7 values. + */ + static __INLINE q7_t clip_q31_to_q7( + q31_t x) + { + return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? + ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; + } + + /** + * @brief Clips Q31 to Q15 values. + */ + static __INLINE q15_t clip_q31_to_q15( + q31_t x) + { + return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? + ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; + } + + /** + * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. + */ + + static __INLINE q63_t mult32x64( + q63_t x, + q31_t y) + { + return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + + (((q63_t) (x >> 32) * y))); + } + + +//#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) +//#define __CLZ __clz +//#endif + +//note: function can be removed when all toolchain support __CLZ for Cortex-M0 +#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ) + + static __INLINE uint32_t __CLZ( + q31_t data); + + + static __INLINE uint32_t __CLZ( + q31_t data) + { + uint32_t count = 0; + uint32_t mask = 0x80000000; + + while((data & mask) == 0) + { + count += 1u; + mask = mask >> 1u; + } + + return (count); + + } + +#endif + + /** + * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. + */ + + static __INLINE uint32_t arm_recip_q31( + q31_t in, + q31_t * dst, + q31_t * pRecipTable) + { + + uint32_t out, tempVal; + uint32_t index, i; + uint32_t signBits; + + if(in > 0) + { + signBits = __CLZ(in) - 1; + } + else + { + signBits = __CLZ(-in) - 1; + } + + /* Convert input sample to 1.31 format */ + in = in << signBits; + + /* calculation of index for initial approximated Val */ + index = (uint32_t) (in >> 24u); + index = (index & INDEX_MASK); + + /* 1.31 with exp 1 */ + out = pRecipTable[index]; + + /* calculation of reciprocal value */ + /* running approximation for two iterations */ + for (i = 0u; i < 2u; i++) + { + tempVal = (q31_t) (((q63_t) in * out) >> 31u); + tempVal = 0x7FFFFFFF - tempVal; + /* 1.31 with exp 1 */ + //out = (q31_t) (((q63_t) out * tempVal) >> 30u); + out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u); + } + + /* write output */ + *dst = out; + + /* return num of signbits of out = 1/in value */ + return (signBits + 1u); + + } + + /** + * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. + */ + static __INLINE uint32_t arm_recip_q15( + q15_t in, + q15_t * dst, + q15_t * pRecipTable) + { + + uint32_t out = 0, tempVal = 0; + uint32_t index = 0, i = 0; + uint32_t signBits = 0; + + if(in > 0) + { + signBits = __CLZ(in) - 17; + } + else + { + signBits = __CLZ(-in) - 17; + } + + /* Convert input sample to 1.15 format */ + in = in << signBits; + + /* calculation of index for initial approximated Val */ + index = in >> 8; + index = (index & INDEX_MASK); + + /* 1.15 with exp 1 */ + out = pRecipTable[index]; + + /* calculation of reciprocal value */ + /* running approximation for two iterations */ + for (i = 0; i < 2; i++) + { + tempVal = (q15_t) (((q31_t) in * out) >> 15); + tempVal = 0x7FFF - tempVal; + /* 1.15 with exp 1 */ + out = (q15_t) (((q31_t) out * tempVal) >> 14); + } + + /* write output */ + *dst = out; + + /* return num of signbits of out = 1/in value */ + return (signBits + 1); + + } + + + /* + * @brief C custom defined intrinisic function for only M0 processors + */ +#if defined(ARM_MATH_CM0_FAMILY) + + static __INLINE q31_t __SSAT( + q31_t x, + uint32_t y) + { + int32_t posMax, negMin; + uint32_t i; + + posMax = 1; + for (i = 0; i < (y - 1); i++) + { + posMax = posMax * 2; + } + + if(x > 0) + { + posMax = (posMax - 1); + + if(x > posMax) + { + x = posMax; + } + } + else + { + negMin = -posMax; + + if(x < negMin) + { + x = negMin; + } + } + return (x); + + + } + +#endif /* end of ARM_MATH_CM0_FAMILY */ + + + + /* + * @brief C custom defined intrinsic function for M3 and M0 processors + */ +#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) + + /* + * @brief C custom defined QADD8 for M3 and M0 processors + */ + static __INLINE q31_t __QADD8( + q31_t x, + q31_t y) + { + + q31_t sum; + q7_t r, s, t, u; + + r = (q7_t) x; + s = (q7_t) y; + + r = __SSAT((q31_t) (r + s), 8); + s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8); + t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8); + u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8); + + sum = + (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) | + (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF); + + return sum; + + } + + /* + * @brief C custom defined QSUB8 for M3 and M0 processors + */ + static __INLINE q31_t __QSUB8( + q31_t x, + q31_t y) + { + + q31_t sum; + q31_t r, s, t, u; + + r = (q7_t) x; + s = (q7_t) y; + + r = __SSAT((r - s), 8); + s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8; + t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16; + u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24; + + sum = + (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & + 0x000000FF); + + return sum; + } + + /* + * @brief C custom defined QADD16 for M3 and M0 processors + */ + + /* + * @brief C custom defined QADD16 for M3 and M0 processors + */ + static __INLINE q31_t __QADD16( + q31_t x, + q31_t y) + { + + q31_t sum; + q31_t r, s; + + r = (q15_t) x; + s = (q15_t) y; + + r = __SSAT(r + s, 16); + s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16; + + sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); + + return sum; + + } + + /* + * @brief C custom defined SHADD16 for M3 and M0 processors + */ + static __INLINE q31_t __SHADD16( + q31_t x, + q31_t y) + { + + q31_t sum; + q31_t r, s; + + r = (q15_t) x; + s = (q15_t) y; + + r = ((r >> 1) + (s >> 1)); + s = ((q31_t) ((x >> 17) + (y >> 17))) << 16; + + sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); + + return sum; + + } + + /* + * @brief C custom defined QSUB16 for M3 and M0 processors + */ + static __INLINE q31_t __QSUB16( + q31_t x, + q31_t y) + { + + q31_t sum; + q31_t r, s; + + r = (q15_t) x; + s = (q15_t) y; + + r = __SSAT(r - s, 16); + s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16; + + sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); + + return sum; + } + + /* + * @brief C custom defined SHSUB16 for M3 and M0 processors + */ + static __INLINE q31_t __SHSUB16( + q31_t x, + q31_t y) + { + + q31_t diff; + q31_t r, s; + + r = (q15_t) x; + s = (q15_t) y; + + r = ((r >> 1) - (s >> 1)); + s = (((x >> 17) - (y >> 17)) << 16); + + diff = (s & 0xFFFF0000) | (r & 0x0000FFFF); + + return diff; + } + + /* + * @brief C custom defined QASX for M3 and M0 processors + */ + static __INLINE q31_t __QASX( + q31_t x, + q31_t y) + { + + q31_t sum = 0; + + sum = + ((sum + + clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) + + clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16))); + + return sum; + } + + /* + * @brief C custom defined SHASX for M3 and M0 processors + */ + static __INLINE q31_t __SHASX( + q31_t x, + q31_t y) + { + + q31_t sum; + q31_t r, s; + + r = (q15_t) x; + s = (q15_t) y; + + r = ((r >> 1) - (y >> 17)); + s = (((x >> 17) + (s >> 1)) << 16); + + sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); + + return sum; + } + + + /* + * @brief C custom defined QSAX for M3 and M0 processors + */ + static __INLINE q31_t __QSAX( + q31_t x, + q31_t y) + { + + q31_t sum = 0; + + sum = + ((sum + + clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) + + clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16))); + + return sum; + } + + /* + * @brief C custom defined SHSAX for M3 and M0 processors + */ + static __INLINE q31_t __SHSAX( + q31_t x, + q31_t y) + { + + q31_t sum; + q31_t r, s; + + r = (q15_t) x; + s = (q15_t) y; + + r = ((r >> 1) + (y >> 17)); + s = (((x >> 17) - (s >> 1)) << 16); + + sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); + + return sum; + } + + /* + * @brief C custom defined SMUSDX for M3 and M0 processors + */ + static __INLINE q31_t __SMUSDX( + q31_t x, + q31_t y) + { + + return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) - + ((q15_t) (x >> 16) * (q15_t) y))); + } + + /* + * @brief C custom defined SMUADX for M3 and M0 processors + */ + static __INLINE q31_t __SMUADX( + q31_t x, + q31_t y) + { + + return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) + + ((q15_t) (x >> 16) * (q15_t) y))); + } + + /* + * @brief C custom defined QADD for M3 and M0 processors + */ + static __INLINE q31_t __QADD( + q31_t x, + q31_t y) + { + return clip_q63_to_q31((q63_t) x + y); + } + + /* + * @brief C custom defined QSUB for M3 and M0 processors + */ + static __INLINE q31_t __QSUB( + q31_t x, + q31_t y) + { + return clip_q63_to_q31((q63_t) x - y); + } + + /* + * @brief C custom defined SMLAD for M3 and M0 processors + */ + static __INLINE q31_t __SMLAD( + q31_t x, + q31_t y, + q31_t sum) + { + + return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + + ((q15_t) x * (q15_t) y)); + } + + /* + * @brief C custom defined SMLADX for M3 and M0 processors + */ + static __INLINE q31_t __SMLADX( + q31_t x, + q31_t y, + q31_t sum) + { + + return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) + + ((q15_t) x * (q15_t) (y >> 16))); + } + + /* + * @brief C custom defined SMLSDX for M3 and M0 processors + */ + static __INLINE q31_t __SMLSDX( + q31_t x, + q31_t y, + q31_t sum) + { + + return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) + + ((q15_t) x * (q15_t) (y >> 16))); + } + + /* + * @brief C custom defined SMLALD for M3 and M0 processors + */ + static __INLINE q63_t __SMLALD( + q31_t x, + q31_t y, + q63_t sum) + { + + return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + + ((q15_t) x * (q15_t) y)); + } + + /* + * @brief C custom defined SMLALDX for M3 and M0 processors + */ + static __INLINE q63_t __SMLALDX( + q31_t x, + q31_t y, + q63_t sum) + { + + return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + + ((q15_t) x * (q15_t) (y >> 16)); + } + + /* + * @brief C custom defined SMUAD for M3 and M0 processors + */ + static __INLINE q31_t __SMUAD( + q31_t x, + q31_t y) + { + + return (((x >> 16) * (y >> 16)) + + (((x << 16) >> 16) * ((y << 16) >> 16))); + } + + /* + * @brief C custom defined SMUSD for M3 and M0 processors + */ + static __INLINE q31_t __SMUSD( + q31_t x, + q31_t y) + { + + return (-((x >> 16) * (y >> 16)) + + (((x << 16) >> 16) * ((y << 16) >> 16))); + } + + + /* + * @brief C custom defined SXTB16 for M3 and M0 processors + */ + static __INLINE q31_t __SXTB16( + q31_t x) + { + + return ((((x << 24) >> 24) & 0x0000FFFF) | + (((x << 8) >> 8) & 0xFFFF0000)); + } + + +#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ + + + /** + * @brief Instance structure for the Q7 FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + } arm_fir_instance_q7; + + /** + * @brief Instance structure for the Q15 FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + } arm_fir_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + } arm_fir_instance_q31; + + /** + * @brief Instance structure for the floating-point FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + } arm_fir_instance_f32; + + + /** + * @brief Processing function for the Q7 FIR filter. + * @param[in] *S points to an instance of the Q7 FIR filter structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + void arm_fir_q7( + const arm_fir_instance_q7 * S, + q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q7 FIR filter. + * @param[in,out] *S points to an instance of the Q7 FIR structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] blockSize number of samples that are processed. + * @return none + */ + void arm_fir_init_q7( + arm_fir_instance_q7 * S, + uint16_t numTaps, + q7_t * pCoeffs, + q7_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q15 FIR filter. + * @param[in] *S points to an instance of the Q15 FIR structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + void arm_fir_q15( + const arm_fir_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. + * @param[in] *S points to an instance of the Q15 FIR filter structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + void arm_fir_fast_q15( + const arm_fir_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q15 FIR filter. + * @param[in,out] *S points to an instance of the Q15 FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if + * <code>numTaps</code> is not a supported value. + */ + + arm_status arm_fir_init_q15( + arm_fir_instance_q15 * S, + uint16_t numTaps, + q15_t * pCoeffs, + q15_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 FIR filter. + * @param[in] *S points to an instance of the Q31 FIR filter structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + void arm_fir_q31( + const arm_fir_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. + * @param[in] *S points to an instance of the Q31 FIR structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + void arm_fir_fast_q31( + const arm_fir_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q31 FIR filter. + * @param[in,out] *S points to an instance of the Q31 FIR structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + * @return none. + */ + void arm_fir_init_q31( + arm_fir_instance_q31 * S, + uint16_t numTaps, + q31_t * pCoeffs, + q31_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the floating-point FIR filter. + * @param[in] *S points to an instance of the floating-point FIR structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + void arm_fir_f32( + const arm_fir_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point FIR filter. + * @param[in,out] *S points to an instance of the floating-point FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + * @return none. + */ + void arm_fir_init_f32( + arm_fir_instance_f32 * S, + uint16_t numTaps, + float32_t * pCoeffs, + float32_t * pState, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q15 Biquad cascade filter. + */ + typedef struct + { + int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ + + } arm_biquad_casd_df1_inst_q15; + + + /** + * @brief Instance structure for the Q31 Biquad cascade filter. + */ + typedef struct + { + uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ + + } arm_biquad_casd_df1_inst_q31; + + /** + * @brief Instance structure for the floating-point Biquad cascade filter. + */ + typedef struct + { + uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + + + } arm_biquad_casd_df1_inst_f32; + + + + /** + * @brief Processing function for the Q15 Biquad cascade filter. + * @param[in] *S points to an instance of the Q15 Biquad cascade structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_biquad_cascade_df1_q15( + const arm_biquad_casd_df1_inst_q15 * S, + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q15 Biquad cascade filter. + * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format + * @return none + */ + + void arm_biquad_cascade_df1_init_q15( + arm_biquad_casd_df1_inst_q15 * S, + uint8_t numStages, + q15_t * pCoeffs, + q15_t * pState, + int8_t postShift); + + + /** + * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. + * @param[in] *S points to an instance of the Q15 Biquad cascade structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_biquad_cascade_df1_fast_q15( + const arm_biquad_casd_df1_inst_q15 * S, + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q31 Biquad cascade filter + * @param[in] *S points to an instance of the Q31 Biquad cascade structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_biquad_cascade_df1_q31( + const arm_biquad_casd_df1_inst_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. + * @param[in] *S points to an instance of the Q31 Biquad cascade structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_biquad_cascade_df1_fast_q31( + const arm_biquad_casd_df1_inst_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q31 Biquad cascade filter. + * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format + * @return none + */ + + void arm_biquad_cascade_df1_init_q31( + arm_biquad_casd_df1_inst_q31 * S, + uint8_t numStages, + q31_t * pCoeffs, + q31_t * pState, + int8_t postShift); + + /** + * @brief Processing function for the floating-point Biquad cascade filter. + * @param[in] *S points to an instance of the floating-point Biquad cascade structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_biquad_cascade_df1_f32( + const arm_biquad_casd_df1_inst_f32 * S, + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point Biquad cascade filter. + * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @return none + */ + + void arm_biquad_cascade_df1_init_f32( + arm_biquad_casd_df1_inst_f32 * S, + uint8_t numStages, + float32_t * pCoeffs, + float32_t * pState); + + + /** + * @brief Instance structure for the floating-point matrix structure. + */ + + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + float32_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_f32; + + + /** + * @brief Instance structure for the floating-point matrix structure. + */ + + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + float64_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_f64; + + /** + * @brief Instance structure for the Q15 matrix structure. + */ + + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + q15_t *pData; /**< points to the data of the matrix. */ + + } arm_matrix_instance_q15; + + /** + * @brief Instance structure for the Q31 matrix structure. + */ + + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + q31_t *pData; /**< points to the data of the matrix. */ + + } arm_matrix_instance_q31; + + + + /** + * @brief Floating-point matrix addition. + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_add_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix addition. + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_add_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix addition. + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_add_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point, complex, matrix multiplication. + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_cmplx_mult_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15, complex, matrix multiplication. + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_cmplx_mult_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pScratch); + + /** + * @brief Q31, complex, matrix multiplication. + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_cmplx_mult_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + + /** + * @brief Floating-point matrix transpose. + * @param[in] *pSrc points to the input matrix + * @param[out] *pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_trans_f32( + const arm_matrix_instance_f32 * pSrc, + arm_matrix_instance_f32 * pDst); + + + /** + * @brief Q15 matrix transpose. + * @param[in] *pSrc points to the input matrix + * @param[out] *pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_trans_q15( + const arm_matrix_instance_q15 * pSrc, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix transpose. + * @param[in] *pSrc points to the input matrix + * @param[out] *pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_trans_q31( + const arm_matrix_instance_q31 * pSrc, + arm_matrix_instance_q31 * pDst); + + + /** + * @brief Floating-point matrix multiplication + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_mult_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix multiplication + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @param[in] *pState points to the array for storing intermediate results + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_mult_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pState); + + /** + * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @param[in] *pState points to the array for storing intermediate results + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_mult_fast_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pState); + + /** + * @brief Q31 matrix multiplication + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_mult_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_mult_fast_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + + /** + * @brief Floating-point matrix subtraction + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_sub_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix subtraction + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_sub_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix subtraction + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_sub_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point matrix scaling. + * @param[in] *pSrc points to the input matrix + * @param[in] scale scale factor + * @param[out] *pDst points to the output matrix + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_scale_f32( + const arm_matrix_instance_f32 * pSrc, + float32_t scale, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix scaling. + * @param[in] *pSrc points to input matrix + * @param[in] scaleFract fractional portion of the scale factor + * @param[in] shift number of bits to shift the result by + * @param[out] *pDst points to output matrix + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_scale_q15( + const arm_matrix_instance_q15 * pSrc, + q15_t scaleFract, + int32_t shift, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix scaling. + * @param[in] *pSrc points to input matrix + * @param[in] scaleFract fractional portion of the scale factor + * @param[in] shift number of bits to shift the result by + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ + + arm_status arm_mat_scale_q31( + const arm_matrix_instance_q31 * pSrc, + q31_t scaleFract, + int32_t shift, + arm_matrix_instance_q31 * pDst); + + + /** + * @brief Q31 matrix initialization. + * @param[in,out] *S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] *pData points to the matrix data array. + * @return none + */ + + void arm_mat_init_q31( + arm_matrix_instance_q31 * S, + uint16_t nRows, + uint16_t nColumns, + q31_t * pData); + + /** + * @brief Q15 matrix initialization. + * @param[in,out] *S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] *pData points to the matrix data array. + * @return none + */ + + void arm_mat_init_q15( + arm_matrix_instance_q15 * S, + uint16_t nRows, + uint16_t nColumns, + q15_t * pData); + + /** + * @brief Floating-point matrix initialization. + * @param[in,out] *S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] *pData points to the matrix data array. + * @return none + */ + + void arm_mat_init_f32( + arm_matrix_instance_f32 * S, + uint16_t nRows, + uint16_t nColumns, + float32_t * pData); + + + + /** + * @brief Instance structure for the Q15 PID Control. + */ + typedef struct + { + q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ +#ifdef ARM_MATH_CM0_FAMILY + q15_t A1; + q15_t A2; +#else + q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ +#endif + q15_t state[3]; /**< The state array of length 3. */ + q15_t Kp; /**< The proportional gain. */ + q15_t Ki; /**< The integral gain. */ + q15_t Kd; /**< The derivative gain. */ + } arm_pid_instance_q15; + + /** + * @brief Instance structure for the Q31 PID Control. + */ + typedef struct + { + q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ + q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ + q31_t A2; /**< The derived gain, A2 = Kd . */ + q31_t state[3]; /**< The state array of length 3. */ + q31_t Kp; /**< The proportional gain. */ + q31_t Ki; /**< The integral gain. */ + q31_t Kd; /**< The derivative gain. */ + + } arm_pid_instance_q31; + + /** + * @brief Instance structure for the floating-point PID Control. + */ + typedef struct + { + float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ + float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ + float32_t A2; /**< The derived gain, A2 = Kd . */ + float32_t state[3]; /**< The state array of length 3. */ + float32_t Kp; /**< The proportional gain. */ + float32_t Ki; /**< The integral gain. */ + float32_t Kd; /**< The derivative gain. */ + } arm_pid_instance_f32; + + + + /** + * @brief Initialization function for the floating-point PID Control. + * @param[in,out] *S points to an instance of the PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. + * @return none. + */ + void arm_pid_init_f32( + arm_pid_instance_f32 * S, + int32_t resetStateFlag); + + /** + * @brief Reset function for the floating-point PID Control. + * @param[in,out] *S is an instance of the floating-point PID Control structure + * @return none + */ + void arm_pid_reset_f32( + arm_pid_instance_f32 * S); + + + /** + * @brief Initialization function for the Q31 PID Control. + * @param[in,out] *S points to an instance of the Q15 PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. + * @return none. + */ + void arm_pid_init_q31( + arm_pid_instance_q31 * S, + int32_t resetStateFlag); + + + /** + * @brief Reset function for the Q31 PID Control. + * @param[in,out] *S points to an instance of the Q31 PID Control structure + * @return none + */ + + void arm_pid_reset_q31( + arm_pid_instance_q31 * S); + + /** + * @brief Initialization function for the Q15 PID Control. + * @param[in,out] *S points to an instance of the Q15 PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. + * @return none. + */ + void arm_pid_init_q15( + arm_pid_instance_q15 * S, + int32_t resetStateFlag); + + /** + * @brief Reset function for the Q15 PID Control. + * @param[in,out] *S points to an instance of the q15 PID Control structure + * @return none + */ + void arm_pid_reset_q15( + arm_pid_instance_q15 * S); + + + /** + * @brief Instance structure for the floating-point Linear Interpolate function. + */ + typedef struct + { + uint32_t nValues; /**< nValues */ + float32_t x1; /**< x1 */ + float32_t xSpacing; /**< xSpacing */ + float32_t *pYData; /**< pointer to the table of Y values */ + } arm_linear_interp_instance_f32; + + /** + * @brief Instance structure for the floating-point bilinear interpolation function. + */ + + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + float32_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_f32; + + /** + * @brief Instance structure for the Q31 bilinear interpolation function. + */ + + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + q31_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_q31; + + /** + * @brief Instance structure for the Q15 bilinear interpolation function. + */ + + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + q15_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_q15; + + /** + * @brief Instance structure for the Q15 bilinear interpolation function. + */ + + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + q7_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_q7; + + + /** + * @brief Q7 vector multiplication. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_mult_q7( + q7_t * pSrcA, + q7_t * pSrcB, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Q15 vector multiplication. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_mult_q15( + q15_t * pSrcA, + q15_t * pSrcB, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Q31 vector multiplication. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_mult_q31( + q31_t * pSrcA, + q31_t * pSrcB, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Floating-point vector multiplication. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_mult_f32( + float32_t * pSrcA, + float32_t * pSrcB, + float32_t * pDst, + uint32_t blockSize); + + + + + + + /** + * @brief Instance structure for the Q15 CFFT/CIFFT function. + */ + + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ + uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix2_instance_q15; + +/* Deprecated */ + arm_status arm_cfft_radix2_init_q15( + arm_cfft_radix2_instance_q15 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix2_q15( + const arm_cfft_radix2_instance_q15 * S, + q15_t * pSrc); + + + + /** + * @brief Instance structure for the Q15 CFFT/CIFFT function. + */ + + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + q15_t *pTwiddle; /**< points to the twiddle factor table. */ + uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix4_instance_q15; + +/* Deprecated */ + arm_status arm_cfft_radix4_init_q15( + arm_cfft_radix4_instance_q15 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix4_q15( + const arm_cfft_radix4_instance_q15 * S, + q15_t * pSrc); + + /** + * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. + */ + + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + q31_t *pTwiddle; /**< points to the Twiddle factor table. */ + uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix2_instance_q31; + +/* Deprecated */ + arm_status arm_cfft_radix2_init_q31( + arm_cfft_radix2_instance_q31 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix2_q31( + const arm_cfft_radix2_instance_q31 * S, + q31_t * pSrc); + + /** + * @brief Instance structure for the Q31 CFFT/CIFFT function. + */ + + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + q31_t *pTwiddle; /**< points to the twiddle factor table. */ + uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix4_instance_q31; + +/* Deprecated */ + void arm_cfft_radix4_q31( + const arm_cfft_radix4_instance_q31 * S, + q31_t * pSrc); + +/* Deprecated */ + arm_status arm_cfft_radix4_init_q31( + arm_cfft_radix4_instance_q31 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + float32_t *pTwiddle; /**< points to the Twiddle factor table. */ + uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + float32_t onebyfftLen; /**< value of 1/fftLen. */ + } arm_cfft_radix2_instance_f32; + +/* Deprecated */ + arm_status arm_cfft_radix2_init_f32( + arm_cfft_radix2_instance_f32 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix2_f32( + const arm_cfft_radix2_instance_f32 * S, + float32_t * pSrc); + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + float32_t *pTwiddle; /**< points to the Twiddle factor table. */ + uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + float32_t onebyfftLen; /**< value of 1/fftLen. */ + } arm_cfft_radix4_instance_f32; + +/* Deprecated */ + arm_status arm_cfft_radix4_init_f32( + arm_cfft_radix4_instance_f32 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix4_f32( + const arm_cfft_radix4_instance_f32 * S, + float32_t * pSrc); + + /** + * @brief Instance structure for the fixed-point CFFT/CIFFT function. + */ + + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ + } arm_cfft_instance_q15; + +void arm_cfft_q15( + const arm_cfft_instance_q15 * S, + q15_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the fixed-point CFFT/CIFFT function. + */ + + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ + } arm_cfft_instance_q31; + +void arm_cfft_q31( + const arm_cfft_instance_q31 * S, + q31_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ + } arm_cfft_instance_f32; + + void arm_cfft_f32( + const arm_cfft_instance_f32 * S, + float32_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the Q15 RFFT/RIFFT function. + */ + + typedef struct + { + uint32_t fftLenReal; /**< length of the real FFT. */ + uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ + uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ + uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ + q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ + const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ + } arm_rfft_instance_q15; + + arm_status arm_rfft_init_q15( + arm_rfft_instance_q15 * S, + uint32_t fftLenReal, + uint32_t ifftFlagR, + uint32_t bitReverseFlag); + + void arm_rfft_q15( + const arm_rfft_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst); + + /** + * @brief Instance structure for the Q31 RFFT/RIFFT function. + */ + + typedef struct + { + uint32_t fftLenReal; /**< length of the real FFT. */ + uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ + uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ + uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ + q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ + const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ + } arm_rfft_instance_q31; + + arm_status arm_rfft_init_q31( + arm_rfft_instance_q31 * S, + uint32_t fftLenReal, + uint32_t ifftFlagR, + uint32_t bitReverseFlag); + + void arm_rfft_q31( + const arm_rfft_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst); + + /** + * @brief Instance structure for the floating-point RFFT/RIFFT function. + */ + + typedef struct + { + uint32_t fftLenReal; /**< length of the real FFT. */ + uint16_t fftLenBy2; /**< length of the complex FFT. */ + uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ + uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ + uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ + float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ + arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ + } arm_rfft_instance_f32; + + arm_status arm_rfft_init_f32( + arm_rfft_instance_f32 * S, + arm_cfft_radix4_instance_f32 * S_CFFT, + uint32_t fftLenReal, + uint32_t ifftFlagR, + uint32_t bitReverseFlag); + + void arm_rfft_f32( + const arm_rfft_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst); + + /** + * @brief Instance structure for the floating-point RFFT/RIFFT function. + */ + +typedef struct + { + arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ + uint16_t fftLenRFFT; /**< length of the real sequence */ + float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ + } arm_rfft_fast_instance_f32 ; + +arm_status arm_rfft_fast_init_f32 ( + arm_rfft_fast_instance_f32 * S, + uint16_t fftLen); + +void arm_rfft_fast_f32( + arm_rfft_fast_instance_f32 * S, + float32_t * p, float32_t * pOut, + uint8_t ifftFlag); + + /** + * @brief Instance structure for the floating-point DCT4/IDCT4 function. + */ + + typedef struct + { + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + float32_t normalize; /**< normalizing factor. */ + float32_t *pTwiddle; /**< points to the twiddle factor table. */ + float32_t *pCosFactor; /**< points to the cosFactor table. */ + arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ + arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ + } arm_dct4_instance_f32; + + /** + * @brief Initialization function for the floating-point DCT4/IDCT4. + * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure. + * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure. + * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure. + * @param[in] N length of the DCT4. + * @param[in] Nby2 half of the length of the DCT4. + * @param[in] normalize normalizing factor. + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. + */ + + arm_status arm_dct4_init_f32( + arm_dct4_instance_f32 * S, + arm_rfft_instance_f32 * S_RFFT, + arm_cfft_radix4_instance_f32 * S_CFFT, + uint16_t N, + uint16_t Nby2, + float32_t normalize); + + /** + * @brief Processing function for the floating-point DCT4/IDCT4. + * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure. + * @param[in] *pState points to state buffer. + * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. + * @return none. + */ + + void arm_dct4_f32( + const arm_dct4_instance_f32 * S, + float32_t * pState, + float32_t * pInlineBuffer); + + /** + * @brief Instance structure for the Q31 DCT4/IDCT4 function. + */ + + typedef struct + { + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + q31_t normalize; /**< normalizing factor. */ + q31_t *pTwiddle; /**< points to the twiddle factor table. */ + q31_t *pCosFactor; /**< points to the cosFactor table. */ + arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ + arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ + } arm_dct4_instance_q31; + + /** + * @brief Initialization function for the Q31 DCT4/IDCT4. + * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure. + * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure + * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure + * @param[in] N length of the DCT4. + * @param[in] Nby2 half of the length of the DCT4. + * @param[in] normalize normalizing factor. + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. + */ + + arm_status arm_dct4_init_q31( + arm_dct4_instance_q31 * S, + arm_rfft_instance_q31 * S_RFFT, + arm_cfft_radix4_instance_q31 * S_CFFT, + uint16_t N, + uint16_t Nby2, + q31_t normalize); + + /** + * @brief Processing function for the Q31 DCT4/IDCT4. + * @param[in] *S points to an instance of the Q31 DCT4 structure. + * @param[in] *pState points to state buffer. + * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. + * @return none. + */ + + void arm_dct4_q31( + const arm_dct4_instance_q31 * S, + q31_t * pState, + q31_t * pInlineBuffer); + + /** + * @brief Instance structure for the Q15 DCT4/IDCT4 function. + */ + + typedef struct + { + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + q15_t normalize; /**< normalizing factor. */ + q15_t *pTwiddle; /**< points to the twiddle factor table. */ + q15_t *pCosFactor; /**< points to the cosFactor table. */ + arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ + arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ + } arm_dct4_instance_q15; + + /** + * @brief Initialization function for the Q15 DCT4/IDCT4. + * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure. + * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure. + * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure. + * @param[in] N length of the DCT4. + * @param[in] Nby2 half of the length of the DCT4. + * @param[in] normalize normalizing factor. + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. + */ + + arm_status arm_dct4_init_q15( + arm_dct4_instance_q15 * S, + arm_rfft_instance_q15 * S_RFFT, + arm_cfft_radix4_instance_q15 * S_CFFT, + uint16_t N, + uint16_t Nby2, + q15_t normalize); + + /** + * @brief Processing function for the Q15 DCT4/IDCT4. + * @param[in] *S points to an instance of the Q15 DCT4 structure. + * @param[in] *pState points to state buffer. + * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. + * @return none. + */ + + void arm_dct4_q15( + const arm_dct4_instance_q15 * S, + q15_t * pState, + q15_t * pInlineBuffer); + + /** + * @brief Floating-point vector addition. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_add_f32( + float32_t * pSrcA, + float32_t * pSrcB, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Q7 vector addition. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_add_q7( + q7_t * pSrcA, + q7_t * pSrcB, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Q15 vector addition. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_add_q15( + q15_t * pSrcA, + q15_t * pSrcB, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Q31 vector addition. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_add_q31( + q31_t * pSrcA, + q31_t * pSrcB, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Floating-point vector subtraction. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_sub_f32( + float32_t * pSrcA, + float32_t * pSrcB, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Q7 vector subtraction. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_sub_q7( + q7_t * pSrcA, + q7_t * pSrcB, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Q15 vector subtraction. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_sub_q15( + q15_t * pSrcA, + q15_t * pSrcB, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Q31 vector subtraction. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_sub_q31( + q31_t * pSrcA, + q31_t * pSrcB, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Multiplies a floating-point vector by a scalar. + * @param[in] *pSrc points to the input vector + * @param[in] scale scale factor to be applied + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_scale_f32( + float32_t * pSrc, + float32_t scale, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Multiplies a Q7 vector by a scalar. + * @param[in] *pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_scale_q7( + q7_t * pSrc, + q7_t scaleFract, + int8_t shift, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Multiplies a Q15 vector by a scalar. + * @param[in] *pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_scale_q15( + q15_t * pSrc, + q15_t scaleFract, + int8_t shift, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Multiplies a Q31 vector by a scalar. + * @param[in] *pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_scale_q31( + q31_t * pSrc, + q31_t scaleFract, + int8_t shift, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Q7 vector absolute value. + * @param[in] *pSrc points to the input buffer + * @param[out] *pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_abs_q7( + q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Floating-point vector absolute value. + * @param[in] *pSrc points to the input buffer + * @param[out] *pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_abs_f32( + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Q15 vector absolute value. + * @param[in] *pSrc points to the input buffer + * @param[out] *pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_abs_q15( + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Q31 vector absolute value. + * @param[in] *pSrc points to the input buffer + * @param[out] *pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + * @return none. + */ + + void arm_abs_q31( + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Dot product of floating-point vectors. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] *result output result returned here + * @return none. + */ + + void arm_dot_prod_f32( + float32_t * pSrcA, + float32_t * pSrcB, + uint32_t blockSize, + float32_t * result); + + /** + * @brief Dot product of Q7 vectors. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] *result output result returned here + * @return none. + */ + + void arm_dot_prod_q7( + q7_t * pSrcA, + q7_t * pSrcB, + uint32_t blockSize, + q31_t * result); + + /** + * @brief Dot product of Q15 vectors. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] *result output result returned here + * @return none. + */ + + void arm_dot_prod_q15( + q15_t * pSrcA, + q15_t * pSrcB, + uint32_t blockSize, + q63_t * result); + + /** + * @brief Dot product of Q31 vectors. + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] *result output result returned here + * @return none. + */ + + void arm_dot_prod_q31( + q31_t * pSrcA, + q31_t * pSrcB, + uint32_t blockSize, + q63_t * result); + + /** + * @brief Shifts the elements of a Q7 vector a specified number of bits. + * @param[in] *pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_shift_q7( + q7_t * pSrc, + int8_t shiftBits, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Shifts the elements of a Q15 vector a specified number of bits. + * @param[in] *pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_shift_q15( + q15_t * pSrc, + int8_t shiftBits, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Shifts the elements of a Q31 vector a specified number of bits. + * @param[in] *pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_shift_q31( + q31_t * pSrc, + int8_t shiftBits, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Adds a constant offset to a floating-point vector. + * @param[in] *pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_offset_f32( + float32_t * pSrc, + float32_t offset, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Adds a constant offset to a Q7 vector. + * @param[in] *pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_offset_q7( + q7_t * pSrc, + q7_t offset, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Adds a constant offset to a Q15 vector. + * @param[in] *pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_offset_q15( + q15_t * pSrc, + q15_t offset, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Adds a constant offset to a Q31 vector. + * @param[in] *pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_offset_q31( + q31_t * pSrc, + q31_t offset, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Negates the elements of a floating-point vector. + * @param[in] *pSrc points to the input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_negate_f32( + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Negates the elements of a Q7 vector. + * @param[in] *pSrc points to the input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_negate_q7( + q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Negates the elements of a Q15 vector. + * @param[in] *pSrc points to the input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_negate_q15( + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Negates the elements of a Q31 vector. + * @param[in] *pSrc points to the input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in the vector + * @return none. + */ + + void arm_negate_q31( + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + /** + * @brief Copies the elements of a floating-point vector. + * @param[in] *pSrc input pointer + * @param[out] *pDst output pointer + * @param[in] blockSize number of samples to process + * @return none. + */ + void arm_copy_f32( + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Copies the elements of a Q7 vector. + * @param[in] *pSrc input pointer + * @param[out] *pDst output pointer + * @param[in] blockSize number of samples to process + * @return none. + */ + void arm_copy_q7( + q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Copies the elements of a Q15 vector. + * @param[in] *pSrc input pointer + * @param[out] *pDst output pointer + * @param[in] blockSize number of samples to process + * @return none. + */ + void arm_copy_q15( + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Copies the elements of a Q31 vector. + * @param[in] *pSrc input pointer + * @param[out] *pDst output pointer + * @param[in] blockSize number of samples to process + * @return none. + */ + void arm_copy_q31( + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + /** + * @brief Fills a constant value into a floating-point vector. + * @param[in] value input value to be filled + * @param[out] *pDst output pointer + * @param[in] blockSize number of samples to process + * @return none. + */ + void arm_fill_f32( + float32_t value, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Fills a constant value into a Q7 vector. + * @param[in] value input value to be filled + * @param[out] *pDst output pointer + * @param[in] blockSize number of samples to process + * @return none. + */ + void arm_fill_q7( + q7_t value, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Fills a constant value into a Q15 vector. + * @param[in] value input value to be filled + * @param[out] *pDst output pointer + * @param[in] blockSize number of samples to process + * @return none. + */ + void arm_fill_q15( + q15_t value, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Fills a constant value into a Q31 vector. + * @param[in] value input value to be filled + * @param[out] *pDst output pointer + * @param[in] blockSize number of samples to process + * @return none. + */ + void arm_fill_q31( + q31_t value, + q31_t * pDst, + uint32_t blockSize); + +/** + * @brief Convolution of floating-point sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. + * @return none. + */ + + void arm_conv_f32( + float32_t * pSrcA, + uint32_t srcALen, + float32_t * pSrcB, + uint32_t srcBLen, + float32_t * pDst); + + + /** + * @brief Convolution of Q15 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @return none. + */ + + + void arm_conv_opt_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + +/** + * @brief Convolution of Q15 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. + * @return none. + */ + + void arm_conv_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + /** + * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. + * @return none. + */ + + void arm_conv_fast_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + /** + * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @return none. + */ + + void arm_conv_fast_opt_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + + + /** + * @brief Convolution of Q31 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. + * @return none. + */ + + void arm_conv_q31( + q31_t * pSrcA, + uint32_t srcALen, + q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + /** + * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. + * @return none. + */ + + void arm_conv_fast_q31( + q31_t * pSrcA, + uint32_t srcALen, + q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + + /** + * @brief Convolution of Q7 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + * @return none. + */ + + void arm_conv_opt_q7( + q7_t * pSrcA, + uint32_t srcALen, + q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + + + /** + * @brief Convolution of Q7 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. + * @return none. + */ + + void arm_conv_q7( + q7_t * pSrcA, + uint32_t srcALen, + q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst); + + + /** + * @brief Partial convolution of floating-point sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + + arm_status arm_conv_partial_f32( + float32_t * pSrcA, + uint32_t srcALen, + float32_t * pSrcB, + uint32_t srcBLen, + float32_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + /** + * @brief Partial convolution of Q15 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + + arm_status arm_conv_partial_opt_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints, + q15_t * pScratch1, + q15_t * pScratch2); + + +/** + * @brief Partial convolution of Q15 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + + arm_status arm_conv_partial_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + /** + * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + + arm_status arm_conv_partial_fast_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + + arm_status arm_conv_partial_fast_opt_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Partial convolution of Q31 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + + arm_status arm_conv_partial_q31( + q31_t * pSrcA, + uint32_t srcALen, + q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + + arm_status arm_conv_partial_fast_q31( + q31_t * pSrcA, + uint32_t srcALen, + q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q7 sequences + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + + arm_status arm_conv_partial_opt_q7( + q7_t * pSrcA, + uint32_t srcALen, + q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + uint32_t firstIndex, + uint32_t numPoints, + q15_t * pScratch1, + q15_t * pScratch2); + + +/** + * @brief Partial convolution of Q7 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + + arm_status arm_conv_partial_q7( + q7_t * pSrcA, + uint32_t srcALen, + q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + + /** + * @brief Instance structure for the Q15 FIR decimator. + */ + + typedef struct + { + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + } arm_fir_decimate_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR decimator. + */ + + typedef struct + { + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + + } arm_fir_decimate_instance_q31; + + /** + * @brief Instance structure for the floating-point FIR decimator. + */ + + typedef struct + { + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + + } arm_fir_decimate_instance_f32; + + + + /** + * @brief Processing function for the floating-point FIR decimator. + * @param[in] *S points to an instance of the floating-point FIR decimator structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + * @return none + */ + + void arm_fir_decimate_f32( + const arm_fir_decimate_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the floating-point FIR decimator. + * @param[in,out] *S points to an instance of the floating-point FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * <code>blockSize</code> is not a multiple of <code>M</code>. + */ + + arm_status arm_fir_decimate_init_f32( + arm_fir_decimate_instance_f32 * S, + uint16_t numTaps, + uint8_t M, + float32_t * pCoeffs, + float32_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the Q15 FIR decimator. + * @param[in] *S points to an instance of the Q15 FIR decimator structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + * @return none + */ + + void arm_fir_decimate_q15( + const arm_fir_decimate_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. + * @param[in] *S points to an instance of the Q15 FIR decimator structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + * @return none + */ + + void arm_fir_decimate_fast_q15( + const arm_fir_decimate_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Initialization function for the Q15 FIR decimator. + * @param[in,out] *S points to an instance of the Q15 FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * <code>blockSize</code> is not a multiple of <code>M</code>. + */ + + arm_status arm_fir_decimate_init_q15( + arm_fir_decimate_instance_q15 * S, + uint16_t numTaps, + uint8_t M, + q15_t * pCoeffs, + q15_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 FIR decimator. + * @param[in] *S points to an instance of the Q31 FIR decimator structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + * @return none + */ + + void arm_fir_decimate_q31( + const arm_fir_decimate_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. + * @param[in] *S points to an instance of the Q31 FIR decimator structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + * @return none + */ + + void arm_fir_decimate_fast_q31( + arm_fir_decimate_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 FIR decimator. + * @param[in,out] *S points to an instance of the Q31 FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * <code>blockSize</code> is not a multiple of <code>M</code>. + */ + + arm_status arm_fir_decimate_init_q31( + arm_fir_decimate_instance_q31 * S, + uint16_t numTaps, + uint8_t M, + q31_t * pCoeffs, + q31_t * pState, + uint32_t blockSize); + + + + /** + * @brief Instance structure for the Q15 FIR interpolator. + */ + + typedef struct + { + uint8_t L; /**< upsample factor. */ + uint16_t phaseLength; /**< length of each polyphase filter component. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ + } arm_fir_interpolate_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR interpolator. + */ + + typedef struct + { + uint8_t L; /**< upsample factor. */ + uint16_t phaseLength; /**< length of each polyphase filter component. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ + } arm_fir_interpolate_instance_q31; + + /** + * @brief Instance structure for the floating-point FIR interpolator. + */ + + typedef struct + { + uint8_t L; /**< upsample factor. */ + uint16_t phaseLength; /**< length of each polyphase filter component. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ + } arm_fir_interpolate_instance_f32; + + + /** + * @brief Processing function for the Q15 FIR interpolator. + * @param[in] *S points to an instance of the Q15 FIR interpolator structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + * @return none. + */ + + void arm_fir_interpolate_q15( + const arm_fir_interpolate_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q15 FIR interpolator. + * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] *pCoeffs points to the filter coefficient buffer. + * @param[in] *pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. + */ + + arm_status arm_fir_interpolate_init_q15( + arm_fir_interpolate_instance_q15 * S, + uint8_t L, + uint16_t numTaps, + q15_t * pCoeffs, + q15_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 FIR interpolator. + * @param[in] *S points to an instance of the Q15 FIR interpolator structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + * @return none. + */ + + void arm_fir_interpolate_q31( + const arm_fir_interpolate_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q31 FIR interpolator. + * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] *pCoeffs points to the filter coefficient buffer. + * @param[in] *pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. + */ + + arm_status arm_fir_interpolate_init_q31( + arm_fir_interpolate_instance_q31 * S, + uint8_t L, + uint16_t numTaps, + q31_t * pCoeffs, + q31_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the floating-point FIR interpolator. + * @param[in] *S points to an instance of the floating-point FIR interpolator structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + * @return none. + */ + + void arm_fir_interpolate_f32( + const arm_fir_interpolate_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point FIR interpolator. + * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] *pCoeffs points to the filter coefficient buffer. + * @param[in] *pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. + */ + + arm_status arm_fir_interpolate_init_f32( + arm_fir_interpolate_instance_f32 * S, + uint8_t L, + uint16_t numTaps, + float32_t * pCoeffs, + float32_t * pState, + uint32_t blockSize); + + /** + * @brief Instance structure for the high precision Q31 Biquad cascade filter. + */ + + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ + q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ + + } arm_biquad_cas_df1_32x64_ins_q31; + + + /** + * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_biquad_cas_df1_32x64_q31( + const arm_biquad_cas_df1_32x64_ins_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format + * @return none + */ + + void arm_biquad_cas_df1_32x64_init_q31( + arm_biquad_cas_df1_32x64_ins_q31 * S, + uint8_t numStages, + q31_t * pCoeffs, + q63_t * pState, + uint8_t postShift); + + + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ + float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_df2T_instance_f32; + + + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ + float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_stereo_df2T_instance_f32; + + + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ + float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_df2T_instance_f64; + + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in] *S points to an instance of the filter data structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_biquad_cascade_df2T_f32( + const arm_biquad_cascade_df2T_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels + * @param[in] *S points to an instance of the filter data structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_biquad_cascade_stereo_df2T_f32( + const arm_biquad_cascade_stereo_df2T_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in] *S points to an instance of the filter data structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_biquad_cascade_df2T_f64( + const arm_biquad_cascade_df2T_instance_f64 * S, + float64_t * pSrc, + float64_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] *S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @return none + */ + + void arm_biquad_cascade_df2T_init_f32( + arm_biquad_cascade_df2T_instance_f32 * S, + uint8_t numStages, + float32_t * pCoeffs, + float32_t * pState); + + + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] *S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @return none + */ + + void arm_biquad_cascade_stereo_df2T_init_f32( + arm_biquad_cascade_stereo_df2T_instance_f32 * S, + uint8_t numStages, + float32_t * pCoeffs, + float32_t * pState); + + + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] *S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] *pCoeffs points to the filter coefficients. + * @param[in] *pState points to the state buffer. + * @return none + */ + + void arm_biquad_cascade_df2T_init_f64( + arm_biquad_cascade_df2T_instance_f64 * S, + uint8_t numStages, + float64_t * pCoeffs, + float64_t * pState); + + + + /** + * @brief Instance structure for the Q15 FIR lattice filter. + */ + + typedef struct + { + uint16_t numStages; /**< number of filter stages. */ + q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + } arm_fir_lattice_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR lattice filter. + */ + + typedef struct + { + uint16_t numStages; /**< number of filter stages. */ + q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + } arm_fir_lattice_instance_q31; + + /** + * @brief Instance structure for the floating-point FIR lattice filter. + */ + + typedef struct + { + uint16_t numStages; /**< number of filter stages. */ + float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + } arm_fir_lattice_instance_f32; + + /** + * @brief Initialization function for the Q15 FIR lattice filter. + * @param[in] *S points to an instance of the Q15 FIR lattice structure. + * @param[in] numStages number of filter stages. + * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] *pState points to the state buffer. The array is of length numStages. + * @return none. + */ + + void arm_fir_lattice_init_q15( + arm_fir_lattice_instance_q15 * S, + uint16_t numStages, + q15_t * pCoeffs, + q15_t * pState); + + + /** + * @brief Processing function for the Q15 FIR lattice filter. + * @param[in] *S points to an instance of the Q15 FIR lattice structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + void arm_fir_lattice_q15( + const arm_fir_lattice_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q31 FIR lattice filter. + * @param[in] *S points to an instance of the Q31 FIR lattice structure. + * @param[in] numStages number of filter stages. + * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] *pState points to the state buffer. The array is of length numStages. + * @return none. + */ + + void arm_fir_lattice_init_q31( + arm_fir_lattice_instance_q31 * S, + uint16_t numStages, + q31_t * pCoeffs, + q31_t * pState); + + + /** + * @brief Processing function for the Q31 FIR lattice filter. + * @param[in] *S points to an instance of the Q31 FIR lattice structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_fir_lattice_q31( + const arm_fir_lattice_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + +/** + * @brief Initialization function for the floating-point FIR lattice filter. + * @param[in] *S points to an instance of the floating-point FIR lattice structure. + * @param[in] numStages number of filter stages. + * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] *pState points to the state buffer. The array is of length numStages. + * @return none. + */ + + void arm_fir_lattice_init_f32( + arm_fir_lattice_instance_f32 * S, + uint16_t numStages, + float32_t * pCoeffs, + float32_t * pState); + + /** + * @brief Processing function for the floating-point FIR lattice filter. + * @param[in] *S points to an instance of the floating-point FIR lattice structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_fir_lattice_f32( + const arm_fir_lattice_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Instance structure for the Q15 IIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of stages in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + } arm_iir_lattice_instance_q15; + + /** + * @brief Instance structure for the Q31 IIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of stages in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + } arm_iir_lattice_instance_q31; + + /** + * @brief Instance structure for the floating-point IIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of stages in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + } arm_iir_lattice_instance_f32; + + /** + * @brief Processing function for the floating-point IIR lattice filter. + * @param[in] *S points to an instance of the floating-point IIR lattice structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_iir_lattice_f32( + const arm_iir_lattice_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point IIR lattice filter. + * @param[in] *S points to an instance of the floating-point IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. + * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. + * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_iir_lattice_init_f32( + arm_iir_lattice_instance_f32 * S, + uint16_t numStages, + float32_t * pkCoeffs, + float32_t * pvCoeffs, + float32_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q31 IIR lattice filter. + * @param[in] *S points to an instance of the Q31 IIR lattice structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_iir_lattice_q31( + const arm_iir_lattice_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 IIR lattice filter. + * @param[in] *S points to an instance of the Q31 IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. + * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. + * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_iir_lattice_init_q31( + arm_iir_lattice_instance_q31 * S, + uint16_t numStages, + q31_t * pkCoeffs, + q31_t * pvCoeffs, + q31_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q15 IIR lattice filter. + * @param[in] *S points to an instance of the Q15 IIR lattice structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_iir_lattice_q15( + const arm_iir_lattice_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + +/** + * @brief Initialization function for the Q15 IIR lattice filter. + * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages. + * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. + * @param[in] *pState points to state buffer. The array is of length numStages+blockSize. + * @param[in] blockSize number of samples to process per call. + * @return none. + */ + + void arm_iir_lattice_init_q15( + arm_iir_lattice_instance_q15 * S, + uint16_t numStages, + q15_t * pkCoeffs, + q15_t * pvCoeffs, + q15_t * pState, + uint32_t blockSize); + + /** + * @brief Instance structure for the floating-point LMS filter. + */ + + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + float32_t mu; /**< step size that controls filter coefficient updates. */ + } arm_lms_instance_f32; + + /** + * @brief Processing function for floating-point LMS filter. + * @param[in] *S points to an instance of the floating-point LMS filter structure. + * @param[in] *pSrc points to the block of input data. + * @param[in] *pRef points to the block of reference data. + * @param[out] *pOut points to the block of output data. + * @param[out] *pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_lms_f32( + const arm_lms_instance_f32 * S, + float32_t * pSrc, + float32_t * pRef, + float32_t * pOut, + float32_t * pErr, + uint32_t blockSize); + + /** + * @brief Initialization function for floating-point LMS filter. + * @param[in] *S points to an instance of the floating-point LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] *pCoeffs points to the coefficient buffer. + * @param[in] *pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_lms_init_f32( + arm_lms_instance_f32 * S, + uint16_t numTaps, + float32_t * pCoeffs, + float32_t * pState, + float32_t mu, + uint32_t blockSize); + + /** + * @brief Instance structure for the Q15 LMS filter. + */ + + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q15_t mu; /**< step size that controls filter coefficient updates. */ + uint32_t postShift; /**< bit shift applied to coefficients. */ + } arm_lms_instance_q15; + + + /** + * @brief Initialization function for the Q15 LMS filter. + * @param[in] *S points to an instance of the Q15 LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] *pCoeffs points to the coefficient buffer. + * @param[in] *pState points to the state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + * @return none. + */ + + void arm_lms_init_q15( + arm_lms_instance_q15 * S, + uint16_t numTaps, + q15_t * pCoeffs, + q15_t * pState, + q15_t mu, + uint32_t blockSize, + uint32_t postShift); + + /** + * @brief Processing function for Q15 LMS filter. + * @param[in] *S points to an instance of the Q15 LMS filter structure. + * @param[in] *pSrc points to the block of input data. + * @param[in] *pRef points to the block of reference data. + * @param[out] *pOut points to the block of output data. + * @param[out] *pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_lms_q15( + const arm_lms_instance_q15 * S, + q15_t * pSrc, + q15_t * pRef, + q15_t * pOut, + q15_t * pErr, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q31 LMS filter. + */ + + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q31_t mu; /**< step size that controls filter coefficient updates. */ + uint32_t postShift; /**< bit shift applied to coefficients. */ + + } arm_lms_instance_q31; + + /** + * @brief Processing function for Q31 LMS filter. + * @param[in] *S points to an instance of the Q15 LMS filter structure. + * @param[in] *pSrc points to the block of input data. + * @param[in] *pRef points to the block of reference data. + * @param[out] *pOut points to the block of output data. + * @param[out] *pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_lms_q31( + const arm_lms_instance_q31 * S, + q31_t * pSrc, + q31_t * pRef, + q31_t * pOut, + q31_t * pErr, + uint32_t blockSize); + + /** + * @brief Initialization function for Q31 LMS filter. + * @param[in] *S points to an instance of the Q31 LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] *pCoeffs points to coefficient buffer. + * @param[in] *pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + * @return none. + */ + + void arm_lms_init_q31( + arm_lms_instance_q31 * S, + uint16_t numTaps, + q31_t * pCoeffs, + q31_t * pState, + q31_t mu, + uint32_t blockSize, + uint32_t postShift); + + /** + * @brief Instance structure for the floating-point normalized LMS filter. + */ + + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + float32_t mu; /**< step size that control filter coefficient updates. */ + float32_t energy; /**< saves previous frame energy. */ + float32_t x0; /**< saves previous input sample. */ + } arm_lms_norm_instance_f32; + + /** + * @brief Processing function for floating-point normalized LMS filter. + * @param[in] *S points to an instance of the floating-point normalized LMS filter structure. + * @param[in] *pSrc points to the block of input data. + * @param[in] *pRef points to the block of reference data. + * @param[out] *pOut points to the block of output data. + * @param[out] *pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_lms_norm_f32( + arm_lms_norm_instance_f32 * S, + float32_t * pSrc, + float32_t * pRef, + float32_t * pOut, + float32_t * pErr, + uint32_t blockSize); + + /** + * @brief Initialization function for floating-point normalized LMS filter. + * @param[in] *S points to an instance of the floating-point LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] *pCoeffs points to coefficient buffer. + * @param[in] *pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_lms_norm_init_f32( + arm_lms_norm_instance_f32 * S, + uint16_t numTaps, + float32_t * pCoeffs, + float32_t * pState, + float32_t mu, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q31 normalized LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q31_t mu; /**< step size that controls filter coefficient updates. */ + uint8_t postShift; /**< bit shift applied to coefficients. */ + q31_t *recipTable; /**< points to the reciprocal initial value table. */ + q31_t energy; /**< saves previous frame energy. */ + q31_t x0; /**< saves previous input sample. */ + } arm_lms_norm_instance_q31; + + /** + * @brief Processing function for Q31 normalized LMS filter. + * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. + * @param[in] *pSrc points to the block of input data. + * @param[in] *pRef points to the block of reference data. + * @param[out] *pOut points to the block of output data. + * @param[out] *pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_lms_norm_q31( + arm_lms_norm_instance_q31 * S, + q31_t * pSrc, + q31_t * pRef, + q31_t * pOut, + q31_t * pErr, + uint32_t blockSize); + + /** + * @brief Initialization function for Q31 normalized LMS filter. + * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] *pCoeffs points to coefficient buffer. + * @param[in] *pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + * @return none. + */ + + void arm_lms_norm_init_q31( + arm_lms_norm_instance_q31 * S, + uint16_t numTaps, + q31_t * pCoeffs, + q31_t * pState, + q31_t mu, + uint32_t blockSize, + uint8_t postShift); + + /** + * @brief Instance structure for the Q15 normalized LMS filter. + */ + + typedef struct + { + uint16_t numTaps; /**< Number of coefficients in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q15_t mu; /**< step size that controls filter coefficient updates. */ + uint8_t postShift; /**< bit shift applied to coefficients. */ + q15_t *recipTable; /**< Points to the reciprocal initial value table. */ + q15_t energy; /**< saves previous frame energy. */ + q15_t x0; /**< saves previous input sample. */ + } arm_lms_norm_instance_q15; + + /** + * @brief Processing function for Q15 normalized LMS filter. + * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. + * @param[in] *pSrc points to the block of input data. + * @param[in] *pRef points to the block of reference data. + * @param[out] *pOut points to the block of output data. + * @param[out] *pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + * @return none. + */ + + void arm_lms_norm_q15( + arm_lms_norm_instance_q15 * S, + q15_t * pSrc, + q15_t * pRef, + q15_t * pOut, + q15_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for Q15 normalized LMS filter. + * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] *pCoeffs points to coefficient buffer. + * @param[in] *pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + * @return none. + */ + + void arm_lms_norm_init_q15( + arm_lms_norm_instance_q15 * S, + uint16_t numTaps, + q15_t * pCoeffs, + q15_t * pState, + q15_t mu, + uint32_t blockSize, + uint8_t postShift); + + /** + * @brief Correlation of floating-point sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @return none. + */ + + void arm_correlate_f32( + float32_t * pSrcA, + uint32_t srcALen, + float32_t * pSrcB, + uint32_t srcBLen, + float32_t * pDst); + + + /** + * @brief Correlation of Q15 sequences + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @return none. + */ + void arm_correlate_opt_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch); + + + /** + * @brief Correlation of Q15 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @return none. + */ + + void arm_correlate_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + /** + * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @return none. + */ + + void arm_correlate_fast_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + + + /** + * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @return none. + */ + + void arm_correlate_fast_opt_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch); + + /** + * @brief Correlation of Q31 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @return none. + */ + + void arm_correlate_q31( + q31_t * pSrcA, + uint32_t srcALen, + q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + /** + * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @return none. + */ + + void arm_correlate_fast_q31( + q31_t * pSrcA, + uint32_t srcALen, + q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + + + /** + * @brief Correlation of Q7 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + * @return none. + */ + + void arm_correlate_opt_q7( + q7_t * pSrcA, + uint32_t srcALen, + q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Correlation of Q7 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @return none. + */ + + void arm_correlate_q7( + q7_t * pSrcA, + uint32_t srcALen, + q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst); + + + /** + * @brief Instance structure for the floating-point sparse FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_f32; + + /** + * @brief Instance structure for the Q31 sparse FIR filter. + */ + + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_q31; + + /** + * @brief Instance structure for the Q15 sparse FIR filter. + */ + + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_q15; + + /** + * @brief Instance structure for the Q7 sparse FIR filter. + */ + + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_q7; + + /** + * @brief Processing function for the floating-point sparse FIR filter. + * @param[in] *S points to an instance of the floating-point sparse FIR structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] *pScratchIn points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + * @return none. + */ + + void arm_fir_sparse_f32( + arm_fir_sparse_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst, + float32_t * pScratchIn, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point sparse FIR filter. + * @param[in,out] *S points to an instance of the floating-point sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] *pCoeffs points to the array of filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] *pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + * @return none + */ + + void arm_fir_sparse_init_f32( + arm_fir_sparse_instance_f32 * S, + uint16_t numTaps, + float32_t * pCoeffs, + float32_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 sparse FIR filter. + * @param[in] *S points to an instance of the Q31 sparse FIR structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] *pScratchIn points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + * @return none. + */ + + void arm_fir_sparse_q31( + arm_fir_sparse_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst, + q31_t * pScratchIn, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q31 sparse FIR filter. + * @param[in,out] *S points to an instance of the Q31 sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] *pCoeffs points to the array of filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] *pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + * @return none + */ + + void arm_fir_sparse_init_q31( + arm_fir_sparse_instance_q31 * S, + uint16_t numTaps, + q31_t * pCoeffs, + q31_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + /** + * @brief Processing function for the Q15 sparse FIR filter. + * @param[in] *S points to an instance of the Q15 sparse FIR structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] *pScratchIn points to a temporary buffer of size blockSize. + * @param[in] *pScratchOut points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + * @return none. + */ + + void arm_fir_sparse_q15( + arm_fir_sparse_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst, + q15_t * pScratchIn, + q31_t * pScratchOut, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q15 sparse FIR filter. + * @param[in,out] *S points to an instance of the Q15 sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] *pCoeffs points to the array of filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] *pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + * @return none + */ + + void arm_fir_sparse_init_q15( + arm_fir_sparse_instance_q15 * S, + uint16_t numTaps, + q15_t * pCoeffs, + q15_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + /** + * @brief Processing function for the Q7 sparse FIR filter. + * @param[in] *S points to an instance of the Q7 sparse FIR structure. + * @param[in] *pSrc points to the block of input data. + * @param[out] *pDst points to the block of output data + * @param[in] *pScratchIn points to a temporary buffer of size blockSize. + * @param[in] *pScratchOut points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + * @return none. + */ + + void arm_fir_sparse_q7( + arm_fir_sparse_instance_q7 * S, + q7_t * pSrc, + q7_t * pDst, + q7_t * pScratchIn, + q31_t * pScratchOut, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q7 sparse FIR filter. + * @param[in,out] *S points to an instance of the Q7 sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] *pCoeffs points to the array of filter coefficients. + * @param[in] *pState points to the state buffer. + * @param[in] *pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + * @return none + */ + + void arm_fir_sparse_init_q7( + arm_fir_sparse_instance_q7 * S, + uint16_t numTaps, + q7_t * pCoeffs, + q7_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + + /* + * @brief Floating-point sin_cos function. + * @param[in] theta input value in degrees + * @param[out] *pSinVal points to the processed sine output. + * @param[out] *pCosVal points to the processed cos output. + * @return none. + */ + + void arm_sin_cos_f32( + float32_t theta, + float32_t * pSinVal, + float32_t * pCcosVal); + + /* + * @brief Q31 sin_cos function. + * @param[in] theta scaled input value in degrees + * @param[out] *pSinVal points to the processed sine output. + * @param[out] *pCosVal points to the processed cosine output. + * @return none. + */ + + void arm_sin_cos_q31( + q31_t theta, + q31_t * pSinVal, + q31_t * pCosVal); + + + /** + * @brief Floating-point complex conjugate. + * @param[in] *pSrc points to the input vector + * @param[out] *pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + * @return none. + */ + + void arm_cmplx_conj_f32( + float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples); + + /** + * @brief Q31 complex conjugate. + * @param[in] *pSrc points to the input vector + * @param[out] *pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + * @return none. + */ + + void arm_cmplx_conj_q31( + q31_t * pSrc, + q31_t * pDst, + uint32_t numSamples); + + /** + * @brief Q15 complex conjugate. + * @param[in] *pSrc points to the input vector + * @param[out] *pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + * @return none. + */ + + void arm_cmplx_conj_q15( + q15_t * pSrc, + q15_t * pDst, + uint32_t numSamples); + + + + /** + * @brief Floating-point complex magnitude squared + * @param[in] *pSrc points to the complex input vector + * @param[out] *pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + * @return none. + */ + + void arm_cmplx_mag_squared_f32( + float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples); + + /** + * @brief Q31 complex magnitude squared + * @param[in] *pSrc points to the complex input vector + * @param[out] *pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + * @return none. + */ + + void arm_cmplx_mag_squared_q31( + q31_t * pSrc, + q31_t * pDst, + uint32_t numSamples); + + /** + * @brief Q15 complex magnitude squared + * @param[in] *pSrc points to the complex input vector + * @param[out] *pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + * @return none. + */ + + void arm_cmplx_mag_squared_q15( + q15_t * pSrc, + q15_t * pDst, + uint32_t numSamples); + + + /** + * @ingroup groupController + */ + + /** + * @defgroup PID PID Motor Control + * + * A Proportional Integral Derivative (PID) controller is a generic feedback control + * loop mechanism widely used in industrial control systems. + * A PID controller is the most commonly used type of feedback controller. + * + * This set of functions implements (PID) controllers + * for Q15, Q31, and floating-point data types. The functions operate on a single sample + * of data and each call to the function returns a single processed value. + * <code>S</code> points to an instance of the PID control data structure. <code>in</code> + * is the input sample value. The functions return the output value. + * + * \par Algorithm: + * <pre> + * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] + * A0 = Kp + Ki + Kd + * A1 = (-Kp ) - (2 * Kd ) + * A2 = Kd </pre> + * + * \par + * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant + * + * \par + * \image html PID.gif "Proportional Integral Derivative Controller" + * + * \par + * The PID controller calculates an "error" value as the difference between + * the measured output and the reference input. + * The controller attempts to minimize the error by adjusting the process control inputs. + * The proportional value determines the reaction to the current error, + * the integral value determines the reaction based on the sum of recent errors, + * and the derivative value determines the reaction based on the rate at which the error has been changing. + * + * \par Instance Structure + * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. + * A separate instance structure must be defined for each PID Controller. + * There are separate instance structure declarations for each of the 3 supported data types. + * + * \par Reset Functions + * There is also an associated reset function for each data type which clears the state array. + * + * \par Initialization Functions + * There is also an associated initialization function for each data type. + * The initialization function performs the following operations: + * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. + * - Zeros out the values in the state buffer. + * + * \par + * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. + * + * \par Fixed-Point Behavior + * Care must be taken when using the fixed-point versions of the PID Controller functions. + * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup PID + * @{ + */ + + /** + * @brief Process function for the floating-point PID Control. + * @param[in,out] *S is an instance of the floating-point PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + */ + + + static __INLINE float32_t arm_pid_f32( + arm_pid_instance_f32 * S, + float32_t in) + { + float32_t out; + + /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ + out = (S->A0 * in) + + (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @brief Process function for the Q31 PID Control. + * @param[in,out] *S points to an instance of the Q31 PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + * + * <b>Scaling and Overflow Behavior:</b> + * \par + * The function is implemented using an internal 64-bit accumulator. + * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. + * Thus, if the accumulator result overflows it wraps around rather than clip. + * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. + * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. + */ + + static __INLINE q31_t arm_pid_q31( + arm_pid_instance_q31 * S, + q31_t in) + { + q63_t acc; + q31_t out; + + /* acc = A0 * x[n] */ + acc = (q63_t) S->A0 * in; + + /* acc += A1 * x[n-1] */ + acc += (q63_t) S->A1 * S->state[0]; + + /* acc += A2 * x[n-2] */ + acc += (q63_t) S->A2 * S->state[1]; + + /* convert output to 1.31 format to add y[n-1] */ + out = (q31_t) (acc >> 31u); + + /* out += y[n-1] */ + out += S->state[2]; + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @brief Process function for the Q15 PID Control. + * @param[in,out] *S points to an instance of the Q15 PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + * + * <b>Scaling and Overflow Behavior:</b> + * \par + * The function is implemented using a 64-bit internal accumulator. + * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. + * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. + * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. + * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. + * Lastly, the accumulator is saturated to yield a result in 1.15 format. + */ + + static __INLINE q15_t arm_pid_q15( + arm_pid_instance_q15 * S, + q15_t in) + { + q63_t acc; + q15_t out; + +#ifndef ARM_MATH_CM0_FAMILY + __SIMD32_TYPE *vstate; + + /* Implementation of PID controller */ + + /* acc = A0 * x[n] */ + acc = (q31_t) __SMUAD(S->A0, in); + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + vstate = __SIMD32_CONST(S->state); + acc = __SMLALD(S->A1, (q31_t) *vstate, acc); + +#else + /* acc = A0 * x[n] */ + acc = ((q31_t) S->A0) * in; + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + acc += (q31_t) S->A1 * S->state[0]; + acc += (q31_t) S->A2 * S->state[1]; + +#endif + + /* acc += y[n-1] */ + acc += (q31_t) S->state[2] << 15; + + /* saturate the output */ + out = (q15_t) (__SSAT((acc >> 15), 16)); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @} end of PID group + */ + + + /** + * @brief Floating-point matrix inverse. + * @param[in] *src points to the instance of the input floating-point matrix structure. + * @param[out] *dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + + arm_status arm_mat_inverse_f32( + const arm_matrix_instance_f32 * src, + arm_matrix_instance_f32 * dst); + + + /** + * @brief Floating-point matrix inverse. + * @param[in] *src points to the instance of the input floating-point matrix structure. + * @param[out] *dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + + arm_status arm_mat_inverse_f64( + const arm_matrix_instance_f64 * src, + arm_matrix_instance_f64 * dst); + + + + /** + * @ingroup groupController + */ + + + /** + * @defgroup clarke Vector Clarke Transform + * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. + * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents + * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. + * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below + * \image html clarke.gif Stator current space vector and its components in (a,b). + * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> + * can be calculated using only <code>Ia</code> and <code>Ib</code>. + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html clarkeFormula.gif + * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and + * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Clarke transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup clarke + * @{ + */ + + /** + * + * @brief Floating-point Clarke transform + * @param[in] Ia input three-phase coordinate <code>a</code> + * @param[in] Ib input three-phase coordinate <code>b</code> + * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta + * @return none. + */ + + static __INLINE void arm_clarke_f32( + float32_t Ia, + float32_t Ib, + float32_t * pIalpha, + float32_t * pIbeta) + { + /* Calculate pIalpha using the equation, pIalpha = Ia */ + *pIalpha = Ia; + + /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ + *pIbeta = + ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); + + } + + /** + * @brief Clarke transform for Q31 version + * @param[in] Ia input three-phase coordinate <code>a</code> + * @param[in] Ib input three-phase coordinate <code>b</code> + * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta + * @return none. + * + * <b>Scaling and Overflow Behavior:</b> + * \par + * The function is implemented using an internal 32-bit accumulator. + * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + * There is saturation on the addition, hence there is no risk of overflow. + */ + + static __INLINE void arm_clarke_q31( + q31_t Ia, + q31_t Ib, + q31_t * pIalpha, + q31_t * pIbeta) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + + /* Calculating pIalpha from Ia by equation pIalpha = Ia */ + *pIalpha = Ia; + + /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ + product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); + + /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ + product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); + + /* pIbeta is calculated by adding the intermediate products */ + *pIbeta = __QADD(product1, product2); + } + + /** + * @} end of clarke group + */ + + /** + * @brief Converts the elements of the Q7 vector to Q31 vector. + * @param[in] *pSrc input pointer + * @param[out] *pDst output pointer + * @param[in] blockSize number of samples to process + * @return none. + */ + void arm_q7_to_q31( + q7_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + + + /** + * @ingroup groupController + */ + + /** + * @defgroup inv_clarke Vector Inverse Clarke Transform + * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html clarkeInvFormula.gif + * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and + * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Clarke transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup inv_clarke + * @{ + */ + + /** + * @brief Floating-point Inverse Clarke transform + * @param[in] Ialpha input two-phase orthogonal vector axis alpha + * @param[in] Ibeta input two-phase orthogonal vector axis beta + * @param[out] *pIa points to output three-phase coordinate <code>a</code> + * @param[out] *pIb points to output three-phase coordinate <code>b</code> + * @return none. + */ + + + static __INLINE void arm_inv_clarke_f32( + float32_t Ialpha, + float32_t Ibeta, + float32_t * pIa, + float32_t * pIb) + { + /* Calculating pIa from Ialpha by equation pIa = Ialpha */ + *pIa = Ialpha; + + /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ + *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta; + + } + + /** + * @brief Inverse Clarke transform for Q31 version + * @param[in] Ialpha input two-phase orthogonal vector axis alpha + * @param[in] Ibeta input two-phase orthogonal vector axis beta + * @param[out] *pIa points to output three-phase coordinate <code>a</code> + * @param[out] *pIb points to output three-phase coordinate <code>b</code> + * @return none. + * + * <b>Scaling and Overflow Behavior:</b> + * \par + * The function is implemented using an internal 32-bit accumulator. + * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + * There is saturation on the subtraction, hence there is no risk of overflow. + */ + + static __INLINE void arm_inv_clarke_q31( + q31_t Ialpha, + q31_t Ibeta, + q31_t * pIa, + q31_t * pIb) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + + /* Calculating pIa from Ialpha by equation pIa = Ialpha */ + *pIa = Ialpha; + + /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ + product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); + + /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ + product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); + + /* pIb is calculated by subtracting the products */ + *pIb = __QSUB(product2, product1); + + } + + /** + * @} end of inv_clarke group + */ + + /** + * @brief Converts the elements of the Q7 vector to Q15 vector. + * @param[in] *pSrc input pointer + * @param[out] *pDst output pointer + * @param[in] blockSize number of samples to process + * @return none. + */ + void arm_q7_to_q15( + q7_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + + /** + * @ingroup groupController + */ + + /** + * @defgroup park Vector Park Transform + * + * Forward Park transform converts the input two-coordinate vector to flux and torque components. + * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents + * from the stationary to the moving reference frame and control the spatial relationship between + * the stator vector current and rotor flux vector. + * If we consider the d axis aligned with the rotor flux, the diagram below shows the + * current vector and the relationship from the two reference frames: + * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html parkFormula.gif + * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, + * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the + * cosine and sine values of theta (rotor flux position). + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Park transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup park + * @{ + */ + + /** + * @brief Floating-point Park transform + * @param[in] Ialpha input two-phase vector coordinate alpha + * @param[in] Ibeta input two-phase vector coordinate beta + * @param[out] *pId points to output rotor reference frame d + * @param[out] *pIq points to output rotor reference frame q + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta + * @return none. + * + * The function implements the forward Park transform. + * + */ + + static __INLINE void arm_park_f32( + float32_t Ialpha, + float32_t Ibeta, + float32_t * pId, + float32_t * pIq, + float32_t sinVal, + float32_t cosVal) + { + /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ + *pId = Ialpha * cosVal + Ibeta * sinVal; + + /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ + *pIq = -Ialpha * sinVal + Ibeta * cosVal; + + } + + /** + * @brief Park transform for Q31 version + * @param[in] Ialpha input two-phase vector coordinate alpha + * @param[in] Ibeta input two-phase vector coordinate beta + * @param[out] *pId points to output rotor reference frame d + * @param[out] *pIq points to output rotor reference frame q + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta + * @return none. + * + * <b>Scaling and Overflow Behavior:</b> + * \par + * The function is implemented using an internal 32-bit accumulator. + * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + * There is saturation on the addition and subtraction, hence there is no risk of overflow. + */ + + + static __INLINE void arm_park_q31( + q31_t Ialpha, + q31_t Ibeta, + q31_t * pId, + q31_t * pIq, + q31_t sinVal, + q31_t cosVal) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + q31_t product3, product4; /* Temporary variables used to store intermediate results */ + + /* Intermediate product is calculated by (Ialpha * cosVal) */ + product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); + + /* Intermediate product is calculated by (Ibeta * sinVal) */ + product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); + + + /* Intermediate product is calculated by (Ialpha * sinVal) */ + product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); + + /* Intermediate product is calculated by (Ibeta * cosVal) */ + product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); + + /* Calculate pId by adding the two intermediate products 1 and 2 */ + *pId = __QADD(product1, product2); + + /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ + *pIq = __QSUB(product4, product3); + } + + /** + * @} end of park group + */ + + /** + * @brief Converts the elements of the Q7 vector to floating-point vector. + * @param[in] *pSrc is input pointer + * @param[out] *pDst is output pointer + * @param[in] blockSize is the number of samples to process + * @return none. + */ + void arm_q7_to_float( + q7_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @ingroup groupController + */ + + /** + * @defgroup inv_park Vector Inverse Park transform + * Inverse Park transform converts the input flux and torque components to two-coordinate vector. + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html parkInvFormula.gif + * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, + * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the + * cosine and sine values of theta (rotor flux position). + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Park transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup inv_park + * @{ + */ + + /** + * @brief Floating-point Inverse Park transform + * @param[in] Id input coordinate of rotor reference frame d + * @param[in] Iq input coordinate of rotor reference frame q + * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta + * @return none. + */ + + static __INLINE void arm_inv_park_f32( + float32_t Id, + float32_t Iq, + float32_t * pIalpha, + float32_t * pIbeta, + float32_t sinVal, + float32_t cosVal) + { + /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ + *pIalpha = Id * cosVal - Iq * sinVal; + + /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ + *pIbeta = Id * sinVal + Iq * cosVal; + + } + + + /** + * @brief Inverse Park transform for Q31 version + * @param[in] Id input coordinate of rotor reference frame d + * @param[in] Iq input coordinate of rotor reference frame q + * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta + * @return none. + * + * <b>Scaling and Overflow Behavior:</b> + * \par + * The function is implemented using an internal 32-bit accumulator. + * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + * There is saturation on the addition, hence there is no risk of overflow. + */ + + + static __INLINE void arm_inv_park_q31( + q31_t Id, + q31_t Iq, + q31_t * pIalpha, + q31_t * pIbeta, + q31_t sinVal, + q31_t cosVal) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + q31_t product3, product4; /* Temporary variables used to store intermediate results */ + + /* Intermediate product is calculated by (Id * cosVal) */ + product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); + + /* Intermediate product is calculated by (Iq * sinVal) */ + product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); + + + /* Intermediate product is calculated by (Id * sinVal) */ + product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); + + /* Intermediate product is calculated by (Iq * cosVal) */ + product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); + + /* Calculate pIalpha by using the two intermediate products 1 and 2 */ + *pIalpha = __QSUB(product1, product2); + + /* Calculate pIbeta by using the two intermediate products 3 and 4 */ + *pIbeta = __QADD(product4, product3); + + } + + /** + * @} end of Inverse park group + */ + + + /** + * @brief Converts the elements of the Q31 vector to floating-point vector. + * @param[in] *pSrc is input pointer + * @param[out] *pDst is output pointer + * @param[in] blockSize is the number of samples to process + * @return none. + */ + void arm_q31_to_float( + q31_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @ingroup groupInterpolation + */ + + /** + * @defgroup LinearInterpolate Linear Interpolation + * + * Linear interpolation is a method of curve fitting using linear polynomials. + * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line + * + * \par + * \image html LinearInterp.gif "Linear interpolation" + * + * \par + * A Linear Interpolate function calculates an output value(y), for the input(x) + * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) + * + * \par Algorithm: + * <pre> + * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) + * where x0, x1 are nearest values of input x + * y0, y1 are nearest values to output y + * </pre> + * + * \par + * This set of functions implements Linear interpolation process + * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single + * sample of data and each call to the function returns a single processed value. + * <code>S</code> points to an instance of the Linear Interpolate function data structure. + * <code>x</code> is the input sample value. The functions returns the output value. + * + * \par + * if x is outside of the table boundary, Linear interpolation returns first value of the table + * if x is below input range and returns last value of table if x is above range. + */ + + /** + * @addtogroup LinearInterpolate + * @{ + */ + + /** + * @brief Process function for the floating-point Linear Interpolation Function. + * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure + * @param[in] x input sample to process + * @return y processed output sample. + * + */ + + static __INLINE float32_t arm_linear_interp_f32( + arm_linear_interp_instance_f32 * S, + float32_t x) + { + + float32_t y; + float32_t x0, x1; /* Nearest input values */ + float32_t y0, y1; /* Nearest output values */ + float32_t xSpacing = S->xSpacing; /* spacing between input values */ + int32_t i; /* Index variable */ + float32_t *pYData = S->pYData; /* pointer to output table */ + + /* Calculation of index */ + i = (int32_t) ((x - S->x1) / xSpacing); + + if(i < 0) + { + /* Iniatilize output for below specified range as least output value of table */ + y = pYData[0]; + } + else if((uint32_t)i >= S->nValues) + { + /* Iniatilize output for above specified range as last output value of table */ + y = pYData[S->nValues - 1]; + } + else + { + /* Calculation of nearest input values */ + x0 = S->x1 + i * xSpacing; + x1 = S->x1 + (i + 1) * xSpacing; + + /* Read of nearest output values */ + y0 = pYData[i]; + y1 = pYData[i + 1]; + + /* Calculation of output */ + y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); + + } + + /* returns output value */ + return (y); + } + + /** + * + * @brief Process function for the Q31 Linear Interpolation Function. + * @param[in] *pYData pointer to Q31 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values + * @return y processed output sample. + * + * \par + * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. + * This function can support maximum of table size 2^12. + * + */ + + + static __INLINE q31_t arm_linear_interp_q31( + q31_t * pYData, + q31_t x, + uint32_t nValues) + { + q31_t y; /* output */ + q31_t y0, y1; /* Nearest output values */ + q31_t fract; /* fractional part */ + int32_t index; /* Index to read nearest output values */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + index = ((x & 0xFFF00000) >> 20); + + if(index >= (int32_t)(nValues - 1)) + { + return (pYData[nValues - 1]); + } + else if(index < 0) + { + return (pYData[0]); + } + else + { + + /* 20 bits for the fractional part */ + /* shift left by 11 to keep fract in 1.31 format */ + fract = (x & 0x000FFFFF) << 11; + + /* Read two nearest output values from the index in 1.31(q31) format */ + y0 = pYData[index]; + y1 = pYData[index + 1u]; + + /* Calculation of y0 * (1-fract) and y is in 2.30 format */ + y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); + + /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ + y += ((q31_t) (((q63_t) y1 * fract) >> 32)); + + /* Convert y to 1.31 format */ + return (y << 1u); + + } + + } + + /** + * + * @brief Process function for the Q15 Linear Interpolation Function. + * @param[in] *pYData pointer to Q15 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values + * @return y processed output sample. + * + * \par + * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. + * This function can support maximum of table size 2^12. + * + */ + + + static __INLINE q15_t arm_linear_interp_q15( + q15_t * pYData, + q31_t x, + uint32_t nValues) + { + q63_t y; /* output */ + q15_t y0, y1; /* Nearest output values */ + q31_t fract; /* fractional part */ + int32_t index; /* Index to read nearest output values */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + index = ((x & 0xFFF00000) >> 20u); + + if(index >= (int32_t)(nValues - 1)) + { + return (pYData[nValues - 1]); + } + else if(index < 0) + { + return (pYData[0]); + } + else + { + /* 20 bits for the fractional part */ + /* fract is in 12.20 format */ + fract = (x & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y0 = pYData[index]; + y1 = pYData[index + 1u]; + + /* Calculation of y0 * (1-fract) and y is in 13.35 format */ + y = ((q63_t) y0 * (0xFFFFF - fract)); + + /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ + y += ((q63_t) y1 * (fract)); + + /* convert y to 1.15 format */ + return (y >> 20); + } + + + } + + /** + * + * @brief Process function for the Q7 Linear Interpolation Function. + * @param[in] *pYData pointer to Q7 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values + * @return y processed output sample. + * + * \par + * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. + * This function can support maximum of table size 2^12. + */ + + + static __INLINE q7_t arm_linear_interp_q7( + q7_t * pYData, + q31_t x, + uint32_t nValues) + { + q31_t y; /* output */ + q7_t y0, y1; /* Nearest output values */ + q31_t fract; /* fractional part */ + uint32_t index; /* Index to read nearest output values */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + if (x < 0) + { + return (pYData[0]); + } + index = (x >> 20) & 0xfff; + + + if(index >= (nValues - 1)) + { + return (pYData[nValues - 1]); + } + else + { + + /* 20 bits for the fractional part */ + /* fract is in 12.20 format */ + fract = (x & 0x000FFFFF); + + /* Read two nearest output values from the index and are in 1.7(q7) format */ + y0 = pYData[index]; + y1 = pYData[index + 1u]; + + /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ + y = ((y0 * (0xFFFFF - fract))); + + /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ + y += (y1 * fract); + + /* convert y to 1.7(q7) format */ + return (y >> 20u); + + } + + } + /** + * @} end of LinearInterpolate group + */ + + /** + * @brief Fast approximation to the trigonometric sine function for floating-point data. + * @param[in] x input value in radians. + * @return sin(x). + */ + + float32_t arm_sin_f32( + float32_t x); + + /** + * @brief Fast approximation to the trigonometric sine function for Q31 data. + * @param[in] x Scaled input value in radians. + * @return sin(x). + */ + + q31_t arm_sin_q31( + q31_t x); + + /** + * @brief Fast approximation to the trigonometric sine function for Q15 data. + * @param[in] x Scaled input value in radians. + * @return sin(x). + */ + + q15_t arm_sin_q15( + q15_t x); + + /** + * @brief Fast approximation to the trigonometric cosine function for floating-point data. + * @param[in] x input value in radians. + * @return cos(x). + */ + + float32_t arm_cos_f32( + float32_t x); + + /** + * @brief Fast approximation to the trigonometric cosine function for Q31 data. + * @param[in] x Scaled input value in radians. + * @return cos(x). + */ + + q31_t arm_cos_q31( + q31_t x); + + /** + * @brief Fast approximation to the trigonometric cosine function for Q15 data. + * @param[in] x Scaled input value in radians. + * @return cos(x). + */ + + q15_t arm_cos_q15( + q15_t x); + + + /** + * @ingroup groupFastMath + */ + + + /** + * @defgroup SQRT Square Root + * + * Computes the square root of a number. + * There are separate functions for Q15, Q31, and floating-point data types. + * The square root function is computed using the Newton-Raphson algorithm. + * This is an iterative algorithm of the form: + * <pre> + * x1 = x0 - f(x0)/f'(x0) + * </pre> + * where <code>x1</code> is the current estimate, + * <code>x0</code> is the previous estimate, and + * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. + * For the square root function, the algorithm reduces to: + * <pre> + * x0 = in/2 [initial guess] + * x1 = 1/2 * ( x0 + in / x0) [each iteration] + * </pre> + */ + + + /** + * @addtogroup SQRT + * @{ + */ + + /** + * @brief Floating-point square root function. + * @param[in] in input value. + * @param[out] *pOut square root of input value. + * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if + * <code>in</code> is negative value and returns zero output for negative values. + */ + + static __INLINE arm_status arm_sqrt_f32( + float32_t in, + float32_t * pOut) + { + if(in >= 0.0f) + { + +// #if __FPU_USED +#if (__FPU_USED == 1) && defined ( __CC_ARM ) + *pOut = __sqrtf(in); +#else + *pOut = sqrtf(in); +#endif + + return (ARM_MATH_SUCCESS); + } + else + { + *pOut = 0.0f; + return (ARM_MATH_ARGUMENT_ERROR); + } + + } + + + /** + * @brief Q31 square root function. + * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. + * @param[out] *pOut square root of input value. + * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if + * <code>in</code> is negative value and returns zero output for negative values. + */ + arm_status arm_sqrt_q31( + q31_t in, + q31_t * pOut); + + /** + * @brief Q15 square root function. + * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. + * @param[out] *pOut square root of input value. + * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if + * <code>in</code> is negative value and returns zero output for negative values. + */ + arm_status arm_sqrt_q15( + q15_t in, + q15_t * pOut); + + /** + * @} end of SQRT group + */ + + + + + + + /** + * @brief floating-point Circular write function. + */ + + static __INLINE void arm_circularWrite_f32( + int32_t * circBuffer, + int32_t L, + uint16_t * writeOffset, + int32_t bufferInc, + const int32_t * src, + int32_t srcInc, + uint32_t blockSize) + { + uint32_t i = 0u; + int32_t wOffset; + + /* Copy the value of Index pointer that points + * to the current location where the input samples to be copied */ + wOffset = *writeOffset; + + /* Loop over the blockSize */ + i = blockSize; + + while(i > 0u) + { + /* copy the input sample to the circular buffer */ + circBuffer[wOffset] = *src; + + /* Update the input pointer */ + src += srcInc; + + /* Circularly update wOffset. Watch out for positive and negative value */ + wOffset += bufferInc; + if(wOffset >= L) + wOffset -= L; + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *writeOffset = wOffset; + } + + + + /** + * @brief floating-point Circular Read function. + */ + static __INLINE void arm_circularRead_f32( + int32_t * circBuffer, + int32_t L, + int32_t * readOffset, + int32_t bufferInc, + int32_t * dst, + int32_t * dst_base, + int32_t dst_length, + int32_t dstInc, + uint32_t blockSize) + { + uint32_t i = 0u; + int32_t rOffset, dst_end; + + /* Copy the value of Index pointer that points + * to the current location from where the input samples to be read */ + rOffset = *readOffset; + dst_end = (int32_t) (dst_base + dst_length); + + /* Loop over the blockSize */ + i = blockSize; + + while(i > 0u) + { + /* copy the sample from the circular buffer to the destination buffer */ + *dst = circBuffer[rOffset]; + + /* Update the input pointer */ + dst += dstInc; + + if(dst == (int32_t *) dst_end) + { + dst = dst_base; + } + + /* Circularly update rOffset. Watch out for positive and negative value */ + rOffset += bufferInc; + + if(rOffset >= L) + { + rOffset -= L; + } + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *readOffset = rOffset; + } + + /** + * @brief Q15 Circular write function. + */ + + static __INLINE void arm_circularWrite_q15( + q15_t * circBuffer, + int32_t L, + uint16_t * writeOffset, + int32_t bufferInc, + const q15_t * src, + int32_t srcInc, + uint32_t blockSize) + { + uint32_t i = 0u; + int32_t wOffset; + + /* Copy the value of Index pointer that points + * to the current location where the input samples to be copied */ + wOffset = *writeOffset; + + /* Loop over the blockSize */ + i = blockSize; + + while(i > 0u) + { + /* copy the input sample to the circular buffer */ + circBuffer[wOffset] = *src; + + /* Update the input pointer */ + src += srcInc; + + /* Circularly update wOffset. Watch out for positive and negative value */ + wOffset += bufferInc; + if(wOffset >= L) + wOffset -= L; + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *writeOffset = wOffset; + } + + + + /** + * @brief Q15 Circular Read function. + */ + static __INLINE void arm_circularRead_q15( + q15_t * circBuffer, + int32_t L, + int32_t * readOffset, + int32_t bufferInc, + q15_t * dst, + q15_t * dst_base, + int32_t dst_length, + int32_t dstInc, + uint32_t blockSize) + { + uint32_t i = 0; + int32_t rOffset, dst_end; + + /* Copy the value of Index pointer that points + * to the current location from where the input samples to be read */ + rOffset = *readOffset; + + dst_end = (int32_t) (dst_base + dst_length); + + /* Loop over the blockSize */ + i = blockSize; + + while(i > 0u) + { + /* copy the sample from the circular buffer to the destination buffer */ + *dst = circBuffer[rOffset]; + + /* Update the input pointer */ + dst += dstInc; + + if(dst == (q15_t *) dst_end) + { + dst = dst_base; + } + + /* Circularly update wOffset. Watch out for positive and negative value */ + rOffset += bufferInc; + + if(rOffset >= L) + { + rOffset -= L; + } + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *readOffset = rOffset; + } + + + /** + * @brief Q7 Circular write function. + */ + + static __INLINE void arm_circularWrite_q7( + q7_t * circBuffer, + int32_t L, + uint16_t * writeOffset, + int32_t bufferInc, + const q7_t * src, + int32_t srcInc, + uint32_t blockSize) + { + uint32_t i = 0u; + int32_t wOffset; + + /* Copy the value of Index pointer that points + * to the current location where the input samples to be copied */ + wOffset = *writeOffset; + + /* Loop over the blockSize */ + i = blockSize; + + while(i > 0u) + { + /* copy the input sample to the circular buffer */ + circBuffer[wOffset] = *src; + + /* Update the input pointer */ + src += srcInc; + + /* Circularly update wOffset. Watch out for positive and negative value */ + wOffset += bufferInc; + if(wOffset >= L) + wOffset -= L; + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *writeOffset = wOffset; + } + + + + /** + * @brief Q7 Circular Read function. + */ + static __INLINE void arm_circularRead_q7( + q7_t * circBuffer, + int32_t L, + int32_t * readOffset, + int32_t bufferInc, + q7_t * dst, + q7_t * dst_base, + int32_t dst_length, + int32_t dstInc, + uint32_t blockSize) + { + uint32_t i = 0; + int32_t rOffset, dst_end; + + /* Copy the value of Index pointer that points + * to the current location from where the input samples to be read */ + rOffset = *readOffset; + + dst_end = (int32_t) (dst_base + dst_length); + + /* Loop over the blockSize */ + i = blockSize; + + while(i > 0u) + { + /* copy the sample from the circular buffer to the destination buffer */ + *dst = circBuffer[rOffset]; + + /* Update the input pointer */ + dst += dstInc; + + if(dst == (q7_t *) dst_end) + { + dst = dst_base; + } + + /* Circularly update rOffset. Watch out for positive and negative value */ + rOffset += bufferInc; + + if(rOffset >= L) + { + rOffset -= L; + } + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *readOffset = rOffset; + } + + + /** + * @brief Sum of the squares of the elements of a Q31 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_power_q31( + q31_t * pSrc, + uint32_t blockSize, + q63_t * pResult); + + /** + * @brief Sum of the squares of the elements of a floating-point vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_power_f32( + float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + /** + * @brief Sum of the squares of the elements of a Q15 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_power_q15( + q15_t * pSrc, + uint32_t blockSize, + q63_t * pResult); + + /** + * @brief Sum of the squares of the elements of a Q7 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_power_q7( + q7_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + /** + * @brief Mean value of a Q7 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_mean_q7( + q7_t * pSrc, + uint32_t blockSize, + q7_t * pResult); + + /** + * @brief Mean value of a Q15 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + void arm_mean_q15( + q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + /** + * @brief Mean value of a Q31 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + void arm_mean_q31( + q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + /** + * @brief Mean value of a floating-point vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + void arm_mean_f32( + float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + /** + * @brief Variance of the elements of a floating-point vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_var_f32( + float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + /** + * @brief Variance of the elements of a Q31 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_var_q31( + q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + /** + * @brief Variance of the elements of a Q15 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_var_q15( + q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + /** + * @brief Root Mean Square of the elements of a floating-point vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_rms_f32( + float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + /** + * @brief Root Mean Square of the elements of a Q31 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_rms_q31( + q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + /** + * @brief Root Mean Square of the elements of a Q15 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_rms_q15( + q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + /** + * @brief Standard deviation of the elements of a floating-point vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_std_f32( + float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + /** + * @brief Standard deviation of the elements of a Q31 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_std_q31( + q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + /** + * @brief Standard deviation of the elements of a Q15 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output value. + * @return none. + */ + + void arm_std_q15( + q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + /** + * @brief Floating-point complex magnitude + * @param[in] *pSrc points to the complex input vector + * @param[out] *pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + * @return none. + */ + + void arm_cmplx_mag_f32( + float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples); + + /** + * @brief Q31 complex magnitude + * @param[in] *pSrc points to the complex input vector + * @param[out] *pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + * @return none. + */ + + void arm_cmplx_mag_q31( + q31_t * pSrc, + q31_t * pDst, + uint32_t numSamples); + + /** + * @brief Q15 complex magnitude + * @param[in] *pSrc points to the complex input vector + * @param[out] *pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + * @return none. + */ + + void arm_cmplx_mag_q15( + q15_t * pSrc, + q15_t * pDst, + uint32_t numSamples); + + /** + * @brief Q15 complex dot product + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] *realResult real part of the result returned here + * @param[out] *imagResult imaginary part of the result returned here + * @return none. + */ + + void arm_cmplx_dot_prod_q15( + q15_t * pSrcA, + q15_t * pSrcB, + uint32_t numSamples, + q31_t * realResult, + q31_t * imagResult); + + /** + * @brief Q31 complex dot product + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] *realResult real part of the result returned here + * @param[out] *imagResult imaginary part of the result returned here + * @return none. + */ + + void arm_cmplx_dot_prod_q31( + q31_t * pSrcA, + q31_t * pSrcB, + uint32_t numSamples, + q63_t * realResult, + q63_t * imagResult); + + /** + * @brief Floating-point complex dot product + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] *realResult real part of the result returned here + * @param[out] *imagResult imaginary part of the result returned here + * @return none. + */ + + void arm_cmplx_dot_prod_f32( + float32_t * pSrcA, + float32_t * pSrcB, + uint32_t numSamples, + float32_t * realResult, + float32_t * imagResult); + + /** + * @brief Q15 complex-by-real multiplication + * @param[in] *pSrcCmplx points to the complex input vector + * @param[in] *pSrcReal points to the real input vector + * @param[out] *pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + * @return none. + */ + + void arm_cmplx_mult_real_q15( + q15_t * pSrcCmplx, + q15_t * pSrcReal, + q15_t * pCmplxDst, + uint32_t numSamples); + + /** + * @brief Q31 complex-by-real multiplication + * @param[in] *pSrcCmplx points to the complex input vector + * @param[in] *pSrcReal points to the real input vector + * @param[out] *pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + * @return none. + */ + + void arm_cmplx_mult_real_q31( + q31_t * pSrcCmplx, + q31_t * pSrcReal, + q31_t * pCmplxDst, + uint32_t numSamples); + + /** + * @brief Floating-point complex-by-real multiplication + * @param[in] *pSrcCmplx points to the complex input vector + * @param[in] *pSrcReal points to the real input vector + * @param[out] *pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + * @return none. + */ + + void arm_cmplx_mult_real_f32( + float32_t * pSrcCmplx, + float32_t * pSrcReal, + float32_t * pCmplxDst, + uint32_t numSamples); + + /** + * @brief Minimum value of a Q7 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *result is output pointer + * @param[in] index is the array index of the minimum value in the input buffer. + * @return none. + */ + + void arm_min_q7( + q7_t * pSrc, + uint32_t blockSize, + q7_t * result, + uint32_t * index); + + /** + * @brief Minimum value of a Q15 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output pointer + * @param[in] *pIndex is the array index of the minimum value in the input buffer. + * @return none. + */ + + void arm_min_q15( + q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of a Q31 vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output pointer + * @param[out] *pIndex is the array index of the minimum value in the input buffer. + * @return none. + */ + void arm_min_q31( + q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of a floating-point vector. + * @param[in] *pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] *pResult is output pointer + * @param[out] *pIndex is the array index of the minimum value in the input buffer. + * @return none. + */ + + void arm_min_f32( + float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of a Q7 vector. + * @param[in] *pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] *pResult maximum value returned here + * @param[out] *pIndex index of maximum value returned here + * @return none. + */ + + void arm_max_q7( + q7_t * pSrc, + uint32_t blockSize, + q7_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of a Q15 vector. + * @param[in] *pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] *pResult maximum value returned here + * @param[out] *pIndex index of maximum value returned here + * @return none. + */ + + void arm_max_q15( + q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of a Q31 vector. + * @param[in] *pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] *pResult maximum value returned here + * @param[out] *pIndex index of maximum value returned here + * @return none. + */ + + void arm_max_q31( + q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of a floating-point vector. + * @param[in] *pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] *pResult maximum value returned here + * @param[out] *pIndex index of maximum value returned here + * @return none. + */ + + void arm_max_f32( + float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult, + uint32_t * pIndex); + + /** + * @brief Q15 complex-by-complex multiplication + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + * @return none. + */ + + void arm_cmplx_mult_cmplx_q15( + q15_t * pSrcA, + q15_t * pSrcB, + q15_t * pDst, + uint32_t numSamples); + + /** + * @brief Q31 complex-by-complex multiplication + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + * @return none. + */ + + void arm_cmplx_mult_cmplx_q31( + q31_t * pSrcA, + q31_t * pSrcB, + q31_t * pDst, + uint32_t numSamples); + + /** + * @brief Floating-point complex-by-complex multiplication + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + * @return none. + */ + + void arm_cmplx_mult_cmplx_f32( + float32_t * pSrcA, + float32_t * pSrcB, + float32_t * pDst, + uint32_t numSamples); + + /** + * @brief Converts the elements of the floating-point vector to Q31 vector. + * @param[in] *pSrc points to the floating-point input vector + * @param[out] *pDst points to the Q31 output vector + * @param[in] blockSize length of the input vector + * @return none. + */ + void arm_float_to_q31( + float32_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Converts the elements of the floating-point vector to Q15 vector. + * @param[in] *pSrc points to the floating-point input vector + * @param[out] *pDst points to the Q15 output vector + * @param[in] blockSize length of the input vector + * @return none + */ + void arm_float_to_q15( + float32_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Converts the elements of the floating-point vector to Q7 vector. + * @param[in] *pSrc points to the floating-point input vector + * @param[out] *pDst points to the Q7 output vector + * @param[in] blockSize length of the input vector + * @return none + */ + void arm_float_to_q7( + float32_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q31 vector to Q15 vector. + * @param[in] *pSrc is input pointer + * @param[out] *pDst is output pointer + * @param[in] blockSize is the number of samples to process + * @return none. + */ + void arm_q31_to_q15( + q31_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Converts the elements of the Q31 vector to Q7 vector. + * @param[in] *pSrc is input pointer + * @param[out] *pDst is output pointer + * @param[in] blockSize is the number of samples to process + * @return none. + */ + void arm_q31_to_q7( + q31_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Converts the elements of the Q15 vector to floating-point vector. + * @param[in] *pSrc is input pointer + * @param[out] *pDst is output pointer + * @param[in] blockSize is the number of samples to process + * @return none. + */ + void arm_q15_to_float( + q15_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q15 vector to Q31 vector. + * @param[in] *pSrc is input pointer + * @param[out] *pDst is output pointer + * @param[in] blockSize is the number of samples to process + * @return none. + */ + void arm_q15_to_q31( + q15_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q15 vector to Q7 vector. + * @param[in] *pSrc is input pointer + * @param[out] *pDst is output pointer + * @param[in] blockSize is the number of samples to process + * @return none. + */ + void arm_q15_to_q7( + q15_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @ingroup groupInterpolation + */ + + /** + * @defgroup BilinearInterpolate Bilinear Interpolation + * + * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. + * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process + * determines values between the grid points. + * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. + * Bilinear interpolation is often used in image processing to rescale images. + * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. + * + * <b>Algorithm</b> + * \par + * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. + * For floating-point, the instance structure is defined as: + * <pre> + * typedef struct + * { + * uint16_t numRows; + * uint16_t numCols; + * float32_t *pData; + * } arm_bilinear_interp_instance_f32; + * </pre> + * + * \par + * where <code>numRows</code> specifies the number of rows in the table; + * <code>numCols</code> specifies the number of columns in the table; + * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. + * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. + * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. + * + * \par + * Let <code>(x, y)</code> specify the desired interpolation point. Then define: + * <pre> + * XF = floor(x) + * YF = floor(y) + * </pre> + * \par + * The interpolated output point is computed as: + * <pre> + * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) + * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) + * + f(XF, YF+1) * (1-(x-XF))*(y-YF) + * + f(XF+1, YF+1) * (x-XF)*(y-YF) + * </pre> + * Note that the coordinates (x, y) contain integer and fractional components. + * The integer components specify which portion of the table to use while the + * fractional components control the interpolation processor. + * + * \par + * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. + */ + + /** + * @addtogroup BilinearInterpolate + * @{ + */ + + /** + * + * @brief Floating-point bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate. + * @param[in] Y interpolation coordinate. + * @return out interpolated value. + */ + + + static __INLINE float32_t arm_bilinear_interp_f32( + const arm_bilinear_interp_instance_f32 * S, + float32_t X, + float32_t Y) + { + float32_t out; + float32_t f00, f01, f10, f11; + float32_t *pData = S->pData; + int32_t xIndex, yIndex, index; + float32_t xdiff, ydiff; + float32_t b1, b2, b3, b4; + + xIndex = (int32_t) X; + yIndex = (int32_t) Y; + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 + || yIndex > (S->numCols - 1)) + { + return (0); + } + + /* Calculation of index for two nearest points in X-direction */ + index = (xIndex - 1) + (yIndex - 1) * S->numCols; + + + /* Read two nearest points in X-direction */ + f00 = pData[index]; + f01 = pData[index + 1]; + + /* Calculation of index for two nearest points in Y-direction */ + index = (xIndex - 1) + (yIndex) * S->numCols; + + + /* Read two nearest points in Y-direction */ + f10 = pData[index]; + f11 = pData[index + 1]; + + /* Calculation of intermediate values */ + b1 = f00; + b2 = f01 - f00; + b3 = f10 - f00; + b4 = f00 - f01 - f10 + f11; + + /* Calculation of fractional part in X */ + xdiff = X - xIndex; + + /* Calculation of fractional part in Y */ + ydiff = Y - yIndex; + + /* Calculation of bi-linear interpolated output */ + out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; + + /* return to application */ + return (out); + + } + + /** + * + * @brief Q31 bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + + static __INLINE q31_t arm_bilinear_interp_q31( + arm_bilinear_interp_instance_q31 * S, + q31_t X, + q31_t Y) + { + q31_t out; /* Temporary output */ + q31_t acc = 0; /* output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q31_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q31_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & 0xFFF00000) >> 20u); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & 0xFFF00000) >> 20u); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* shift left xfract by 11 to keep 1.31 format */ + xfract = (X & 0x000FFFFF) << 11u; + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + nCols * (cI)]; + x2 = pYData[(rI) + nCols * (cI) + 1u]; + + /* 20 bits for the fractional part */ + /* shift left yfract by 11 to keep 1.31 format */ + yfract = (Y & 0x000FFFFF) << 11u; + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + nCols * (cI + 1)]; + y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ + out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); + acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); + + /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); + + /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* Convert acc to 1.31(q31) format */ + return (acc << 2u); + + } + + /** + * @brief Q15 bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + + static __INLINE q15_t arm_bilinear_interp_q15( + arm_bilinear_interp_instance_q15 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q15_t x1, x2, y1, y2; /* Nearest output values */ + q31_t xfract, yfract; /* X, Y fractional parts */ + int32_t rI, cI; /* Row and column indices */ + q15_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & 0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & 0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & 0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + nCols * (cI)]; + x2 = pYData[(rI) + nCols * (cI) + 1u]; + + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + nCols * (cI + 1)]; + y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ + + /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ + /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ + out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); + acc = ((q63_t) out * (0xFFFFF - yfract)); + + /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); + acc += ((q63_t) out * (xfract)); + + /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); + acc += ((q63_t) out * (yfract)); + + /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); + acc += ((q63_t) out * (yfract)); + + /* acc is in 13.51 format and down shift acc by 36 times */ + /* Convert out to 1.15 format */ + return (acc >> 36); + + } + + /** + * @brief Q7 bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + + static __INLINE q7_t arm_bilinear_interp_q7( + arm_bilinear_interp_instance_q7 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q7_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q7_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & 0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & 0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & 0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + nCols * (cI)]; + x2 = pYData[(rI) + nCols * (cI) + 1u]; + + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + nCols * (cI + 1)]; + y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ + out = ((x1 * (0xFFFFF - xfract))); + acc = (((q63_t) out * (0xFFFFF - yfract))); + + /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ + out = ((x2 * (0xFFFFF - yfract))); + acc += (((q63_t) out * (xfract))); + + /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y1 * (0xFFFFF - xfract))); + acc += (((q63_t) out * (yfract))); + + /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y2 * (yfract))); + acc += (((q63_t) out * (xfract))); + + /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ + return (acc >> 40); + + } + + /** + * @} end of BilinearInterpolate group + */ + + +//SMMLAR +#define multAcc_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) + +//SMMLSR +#define multSub_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) + +//SMMULR +#define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) + +//SMMLA +#define multAcc_32x32_keep32(a, x, y) \ + a += (q31_t) (((q63_t) x * y) >> 32) + +//SMMLS +#define multSub_32x32_keep32(a, x, y) \ + a -= (q31_t) (((q63_t) x * y) >> 32) + +//SMMUL +#define mult_32x32_keep32(a, x, y) \ + a = (q31_t) (((q63_t) x * y ) >> 32) + + +#if defined ( __CC_ARM ) //Keil + +//Enter low optimization region - place directly above function definition + #ifdef ARM_MATH_CM4 + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("push") \ + _Pragma ("O1") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + +//Exit low optimization region - place directly after end of function definition + #ifdef ARM_MATH_CM4 + #define LOW_OPTIMIZATION_EXIT \ + _Pragma ("pop") + #else + #define LOW_OPTIMIZATION_EXIT + #endif + +//Enter low optimization region - place directly above function definition + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + +//Exit low optimization region - place directly after end of function definition + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__ICCARM__) //IAR + +//Enter low optimization region - place directly above function definition + #ifdef ARM_MATH_CM4 + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + +//Exit low optimization region - place directly after end of function definition + #define LOW_OPTIMIZATION_EXIT + +//Enter low optimization region - place directly above function definition + #ifdef ARM_MATH_CM4 + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #endif + +//Exit low optimization region - place directly after end of function definition + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__GNUC__) + + #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) + + #define LOW_OPTIMIZATION_EXIT + + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__CSMC__) // Cosmic + +#define LOW_OPTIMIZATION_ENTER +#define LOW_OPTIMIZATION_EXIT +#define IAR_ONLY_LOW_OPTIMIZATION_ENTER +#define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__TASKING__) // TASKING + +#define LOW_OPTIMIZATION_ENTER +#define LOW_OPTIMIZATION_EXIT +#define IAR_ONLY_LOW_OPTIMIZATION_ENTER +#define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#endif + + +#ifdef __cplusplus +} +#endif + + +#endif /* _ARM_MATH_H */ + +/** + * + * End of file. + */