mbed os with nrf51 internal bandgap enabled to read battery level
Dependents: BLE_file_test BLE_Blink ExternalEncoder
targets/TARGET_STM/TARGET_STM32F1/pwmout_api.c
- Committer:
- elessair
- Date:
- 2016-10-23
- Revision:
- 0:f269e3021894
File content as of revision 0:f269e3021894:
/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2014, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "pwmout_api.h" #if DEVICE_PWMOUT #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #include "PeripheralPins.h" static TIM_HandleTypeDef TimHandle; void pwmout_init(pwmout_t* obj, PinName pin) { // Get the peripheral name from the pin and assign it to the object obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM); MBED_ASSERT(obj->pwm != (PWMName)NC); // Get the functions (timer channel, (non)inverted) from the pin and assign it to the object uint32_t function = pinmap_function(pin, PinMap_PWM); MBED_ASSERT(function != (uint32_t)NC); obj->channel = STM_PIN_CHANNEL(function); obj->inverted = STM_PIN_INVERTED(function); // Enable TIM clock if (obj->pwm == PWM_1) __TIM1_CLK_ENABLE(); if (obj->pwm == PWM_2) __TIM2_CLK_ENABLE(); if (obj->pwm == PWM_3) __TIM3_CLK_ENABLE(); // Configure GPIO pinmap_pinout(pin, PinMap_PWM); obj->pin = pin; obj->period = 0; obj->pulse = 0; obj->prescaler = 1; pwmout_period_us(obj, 20000); // 20 ms per default } void pwmout_free(pwmout_t* obj) { // Configure GPIO pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); } void pwmout_write(pwmout_t* obj, float value) { TIM_OC_InitTypeDef sConfig; int channel = 0; int complementary_channel = 0; TimHandle.Instance = (TIM_TypeDef *)(obj->pwm); if (value < (float)0.0) { value = 0.0; } else if (value > (float)1.0) { value = 1.0; } obj->pulse = (uint32_t)((float)obj->period * value); // Configure channels sConfig.OCMode = TIM_OCMODE_PWM1; sConfig.Pulse = obj->pulse / obj->prescaler; sConfig.OCPolarity = TIM_OCPOLARITY_HIGH; sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfig.OCFastMode = TIM_OCFAST_DISABLE; sConfig.OCIdleState = TIM_OCIDLESTATE_RESET; sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET; switch (obj->channel) { case 1: channel = TIM_CHANNEL_1; break; case 2: channel = TIM_CHANNEL_2; break; case 3: channel = TIM_CHANNEL_3; break; case 4: channel = TIM_CHANNEL_4; break; default: return; } if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, channel) != HAL_OK) { error("Cannot initialize PWM\n"); } if (obj->inverted) { HAL_TIMEx_PWMN_Start(&TimHandle, channel); } else { HAL_TIM_PWM_Start(&TimHandle, channel); } } float pwmout_read(pwmout_t* obj) { float value = 0; if (obj->period > 0) { value = (float)(obj->pulse) / (float)(obj->period); } return ((value > (float)1.0) ? (float)(1.0) : (value)); } void pwmout_period(pwmout_t* obj, float seconds) { pwmout_period_us(obj, seconds * 1000000.0f); } void pwmout_period_ms(pwmout_t* obj, int ms) { pwmout_period_us(obj, ms * 1000); } void pwmout_period_us(pwmout_t* obj, int us) { TimHandle.Instance = (TIM_TypeDef *)(obj->pwm); float dc = pwmout_read(obj); __HAL_TIM_DISABLE(&TimHandle); /* To make it simple, we use to possible prescaler values which lead to: * pwm unit = 1us, period/pulse can be from 1us to 65535us * or * pwm unit = 500us, period/pulse can be from 500us to ~32.76sec * Be careful that all the channels of a PWM shares the same prescaler */ if (us > 0xFFFF) { obj->prescaler = 500; } else { obj->prescaler = 1; } TimHandle.Init.Prescaler = ((SystemCoreClock / 1000000) * obj->prescaler) - 1; if (TimHandle.Init.Prescaler > 0xFFFF) error("PWM: out of range prescaler"); TimHandle.Init.Period = (us - 1) / obj->prescaler; if (TimHandle.Init.Period > 0xFFFF) error("PWM: out of range period"); TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_PWM_Init(&TimHandle); // Save for future use obj->period = us; // Set duty cycle again pwmout_write(obj, dc); __HAL_TIM_ENABLE(&TimHandle); } void pwmout_pulsewidth(pwmout_t* obj, float seconds) { pwmout_pulsewidth_us(obj, seconds * 1000000.0f); } void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) { pwmout_pulsewidth_us(obj, ms * 1000); } void pwmout_pulsewidth_us(pwmout_t* obj, int us) { float value = (float)us / (float)obj->period; pwmout_write(obj, value); } #endif